2,166 research outputs found

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table

    Collusion in Peer-to-Peer Systems

    Get PDF
    Peer-to-peer systems have reached a widespread use, ranging from academic and industrial applications to home entertainment. The key advantage of this paradigm lies in its scalability and flexibility, consequences of the participants sharing their resources for the common welfare. Security in such systems is a desirable goal. For example, when mission-critical operations or bank transactions are involved, their effectiveness strongly depends on the perception that users have about the system dependability and trustworthiness. A major threat to the security of these systems is the phenomenon of collusion. Peers can be selfish colluders, when they try to fool the system to gain unfair advantages over other peers, or malicious, when their purpose is to subvert the system or disturb other users. The problem, however, has received so far only a marginal attention by the research community. While several solutions exist to counter attacks in peer-to-peer systems, very few of them are meant to directly counter colluders and their attacks. Reputation, micro-payments, and concepts of game theory are currently used as the main means to obtain fairness in the usage of the resources. Our goal is to provide an overview of the topic by examining the key issues involved. We measure the relevance of the problem in the current literature and the effectiveness of existing philosophies against it, to suggest fruitful directions in the further development of the field

    Security and Privacy Issues in Wireless Mesh Networks: A Survey

    Full text link
    This book chapter identifies various security threats in wireless mesh network (WMN). Keeping in mind the critical requirement of security and user privacy in WMNs, this chapter provides a comprehensive overview of various possible attacks on different layers of the communication protocol stack for WMNs and their corresponding defense mechanisms. First, it identifies the security vulnerabilities in the physical, link, network, transport, application layers. Furthermore, various possible attacks on the key management protocols, user authentication and access control protocols, and user privacy preservation protocols are presented. After enumerating various possible attacks, the chapter provides a detailed discussion on various existing security mechanisms and protocols to defend against and wherever possible prevent the possible attacks. Comparative analyses are also presented on the security schemes with regards to the cryptographic schemes used, key management strategies deployed, use of any trusted third party, computation and communication overhead involved etc. The chapter then presents a brief discussion on various trust management approaches for WMNs since trust and reputation-based schemes are increasingly becoming popular for enforcing security in wireless networks. A number of open problems in security and privacy issues for WMNs are subsequently discussed before the chapter is finally concluded.Comment: 62 pages, 12 figures, 6 tables. This chapter is an extension of the author's previous submission in arXiv submission: arXiv:1102.1226. There are some text overlaps with the previous submissio

    Selecting efficient and reliable preservation strategies: modeling long-term information integrity using large-scale hierarchical discrete event simulation

    Full text link
    This article addresses the problem of formulating efficient and reliable operational preservation policies that ensure bit-level information integrity over long periods, and in the presence of a diverse range of real-world technical, legal, organizational, and economic threats. We develop a systematic, quantitative prediction framework that combines formal modeling, discrete-event-based simulation, hierarchical modeling, and then use empirically calibrated sensitivity analysis to identify effective strategies. The framework offers flexibility for the modeling of a wide range of preservation policies and threats. Since this framework is open source and easily deployed in a cloud computing environment, it can be used to produce analysis based on independent estimates of scenario-specific costs, reliability, and risks.Comment: Fortcoming IDCC 202

    Network coding via evolutionary algorithms

    Get PDF
    Network coding (NC) is a relatively recent novel technique that generalises network operation beyond traditional store-and-forward routing, allowing intermediate nodes to combine independent data streams linearly. The rapid integration of bandwidth-hungry applications such as video conferencing and HDTV means that NC is a decisive future network technology. NC is gaining popularity since it offers significant benefits, such as throughput gain, robustness, adaptability and resilience. However, it does this at a potential complexity cost in terms of both operational complexity and set-up complexity. This is particularly true of network code construction. Most NC problems related to these complexities are classified as non deterministic polynomial hard (NP-hard) and an evolutionary approach is essential to solve them in polynomial time. This research concentrates on the multicast scenario, particularly: (a) network code construction with optimum network and coding resources; (b) optimising network coding resources; (c) optimising network security with a cost criterion (to combat the unintentionally introduced Byzantine modification security issue). The proposed solution identifies minimal configurations for the source to deliver its multicast traffic whilst allowing intermediate nodes only to perform forwarding and coding. In the method, a preliminary process first provides unevaluated individuals to a search space that it creates using two generic algorithms (augmenting path and linear disjoint path. An initial population is then formed by randomly picking individuals in the search space. Finally, the Multi-objective Genetic algorithm (MOGA) and Vector evaluated Genetic algorithm (VEGA) approaches search the population to identify minimal configurations. Genetic operators (crossover, mutation) contribute to include optimum features (e.g. lower cost, lower coding resources) into feasible minimal configurations. A fitness assignment and individual evaluation process is performed to identify the feasible minimal configurations. Simulations performed on randomly generated acyclic networks are used to quantify the performance of MOGA and VEGA

    Selecting Efficient and Reliable Preservation Strategies

    Get PDF
    This article addresses the problem of formulating efficient and reliable operational preservation policies that ensure bit-level information integrity over long periods, and in the presence of a diverse range of real-world technical, legal, organizational, and economic threats. We develop a systematic, quantitative prediction framework that combines formal modeling, discrete-event-based simulation, hierarchical modeling, and then use empirically calibrated sensitivity analysis to identify effective strategies. Specifically, the framework formally defines an objective function for preservation that maps a set of preservation policies and a risk profile to a set of preservation costs, and an expected collection loss distribution. In this framework, a curator’s objective is to select optimal policies that minimize expected loss subject to budget constraints. To estimate preservation loss under different policy conditions optimal policies, we develop a statistical hierarchical risk model that includes four sources of risk: the storage hardware; the physical environment; the curating institution; and the global environment. We then employ a general discrete event-based simulation framework to evaluate the expected loss and the cost of employing varying preservation strategies under specific parameterization of risks. The framework offers flexibility for the modeling of a wide range of preservation policies and threats. Since this framework is open source and easily deployed in a cloud computing environment, it can be used to produce analysis based on independent estimates of scenario-specific costs, reliability, and risks. We present results summarizing hundreds of thousands of simulations using this framework. This exploratory analysis points to a number of robust and broadly applicable preservation strategies, provides novel insights into specific preservation tactics, and provides evidence that challenges received wisdom
    • …
    corecore