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ABSTRACT 

Network coding (NC) is a relatively recent novel technique that generalises 

network operation beyond traditional store-and-forward routing, allowing 

intermediate nodes to combine independent data streams linearly. The rapid 

integration of bandwidth-hungry applications such as video conferencing and HDTV 

means that NC is a decisive future network technology.  

NC is gaining popularity since it offers significant benefits, such as throughput 

gain, robustness, adaptability and resilience. However, it does this at a potential 

complexity cost in terms of both operational complexity and set-up complexity. This 

is particularly true of network code construction.  

Most NC problems related to these complexities are classified as non 

deterministic polynomial hard (NP-hard) and an evolutionary approach is essential to 

solve them in polynomial time. This research concentrates on the multicast scenario, 

particularly: (a) network code construction with optimum network and coding 

resources; (b) optimising network coding resources; (c) optimising network security 

with a cost criterion (to combat the unintentionally introduced Byzantine 

modification security issue).  

The proposed solution identifies minimal configurations for the source to deliver 

its multicast traffic whilst allowing intermediate nodes only to perform forwarding 

and coding. In the method, a preliminary process first provides unevaluated 

individuals to a search space that it creates using two generic algorithms (augmenting 

path and linear disjoint path. An initial population is then formed by randomly 

picking individuals in the search space. Finally, the Multi-objective Genetic 

algorithm (MOGA) and Vector evaluated Genetic algorithm (VEGA) approaches 

search the population to identify minimal configurations. Genetic operators 

(crossover, mutation) contribute to include optimum features (e.g. lower cost, lower 

coding resources) into feasible minimal configurations. A fitness assignment and 

individual evaluation process is performed to identify the feasible minimal 

configurations.  

xiv 



Abstract… 

Simulations performed on randomly generated acyclic networks are used to 

quantify the performance of MOGA and VEGA.  

Thesis Supervisor:   Mark Leeson 

Title:  Associate Professor (Reader) 

xv 



Network Coding Via Evolutionary Algorithms  

ACRONYMS / ABBREVIATIONS USED 
NC: Network coding 

HDTV: High-definition television 

q : Finite field with q element 

GAs: Genetic algorithms 

NP: Nondeterministic polynomial time 

G(V,E): A directed graph with node set V and edge set E 

'G G∈ : '( ', ')G V E is a subgraph of G if 'V V⊆ and 'E E⊆

( , )i jv v : Link or edge, , ; ( , )i j i jv v V v v E∈ ∈

0 1, ,.... , .....i j kv v v v v : A path from 0v to kv

,V E :A number of nodes, and a number of edges in the network G(V,E) 

XOR,⊕ : Exclusive OR 

xvi 



 Introduction  

1 INTRODUCTION 

Network coding (NC) is an elegant technique introduced to improve the efficiency 

of transmission in bandwidth-hungry applications such as telecommuting, video 

conferencing, e-learning, HDTV and a host of other business applications in a 

multicast scenario. With the rapid integration of these applications, NC is expected to 

be a critical technology for future network solutions. Moreover the network coding 

technology is populating very diverse dimensions of communication networks, 

because it offers significant benefits. These include throughput gain, wireless 

resources savings, security enhancements, complexity suppression, robustness and 

adaptability, and resilience to link failures. NC deployment is challenged by a 

number of factors relating, inter alia, to code construction, resource usage and 

security. This thesis concerns network coding resources, network code construction 

and secure network coding with a cost criterion in a multicast scenario. This versatile 

concept appeared in the network environment at the turn of the millennium, and 

researchers in a diversity of fields such as computer science, mathematics and 

engineering were attracted with a significant interest. Research to date has often 

concentrated its efforts on overcoming these challenges which are mostly categorised 

as NP-hard problems. Instead of tackling their complexity, efforts have focused on 

the discovery of good solutions via evolutionary algorithms. This work provides 

solutions to the same kind of problems using an evolutionary algorithm based on 

genetic algorithms (GAs). The formulated problems comprise multiple objectives, 

therefore a traditional generic single-objective GAs are modified to find a set of 

multiple non-dominated solutions in a single run.  

 1 
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1.1 EVOLUTIONARY APPROACHES TO NETWORK CODES 

CONSTRUCTION 

Network code construction is one of the major challenges in the multicast 

scenario. Fragouli and Soljanin discuss two common initial procedures to construct 

network codes for multicasting [1]. Given a multicast instance{ ( , ), , }G V E S R= , the 

first common steps are:  

1. Find h edge-disjoint paths {( , ),1 ;1 }i jS R i h j N≤ ≤ ≤ ≤ from the source to 

the receivers, the associated graph 
1

' ( , )
1 i j

i h
G S R

j N
≤ ≤

=
≤ ≤

 with the set of 

coding points C , and 
 

2. Find the associated minimal configuration.   

The identification of the minimal configuration with a minimum number of 

coding points is NP-hard [1]. The code construction method of the proposed solution 

in section 4.2 of this thesis intends to identify the minimal configuration with optimal 

network and coding resources which is also defined as the NP-hard problem. The 

proposed solution, based on a GA, accepts the challenge of solving this and quickly 

identifies a solution instead of tackling the NP-hard problem.  

1.2 EVOLUTIONARY APPROACHES TO NETWORK CODING 

RESOURCE MINIMISATION 

Network coding resources, their exhaustion in the multicast scenario and 

evolutionary approaches to minimise them are briefly discussed here. Fundamentally, 

the coding nodes are enriched in terms of buffer memory, computational capability 

and operating power, and these additional abilities are defined as the coding 

2 
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resources [1], [2]. These resources are rapidly consumed and ultimately exhausted by 

computational complexity, packet delay, congestion, packet misrouting and so forth. 

The packet delay, congestion and packet misrouting contribute to cause 

synchronising errors at the coding nodes and decoding errors at the sinks. The 

network coding resources for multicasting are comprehensively discussed by 

Fragouli and Soljanin [1], who describe the major complexity components are as Set-

up complexity and Operational complexity.  

Before NC was introduced to the communication network scenario, network 

nodes only performed the packet routing and duplication functions. In Figure 1-1(a) 

sample network, nodes A, B, and D only perform the packet routing and duplication 

functions, and packet ' 'a , ' 'b  and ' 'a b⊕  are duplicated and routed by nodes A, B, 

and D consecutively. Node C is distinguishable from the others because it is 

functionally integrated by the NC technique. In Figure 1-1(a), packet ' 'a and ' 'b  are 

typically asynchronously reaching node C, and packet ' 'a is advanced by time T 

compared to ' 'b . During this time period, the input buffer memory allocates storage 

for packet ' 'a and operating power is consumed to maintain the buffer. Furthermore 

node C allocates its computational power to a simple exclusive-OR (XOR) binary 

operation to form packet ' 'a b⊕ .  

Set-up complexity and Operational complexity and their related factors (e.g. a 

number of coding nodes, a number of input links per coding nodes, etc) are 

concerned in this research, and the proposed GA-based solution is discussed in 

section 5.3. The former denotes the complexity of designing the network coding 

scheme, which includes selecting the paths through the information flows and 

determining the operations (coding, forwarding etc.) that the nodes of the network 

 3 
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perform. In Figure 1-1(b), where source S wishes to transmit data at rate 2 to the 3-

leaf nodes A, B and G, and the paths should be selected through information flows 

and the nodes operations of selecting paths thus be determined. Either node C or 

node E should perform the coding operation to achieve the multicast rate 2. If both 

nodes C and E perform the coding operation, they are unnecessary to achieve the 

multicast rate 2 and cause decoding error at sink t2, consequently the operations 

contribute to exhaustion of the coding resources. The latter encompasses the running 

cost of using network coding, that is the amount of computational and network 

resources required per information unit successfully delivered. 

S

D

A B

C

t1 t2

a

ba

b

ba

S

D

A G

C

t1 t3

a

a b

b

b
b

b

a

a

F

E

t2

B

a  +  b

a  
+  b

a  +  b

b

a  
+  b a  +  b

a  +  b

a

(a) (b)
 

Figure 1-1: Sample networks 

The proposed solution in section 5.3 identifies the minimal configuration with 

optimised network coding resources which is NP-hard. This minimal configuration is 

the ideal solution to suppress both complexities.    
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1.3 EVOLUTIONARY APPROACH FOR SECURE NETWORK 

CODING WITH A COST CRITERION  

This is a first attempt to investigate jointly network cost, coding cost, wiretapper 

adversaries and Byzantine modification in the multicast scenario. The cost 

calculation is considered as a basic function of resource (network resource and 

coding resource) allocation for a unit packet successfully delivered from the source 

to a set of sinks during a unit time period. NC is an elegant technique to protect (i.e. 

without additional security mechanisms) multicast data naturally against wire 

tappers. However, it not only offers benefits but also it unintentionally allows a fatal 

error which is Byzantine modification. A malicious node usually pretends to forward 

packets from source to sink. Since network coding makes the coded packets at the 

routers, a single corrupted packet can cause a fatal disruption to the decoding 

operations at the sinks. Moreover, uncoded packets are not protected except by costly 

randomness. Protecting the source messages from wiretappers via randomness is 

effective but contributes to exhaustion of the resources and consequently they affect 

a cost criterion. However the transmission in the network has to be randomised 

because otherwise a channel output would be either a function depending on the 

messages, or simply a constant.  

The proposed solution in chapter 6 identifies low cost (network cost and coding 

cost) minimal configurations ( ' )G G∈  in an adversary network, which is categorised 

as NP-hard; an evolutionary approach is essential to solve it. These 'G s are classified 

as highly vulnerable '
HG s and lower vulnerable '

LG s. The '
LG s can only be protected 

from the wiretappers but they cannot be identified straightforwardly because the 

 5 
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wiretapper adversaries cannot be detected. Simulation results show that multi-

objective GA based techniques in the proposed solution have a high potential to 

identify the '
LG s. Nevertheless, these may still not be perfectly protected because they 

may be comprised of malicious nodes. The network G is assumed to be error free and 

'
LG s are examined for malicious nodes. Moreover links which deliver uncoded 

packets in '
LG s are still threatened by the wiretappers, and they are perfectly 

protected by the proposed random coding and packet forwarding technique at the 

source without costly randomness.   

1.4 CONTRIBUTIONS 

Most problems in the NC concept are NP-hard and traditional solving methods 

(optimising, searching) have not been able to provide feasible solutions or tackling 

the problems. In this circumstance, this research introduces a new pathway to find a 

feasible solution instead of tackling the NP-hard problems. The aspiration is an 

identification of minimal configurations; sets of linear disjoint paths are combined by 

an evolutionary algorithm based on the GA. The approach introduces how diverse 

sets of parameters (e.g. network resources, coding resources etc.) are simultaneously 

optimised and include them into the minimal configurations identified.  

Network code construction is a challenge and it is fatally affected by setup 

complexity (complexity of identifying paths through coding points and satisfying 

multicast demands such as the min-cut max-flow theorem). The proposed solution in 

chapter 4 is an excellent contribution to smooth out the complexity and provides 

benefits to develop practical network coding protocols.   

6 
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NC resource is excessively consumed by computational complexity and the 

complexity is affected by a selected network coding scheme, a number of coding 

nodes which perform during the multicast transmission and a number of in-links for 

each coding node. Chapter 5 discusses the contribution via optimisation of the NC 

resource; the proposed method identifies the minimal configuration with optimal 

coding resources which is defined as NP-hard. The significant point is that the source 

is able to obtain explicit information about the coding operations and can select a 

limited size of finite field to its multicast transmission.  

Network security is a vital topic in the cyber world. Most security mechanisms 

against adversaries entirely concerned with strengthening their security level instead 

of cost. Chapter 6 contributes to its proposed solution to develop a low cost secure 

network coding scheme against wiretapper adversaries and Byzantine modifications 

in the multicast transmission. 
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 Background to the research  

2 BACKGROUND TO THE RESEARCH  

This chapter is allocated to providing an infrastructure to this thesis. Section 2.1 

offers an overview of network coding. Section 2.2 discusses finite field operations. 

Section 2.3 shows the benefits of network coding. Section 2.4 includes the 

disadvantages of network coding. Section 2.5 is allocated to briefly discuss network 

coding applications. Section 2.6 consists of prior work in network coding relevant to 

this thesis. 

2.1 OVERVIEW OF NETWORK CODING 

All communication networks today make a basic assumption that information is 

separate. Thus, whether it is packets in the Internet, or signals in a phone network, if 

they originated from different sources, they are transmitted much in the same manner 

as cars on a transportation network of highways, or fluid through a network of pipes. 

That is, independent data streams may share network resources but the information 

itself is separate. Most network functions such as routing, data storage and error 

control are based on this assumption.  

This assumption is broken by network coding as it allows intermediate nodes in 

the network to combine their input packets into one or more output packets. Network 

coding is best demonstrated through the famous butterfly network which is given in 

the seminal paper [1] of Ahlswede et al, shown in Figure 2-1. Each source produces 

one bit per unit time slot (unit rate sources). 

If sink t1 uses all the network resources by itself, it is able to receive both packets 

' 'a  and ' 'b  . Indeed, the packet ' 'a could be routed by source Sa along the path 
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1,aS t and the packet ' 'b   by source Sb along 1, , ,bS C D t , as depicted in         

Figure 2-1(a). Similarly, if sink t2 consumes all network resources by itself, it could 

also receive both ' 'a  and ' 'b , as depicted in Figure 2-1(b). 

Now assume that both sinks want to receive the information from sources Sa and 

Sb simultaneously. If routers C and D only forward the packets they receive, the 

middle link ( , )C D will be a bottleneck arising from the fact that only one packet 

(1bit) per unit time slot through may be sent via this edge. However, packets ' 'a  and

' 'b   are simultaneously sent to reach the sinks t2 and t1 consecutively.  

D

Sa

C

t1 t2

a ⊕ b

a

1bit

Sb

1bit

a

1bit

a ⊕ b

1bit

a ⊕ b

1bit

b

1bit

b

1bit

a ⊕ a ⊕ b = b b ⊕ a ⊕ b = a

D

Sa

C

t1 t2

a

1bit

Sb

a

1bit

b

1bit

b

1bit

a b

D

Sa

C

t1 t2

a

1bit

Sb

a

1bit

b

1bit

b

1bit

a b

(a) Routing to t1 (b) Routing to t2 (c) Network coding  

Figure 2-1: The Butterfly network. Sources Sa and Sb multicast their information to              

sinks t1 and t2. 

Conventionally, information flow was considered similar to fluid through pipes, 

and independent information flows were distinct. Considering this approach node C 

would have to make a decision regarding forwarding the input packets: either use 

link ( , )C D to send packet ' 'a , or use it to send packet ' 'b . Thus, when packet ' 'a is 

chosen, sink t1 will only receive ' 'a and sink t2 will receive both ' 'a  and ' 'b , and vice 

versa when ' 'b is chosen.  
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The simple but vital observation was made in the seminal work by Ahlswede et. 

al.[1] that intermediate nodes in the network are allowed not only to forward their 

incoming information streams but also process them prior to forwarding. In 

particular, node C is able to combine packets ' 'a  and ' 'b using an XOR (binary 

addition over binary field) binary operation and create a third packet ' 'a b⊕  (1bit) it 

can then send through link ( , )C D , as depicted in Figure 2-1(c). The sinks t1 and t2 

receive packets { }' ', ' 'a a b⊕ and { }' ', ' 'b a b⊕  consecutively, and can easily solve to 

retrieve the packets ' 'a  and ' 'b . 

The XOR operation in network coding may be replaced by linear network coding 

to allow for a much larger degree of flexibility in the way that packets can be 

combined. Thus, routers combine packets linearly instead of simply forwarding them 

to create coded packets. The encoding and decoding processes are briefly described 

in the following sections.  

2.1.1  ENCODING 

Assume that each packet consists of L bits. When the packets to be combined, if 

their sizes are not equal, the shorter ones are padded with trailing 0s. Each packet is 

represented as k consecutive bits of a symbol over the finite field 𝔽2
k; thus each 

packet is a vector of L/k symbols. The linear network coding allows intermediate 

nodes in the network to combine their incoming packets linearly over the finite field 

𝔽2
k. The linear combination uses addition and multiplication over the finite field 𝔽2

k. 

For example when k = 1, then the finite field 𝔽2
1 = {0, 1} has a one bit symbol and a 

field size of 2; when k = 2, the size 4 finite field as 𝔽2
2 = {00, 01, 10, 11} is obtained, 

and each symbol has 2 bits.  
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The discussion is initiated with the standard framework. An acyclic graph G(V,E) 

consists of unit capacity edges, a sender S∈V, and a set of receivers 1 2, Nt t t T… ∈ . 

The multicast capacity h is the minimum number of edges in any cut between the 

sender and a receiver, which implies that h- unit rate sources are present. Each edge 

e E∈ emanating from a node ( )  ( )v In e v V= ∈ carries a symbol ( )y e that is a linear 

combination of the symbol ’( )y e on the edges e’ entering v, namely, 

': ( ')
( ') ( ')ee out e v

m e y e
=∑ . The local encoding vector ( ) ( )

e’: ( ’)
’e out e v

e m e
=

 =  m represents 

the encoding function at node v along edge e. If v is the sender S, then to maintain 

uniformity of notation, virtual edges ' '
1.......... he e  entering S, carrying the h source 

symbols '( ) , 1,.......i iy e x i h= =  are introduced. Thus by induction ( )y e on any edge 

e E∈ is a linear combination 
1

( ) ( )h
i ii

y e g e x
=

=∑ of the source symbols, where the h 

dimensional vector of coefficients 1( ) [ ( ),.......... ( )]hg e g e g e=


 can be determined 

recursively by 
': ( ')

( ) ( ') ( ')ee out e v
g e m e g e

=
=∑



, where ,( )ig e on the artificial edge ,
ie is 

initialised to the thi unit vector. The vector ( )g e


 is known as the global encoding 

vector along edge e. Any receiver 1 2, .... Nt t t T∈ can receive the symbols

[ ]1 2( ) ( )......... ( ) T
hy e y e y e along its h (or more) incoming edges 1 .......... he e . Each receiver 

can obtain the source symbol 1 2, ..... hx x x  by solving the equations in Figure 2-2 and 

the matrix Gt of global encoding vectors 1 1( ) [ ( ),.......... ( )]h hg e g e g e=


 should be of full 

rank (Appendix A1) to solve the system equations. 
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1 1 11 1 1 1 1

1

( ) ( )( ) ( )

( ) ( ) ( ) ( )

h

t

h h h h h h hh

g e g ey e x g e x x
G

y e g e g e x x xg e

         
         = = =         
                   





       





  

Figure 2-2: The system equation for linear network coding model. 

The full rank stipulation of the matrix Gt can be satisfied with high probability if 

local encoding vectors ( )em are generated randomly, which is called Random Linear 

Network Coding and the symbols of ( )em lie in the finite field (𝔽q) of sufficient size 

(q- sufficiently large). Jaggi et al.[2] showed that with the finite field (𝔽2
16) having 

field size (q = 216) and a number of edges in the network that is at most |E| = 28, then 

the matrix Gt at any given receiver will have full rank with a probability of at least    

1 – 2- 8 = 0.996.  

In a packet network, the symbols y(e) carried along an edge e can be grouped into 

packets. Thus the symbols y(e) flowing on each edge e are packetized into vectors 

1 2( ) ( ), ( ),........ ( )Y e y e y e y eψ= of the appropriate length (depending on the field size), 

and now each of these vectors can be expressed as a linear combination 

': ( ')
( ) ( ') ( ')ee out e v

Y e m e Y e
=

=∑ of the vectors Y(e’) on the edges e’ entering v = In(e). 

Likewise, the source symbols ix are packetized flowing into the sender on the 

artificial edges 'ie  into vectors ,1 ,2 ,[ , ...., ]i i i iX x x x ψ= so that any receiver can recover 

(with high probability) the h source vectors 1 2, ....., hX X X from any h received 

packets, 

1 1 2 1 1 1,1 1,2 1,1 1

1 2 ,1 ,2 ,

( ) ( ) ( )( )

( ) ( ) ( ) ( )
t t

h h h h h h h h

y e y e y e x x xY e X
G G

Y e y e y e y e X x x x

ψ ψ

ψ ψ

      
      = = =      
            

 

         

 

 

Figure 2-3: The system equations for the packetized linear network coding model.  
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2.1.2 DECODING 

Assume any sink or receiver has received the set 1 1[ ( ), ( )],........[ ( ), ( )]m mg e Y e g e Y e
 

. 

To retrieve the original packets, it is necessary to solve the system equations in 

Figure 2-2. This is a linear system with m equations and h unknowns and the 

condition m h≥ must be satisfied to have a chance of recovering all data, i.e. the 

number of received packets needs to be at least as large as the number of original 

packets. Conversely, the condition m h≥  may not be satisfied as some of the 

combinations might be linearly dependent (Appendix A1).  

In practice, decoding requires solving a set of linear equations, which can be 

accomplished efficiently using Gaussian elimination. Each sink or receiver node 

stores the encoded vectors ( )g e


 it receives as well as corresponding packets ( )Y e , 

row by row, in a so-called decoding matrix. Initially, the matrix is empty. When an 

encoded packet is received, it is inserted as the next row in the decoding matrix and 

Gaussian elimination is performed to transform it to an upper triangular matrix 

(Appendix A2). Figure 2-4 shows how Gaussian elimination progresses for the 

Figure 2-3 system equations.  

A received packet is called innovative if it increases the rank of the matrix, i.e. the 

packet is linearly independent. If a packet is non-innovative, it is reduced to a row of 

0s by Gaussian elimination and is ignored, i.e. the packet is linearly dependent. 

Instantly, the matrix consists of a row of the form ' ' ' '
1 2{ ( ) | ( ) ( ) ( )}j j j j jg e y e y e y eψ , 

where j is any row of the upper triangular matrix in Figure 2-4(b). The form is same 

as the bottom row of Figure 2-4(b) and the sink or receiver can obtain the original 

source packets ,1 ,2 ,3 , 1 ,{ }h h h h hx x x x xψ ψ−  by forming them as
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' ' ' ' ' '
,1 1 ,2 2 ,{ ( ) ( ); ( ) ( ) ( ) ( )}h h h h h h h h h h h hx g e y e x g e y e x g e y eψ ψ≡ ≡ ≡ . Note that decoding 

does not need to be performed at all nodes of the network, but only at the receivers.  

1 1 1 1 1 2 1 1 1,1 1,2 1,

1 2 2 1 2 2 2 2 2,1 2,2 2,

1 1 2 ,1 ,2 ,

( ) ( ) | ( ) ( ) ( ) 1 0
( ) ( ) | ( ) ( ) ( ) 0 1 0

( ) ( ) | ( ) ( ) ( ) 0 1

h

h

h h h h h h h h h

g e g e y e y e y e x x x
g e g e y e y e y e x x x

g e g e y e y e y e x x x

ψ ψ

ψ ψ

ψ ψ

   
   
   
   
   
      

  

  

        

  

 

(a) 

' ' ' ' '
1 1 1 1 1 2 1 1 1,1 1,2 1,

' ' ' ' '
2,1 2,2 2,2 2 2 1 2 2 2 2

' ' ' '
,1 ,2 ,1 2

( ) ( ) | ( ) ( ) ( ) 1 0 0
0 1 00 ( ) ( ) | ( ) ( ) ( )

0 0 10 0 0 0 ( ) | ( ) ( ) ( )

h

h

h h hh h h h h

g e g e y e y e y e x x x
x x xg e g e y e y e y e

x x xg e y e y e y e

ψ ψ

ψψ

ψψ

   
   
  
  
  
    

 



 

       
   

 

 






 

(b) 

Figure 2-4: (a) the system equations compose to the “augmented matrix equation”; (b) perform 

elementary row operations to put the augmented matrix into the upper triangular form 

2.1.3 PRACTICAL ISSUES 

Practical issues in encoding and decoding are basically related to the size of the 

decoding matrix and the size of the finite field. For practical purposes, both 

parameters have to be limited. This can be achieved by grouping packets into 

generations, and mandating that only packets in the same generation can be 

combined linearly [3]. Moreover the parameters are limited by deterministic network 

codes but it is more difficult with random network coding. The size of the generation 

significantly affects the performance of network coding and it is related to the size of 

the finite field. Typically, a small finite field increases the probability of non-

innovative transmissions and reduces the performance.  
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2.2 FINITE FIELD OPERATIONS 

Network coding requires operations in the binary field ( q , q= 2k), i.e. operations on 

strings of k-bits, which is popular as the Galois field1 GF(q), where q is a number of 

elements in the field. One way to construct 
2k  is to use a polynomial basis 

representation. Here, the elements of 2k are the binary polynomials (polynomial 

whose coefficients are in the field { }12
0,  1= of degree at most k – 1: 

{ }1 2 2 1 0
1 2 2 1 02

....... : {0,1}k
k k

k k ia z a z a z a z a z a− −
− −= + + + + + ∈  

An irreducible binary polynomial ( )f z  of degree k is chosen; the irreducibility of 

( )f z  means that it cannot be factorised as a product of binary polynomials each of 

degree less than k. The addition of field elements is the usual addition of 

polynomials, with coefficient arithmetic performed modulo 2 (Appendix A3.1). The 

multiplication of field elements is performed modulo the reduction polynomial ( )f z , 

(Appendix A3). For any binary polynomial ( )a z , ( )a z  mod ( )f z  shall denote the 

unique remainder polynomial ( )r z  of degree less than k obtained upon long division 

of ( )a z  by ( )f z ; this operation is called reduction modulo ( )f z , (Appendix A3). 

 

1 French mathematician Évariste Galois 
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2.3 THE BENEFITS OF NETWORK CODING 

Network coding provides benefits in a wide variety of scenarios, such as static 

wired or wireless networks, ad-hoc mobile wireless networks, wireless sensor 

network and optical networks[10],[4]. These benefits facilitate improvements in 

network throughput and security, saving resources. Network coding offers robustness 

and adaptability to a traditional multicast routing network. Moreover the complexity 

of content distribution is minimised by network coding.   

2.3.1 THROUGHPUT GAIN IN A STATIC ENVIRONMENT 

In communication networks, such as Ethernet or packet radio, throughput is 

described as the average rate of successful message delivery over a communication 

channel. These channels are basically physical or logical links. The throughput is 

usually measured by the unit of bits or bytes per second (bits/sec or bps) or by the 

data packet per second. Maximum throughput in each channel is constrained by its 

channel capacity and network coding is a promising method to improve this. 

The primary result [1] shows that network coding can increase the capacity of a 

network for multicast flows. Consider a network in Figure 2-1 (a) or (b), sinks t1 and 

t2 are interested in simultaneously receiving data from both sources Sa and Sb. Each 

sink needs all the network resources when only traditional network routing is 

employed but as illustrated in Figure 2-1 (c), network coding allows to both sinks to 

receive data from both sources.  

Network coding may offer throughput benefits not only for multicast flow, but 

also for other traffic patterns such as unicast. Considering Figure 2-1 (a) further it is 
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now assumed that source Sa needs to transmit to the sink t2 and source Sb needs to 

transmits to sink t1. With network coding the source can send at rate 1 (1bit/sec) to 

each receiver as opposed to only ½ (0.5 bit/sec) without.  

In the multicast scenario, with network coding, the source can send at rate 2 

(2bit/sec) to each receiver. But the source can maximally achieve the rate 1½ (1.5 

bit/sec) to each receiver if a network uses a traditional multicast routing. The reason 

for this difference is, network coding allows the combining of two bits into one time 

slot (1 sec) at node C in Figure 2-1 (c).  

2.3.2 SECURITY 

Sending linear combinations of packets instead of uncoded data offers a natural 

way to take advantage of multipath diversity for security against wiretapping attacks. 

The wiretap network (shown in Figure 2-5 with admissible codes) consists of a 

communication network and a collection of subsets of wiretap channels. Any link is 

susceptible to wiretapper adversaries and the admissible codes protect a source 

message m from wiretappers. The source generates a random packet k and combines 

it with the message m. The packets k+m and k-m are encoded at node ‘a0’, and the 

packet k encoded is forwarded to sink t1 and t3.The admissible codes allow legal 

users t1, and t3 to obtain m without any errors. Moreover the wiretapper cannot 

obtain information about the secure message by accessing any 1- channel. Thus 

networks that only require protection against such simple attacks can obtain this 

without additional security mechanisms.  
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Figure 2-5: Single-edge wiretap butterfly network with secure network code. 

2.3.3 WIRELESS RESOURCES 

In a wireless environment, network coding can be used to offer benefits in terms 

of battery life of intermediate nodes or base stations, wireless bandwidth and delay. 

Consider the wireless ad-hoc network shown in Figure 2-6, where devices A and C 

need to exchange the binary files x1 and x2 via B as a relay. Presumably time is 

slotted and each device transmits and receives a file during a timeslot (half-duplex 

communication). As Figure 2-6(a) depicts, nodes A and C send their files to the relay 

B, and this forwards each file to the corresponding destination.  

The network coding approach improves the natural capability of wireless channels 

for broadcasting and their resource utilization. As Figure 2-6(b) shows, node C 

receives both files x1 and x2, and performs on them a XOR binary operation to create 

the file 1 2x x⊕ , which it then transmits to both receiver A and C using a common 

transmission. Node A has x1 and can thus decode x2. Node C performs as Node A.  

Consequently, the network coding approach offers benefits in terms of energy 

efficiency (node B transmits once instead of twice), delay (the transmission involved 
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three instead of four timeslots), and wireless bandwidth (the wireless channels are 

occupied for a smaller amount of time and the file 1 2x x⊕  is not consumed an 

excessive bandwidth to fulfil their transmissions). 

A B C

A B C

A B C

A B C

A B C

A B C

A B C

x1

x1 x1

x2

x2 x2

x2

x1 ⊕  x2

x1  

x1 ⊕  x2

(a) Without network coding (b) With network coding  

Figure 2-6: Node A and C exchange information via relay B. The network coding approach 

saves one broadcast transmission. 

2.3.4  ROBUSTNESS AND ADAPTABILITY 

This is a vital topic to discuss under network coding benefits. Network coding can 

offer significant benefits in terms of operational complexity in dynamically changing 

environments, such as wireless networks, which frequently change because nodes 

move, turn on and off or roam out of range. In such environments, networks are 

restricted to use very simple distributed algorithms to avoid cost of storing because 

details of topology (availability of nodes and links) are changed rapidly.  

Now Figure 2-6 is considered again with the assumption that node A and C may 

go into sleep mode (or may move out of range) at random without notifying the node 

B (wireless base station). If the base station B broadcasts x1 or x2, the transmission 

might be completely wasted, since the intended destination might not be able to 
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receive it. However, if the base station broadcasts 1 2x x⊕  instead of x1 or x2, (or 

more generally, random linear combinations of the information packets) the 

transmission will bring new information to all active nodes. Either A or C will be 

woken up, so as to obtain x1 or x2 by decoding and send an acknowledgment to the 

base station. Then the base station can terminate their transmission to either A or C.  

2.4 POTENTIAL DISADVANTAGES OF NETWORK CODING 

This section is allocated to discuss the disadvantage of network coding.  Network 

coding offers not only the benefits but also it comes with some potential 

disadvantages which it is vital to discuss in here.   

2.4.1 COMPLEXITY 

The two complexities, set-up complexity and operational complexity, accompany 

network coding [1]. The former is the complexity of designing the network coding 

scheme, which consists of selecting the paths through information flows, and 

determining the operations (coding, forwarding) that the nodes of the network 

perform. In a time-variant network2, such as wireless ad-hoc networks, this 

complexity is higher because a routing table in each node should be updated in the 

time domain.  

Operational complexity is defined as the amount of computational and network 

resources required per information unit successfully delivered. Again this complexity 

is strongly correlated with the network coding scheme employed. In linear network 

2 The nodes and links in the network are moved with reference to time 
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coding, a linear combination of h information streams at each coding node requires 

2( )hΟ operations over finite field 𝔽q; to recover the source symbols, each receiver 

needs to solve a system of h h×  linear equations, which requires 3( )hΟ operations 

over 𝔽q, if Gaussian elimination is used. Moreover the network nodes should be 

upgraded with additional functionalities (XOR, Gaussian elimination).  

2.4.2 DELAY 

Link delay is a general term used for any transmission network, but it causes fatal 

effects in network coding, and Section 1.2 discussed how it affects network coding.  

In practical network coding, a delay-free assumption is denied and therefore 

coding and decoding delays are essentially considered. These delays are depended on 

a number of factors, which are: the network coding scheme, the finite field size, the 

number of coding nodes occupied to fulfil the multicast transmission, the average 

number of in-links per coding node, and the size of the decoding matrix (see section 

2.1.3). Consequently, overall delays contribute to exhausting network and coding 

resources, and degrade network coding performances. 

2.4.3 SECURITY 

Unexpectedly network coding allows access to a fundamental network threat 

which is called a Byzantine modification, which can cause catastrophic fatal damage 

to network multicasting. This mixing of information can be catastrophic if the 

network consists of Byzantine nodes, i.e., malicious internal nodes that pretend to be 

routers but instead eavesdrop on transmissions and inject fake packets, with the 

objective of disrupting communications. In this case, even a small amount of 
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corrupted information may be mixed with all the information flowing in the network, 

causing decoding errors. 

2.5 NETWORK CODING APPLICATIONS 

Network coding applications, their benefits and performance, are discussed 

thoroughly in [4] and [5]. Large content distribution systems, such as Bit Torrent and 

Microsoft Security Content Distribution (MSCD), are examples of peer-to-peer 

(P2P) systems. Minimum download times and more robustness are benefits that 

network coding offers to P2P systems. For bidirectional traffic in a wireless network 

(Figure 2-6(b)), network coding improves throughput when two wireless nodes 

communicate via a common base station. Other applications are residential wireless 

mesh networks, many-to-many broadcast, ad-hoc sensor networks, network 

tomography, and network security.  

2.6 KEY PREVIOUS WORK ON NETWORK CODING 

This section is allocated to discuss prior works in network coding relevant to this 

thesis. In their seminal research, Ahlswede et al. [1] illustrated that if network coding 

is permitted over the nodes of a network, the communication rate can be improved 

over that obtainable by routing alone. Li et al. [6] showed that linear coding is 

sufficient for multicast network coding problems, i.e., codes in which each packet 

sent over the network is a linear combination of the original packets. Koetter and 

Médard [7] introduced an algebraic framework for the study of network coding and 

gave a condition for valid codes. This framework was used by Ho et al. [8] to show 

that linear network codes can be efficiently constructed by employing a randomized 
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algorithm. Jaggi et al. [9] proposed a deterministic polynomial-time algorithm for 

finding feasible network codes for multicast networks. 
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3 ALGORITHMIC SOLUTIONS FOR NETWORK 

CODING PROBLEMS 

Network coding problems are theoretically or practically solved by algorithmic 

solutions with computer networks being mapped into the algorithmically useful 

framework of graphs. These can be defined as a data structure and into which the 

problem to be solved is mapped. Graph based algorithms are developed based on 

graph theories [1] based on objects termed vertices or nodes which are related via 

edges or links. Computer networks are usually mapped into directed graphs, with 

nodes representing equipment such as routers and switches, and links representing 

wired or wireless network channels. 

This chapter provides the first part of the underpinning for the solutions proposed 

in this thesis by discussing network code design algorithms for multicasting and the 

evolutionary approach for network code design. Section 3.1  discusses network 

multicast whilst section 3.2 covers network code design algorithms for multicasting. 

The subsequent chapter will introduce an evolutionary approach for network code 

design. 

3.1 NETWORK MULTICAST 

Network multicast refers to transmitting simultaneously the same information to 

multiple receivers in the network [2]. A simple example of multicasting is sending an 

e-mail message to a mailing list. In this research, the concept is expanded to cover 

transmitting simultaneously different sets of the same information to multiple 

receivers in the network. For example, an anti-virus software server needs to update 

27 



Network Coding Via Evolutionary Algorithms 

simultaneously client security definitions. However, the clients use different 

platforms (e.g. Linux or Windows) with which the definition should be compatible. 

Therefore, it is necessary to transmit simultaneously compliant and varied definition 

sets in the same update version.       

3.1.1 GRAPH REPRESENTATION FOR MULTICASTING 

This section describes essential elements of the proposed solutions constituting 

the preliminary processes for all subsequent network coding solutions. A graph is 

considered as a directed acyclic graph (DAG) and there are no directed cycles or 

negative cycles [13]. The nodes of a DAG can be topologically sorted into a 

sequence 1 2, ,......, nv v v such that ( , )i jv v E∈  implies i j< . A topological order of a 

directed acyclic graph ( , )G V E   can be computed in linear time ( )O m n+ where 

,m E n V= = using either depth-first search (DFS) or breadth-first search (BFS) 

algorithms. The nodes on any path in a DAG increase in topological order.    

3.1.1.1 Adjacency Matrix Representation 

An n-node graph can be represented by an n n×  adjacency matrix M in which ijM

is 1 if ( , )i j E∈ and 0 otherwise. Edge insertion or removal and edge queries work in 

constant time. It takes time ( )O n  to obtain the edges entering or leaving a node. 

Each node in the graph has adjacent nodes whose edges can be represented as an 

adjacent vector. The graph is formed as the adjacent matrix combining all adjacent 

vectors. This representation can be generalized to store additional information such 

as edge weights in a separate matrix, the weight matrix W, and is an efficient and 

inexpensive representation method for dynamic and static graphs.  
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In Figure 3-1(a) shows a DAG, and its adjacent matrix representation and weight 

matrix are consecutively shown in Figure 3-2 (a) and Figure 3-2 (b).  Each row of the 

adjacent matrix represents the adjacent vector belonging to each node in the DAG.  
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Figure 3-1: (a) Directed acyclic graph (DAG) with links weight; (b) The DAG for multicast 

network  
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Figure 3-2: (a) Adjacent matrix representation for DAG in Figure 3-1; (b) Weight matrix for 

DAG in Figure 3-1(a) 

3.1.1.2 Adjacent Matrix Representation for Multicast Network - M 

 Figure 3-1(b) shows a multicast representation of the DAG in Figure 3-1(a). The 

source S is split into h-sub sources or individual data streams, and they are 

represented as individual nodes. In Figure 3-1(b) shows a 3-subsource multicast 

network, and its adjacent matrix and weight matrix are consecutively represented in 

Figure 3-3 (a) and (b). The proposed solutions for the network coding problems are 

implemented using MATLAB, and code details are given in Appendix B-2. 
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Figure 3-3: (a) Adjacent matrix representation for the multicast DAG in Figure 3-1(b);            

(b) Weight matrix for the multicast DAG in Figure 3-1(b) 

3.1.1.3 Adjacent Matrix Representation for Dynamic Multicast Networks 

When nodes move randomly and their links with adjacent nodes thus appear and 

disappear, a dynamic multicast network is formed, meaning that each adjacent vector 

may vary in the time domain with consequent updating of the adjacent matrix 

required. Moreover every node re-computes a forwarding factor whenever the 
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topology or link qualities change. The nodes that have forwarding factors smaller 

than a threshold are not included in the adjacent vectors, and the adjacent matrix is 

not updated by the source. In this complex environment, the adjacent matrix 

represents the network for a short time period during which each adjacent vector is 

assumed fixed.  

As an example, node 10 in Figure 3-1(b) moves out of the range of node 7 and 

into the range of node 9. The adjacent vector for the former changes from 

1 3[0 0...10 0 ]t t  to 1 3[0 0...0 0 ]t t and for the latter from 2 3[0 0...0 ]t t  to

2 3[0 0 ......10 ]t t . The source can modify the adjacent matrix from Figure 3-3 (a) to 

Figure 3-4 (and the weight matrix similarly) in a short time period (T). The time 

complexity for updating the adjacent matrix in the network G(V,E) can be calculated 

by ( )( 1)h V ςΟ + −  where ς - is the number of nodes with updated adjacent vectors.  
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Figure 3-4: Adjacent matrix representation for dynamic multicast network 
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3.1.2 IMPLEMENTATION OF ALGORITHMS WITH ADJACENT MATRIX 

This section describes the implementation procedures of two vital algorithms, 

namely the augmenting path and linear disjoint path algorithms. The implementation 

process is based on a data structure and the efficiency of the implementation depends 

on a selected data structure. Since a matrix is a well organised data structure, 

facilitating data manipulation, the adjacent matrix data structure is employed. 

Moreover, the matrix is built in the source node, and programs can be easily 

implanted there or in a network interface card (NIC).  

3.1.2.1 Implementation of an Augmenting Path Algorithm (APA) 

This implementation is new but derives from the Breadth First Search (BFS) 

algorithm [13]. The algorithm operates on the adjacent matrix(M) to identify all 

available paths from each sub source ({ },1 )iS i h≤ ≤ to each receiver ({ },1 )jt j N≤ ≤ . 

Row and column indices of M are assigned node_IDs. The algorithm sorts elements

, {0,1}i jm ∈ of M  along the rows. The algorithm looks for a ‘1’ entry along the rows, 

concatenating the node index with a preceding index (node_ID). If there is more than 

one ‘1s’ entry in the row, a preceding path is split into sub branches at the preceding 

index (node_ID). A set of individual paths is then formed at the preceding node_ID. 

If a newly identified index (node_ID) belongs to the receiver ({ },1 )jt j N≤ ≤ then a 

path is completed and stored. If a newly identified index (node_ID) is terminated at 

its own index (node_ID) then the path no longer exists and is erased. The algorithm 

is terminated when each newly identified index (node_ID) for all preceding indexes 

(node_IDs) belongs either to a receiver ({ },1 )jt j N≤ ≤ or its path is terminated at its 

own index. The algorithm’s time complexity can be calculated as 2( )h VΟ . 
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Figure 3-5: The augmenting path algorithm implementation with adjacent matrix in          

Figure 3-3 (a), the algorithm identifies all available paths between sub source S1                  

and receivers {t1,t2,t3} 

Figure 3-5 illustrates the operation of the algorithm on the adjacent matrix in 

Figure 3-3 (a). Initially, all available paths from the sub source 1{ }S to receivers

1 2 3{ , , }t t t are sorted. A ‘1’ entry is found in the row S1 at node 4 and this index is 

concatenated to form a path 1, 4S . This process continues as shown where it should 

be noticed that in the node 4 row, two paths to receivers are found and stored, and 

also two further paths which continue to be augmented until receivers are reached.  
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3.1.2.2 A Linear Disjoint Paths Algorithm Implementation  

The set of h paths between the source and receiver defined as a set of linear 

disjoint paths when none of the paths overlap.   
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Figure 3-6: (a) All available paths between source and receiver – t1; (b, c) Two different sets of   

3 – linear disjoint paths; (d, e, f) Three different sets of 2 – linear disjoint paths 

Figure 3-6 (a) shows all available paths between source and receiver t1; Figure 3-6 

(b) and Figure 3-6 (c) show two sets of three linear disjoint paths and Figure 3-6 (d)-

(f) show three different sets of two linear disjoint paths. The source-receivers paths 

identified in Figure 3-5 are stored in a format shown in Figure 3-7; all sets of paths 

are shown in Figure 3-8.  
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Figure 3-7: All available paths from source –S1 to receivers {t1, t2, t3} 
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Figure 3-8: Available paths between sources {S1……Sh} to receivers {t1……tN} 
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The linear disjoint path algorithm hierarchically examines each path in Figure 3-8 

to form the sets of linear disjoint paths in Figure 3-10. The algorithm picks the first 

path 1 1, 4,S t with its related vector from Figure 3-8 and Figure 3-7, and put them 

into a table Figure 3-9. Each path is selected in a hierarchical way as shown in Figure 

3-9. Two paths are compared in a vector format and its computational complexity 

(2 )nΟ . The vector ‘Test(m)’ is formed by multiplying individual elements in same 

indexes. If Test(m) is formed as a unit vector and entry ‘1’ is in receiver j, then these 

two paths are the set of 2-linear disjoint path for that receiver else the paths tested are 

not linearly disjoint. For example, Test (1) in Figure 3-9 is the unit vector and entry 

‘1’ is in receiver t1, so paths 1 1, 4,S t and 2 1,5,7,S t are linearly disjoint. Similarly, 

Test (2) to Test (6) indicate sets of linearly disjoint paths but Test (7) shows a set of 

paths 2 1,5,8,10,S t , 3 1,6,8,10,S t  that is not linearly disjoint. Consequently the 

linear disjoint path algorithm hierarchically examines (Figure 3-9) each path in 

Figure 3-8 to form the table in Figure 3-10.  
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Figure 3-9: The linear disjoint path algorithm hierarchically examines each path in Figure 3-8  
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Figure 3-10: Sets of liner disjoint paths from sources {S1……Sh} to each receiver 
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3.1.3 THE MIN-CUT MAX-FLOW THEOREM 

Let ( , )G V E= be a graph (network) with set of vertices V and the set of edges

E V V⊂ × and assume that each edge has unit capacity. Consider a node S V∈ that 

wants to transmit information to a node R V∈ . Theorem 3.1.3 was proved in 1972 by 

Menger [3] and in 1956 by Ford and Fulkerson [4].  

Theorem 3.1.3: Consider a graph ( , )G V E= with unit capacity edges, a source 

vertex S, and a receiver vertex R. If a min-cut between S and R equals h, then the 

information can be sent from S to R at a maximum rate of h. Equivalently, there exist 

exactly h- linear disjoint paths between S and R.  

Definition 3.1.3: A cut between S and R is a set of graph edges whose removal 

disconnects S from R. A min-cut is a cut with smallest (minimal) value. The value of 

the cut is the sum of the capacities of the edges in the cut. 

If sink 1t and 2t are considered as an individual basis in Figure 2-1(a) or (b), each 

sink has   two linear disjoint paths and the min-cut between S and 1t or S and 2t equals 

2. Then the information can be sent from S to 1t or S and 2t at a maximum rate of 2. 

However, if source S needs to multicast its data to both 1t and 2t , each sink has a 

different min-cut value. When 2t has min-cut two, then 1t has min-cut one. If the sinks 

have different min-cuts, then source can multicast at the rate equal to the minimum 

of the min-cut but cannot always transmit to each receiver at the rate equal to its min-

cut. But Figure 2-1(c) shows network coding allows each receiver 1t and 2t to maintain 

the min-cut two. It should be noted that the condition that the min-cuts equal the 

maximum flow is not always satisfied.  
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3.1.4 MAIN NETWORK CODING THEOREM IN THE MULTICAST SCENARIO 

The main theorem in network coding was proved by Ahlswede et.al.[5] and Li 

et.al.[6].  

Theorem 3.1.4: A communications network is represented by a directed acyclic 

graph ( ) ,  G V E=  with unit capacity edges and the value of the min-cut between the 

source node and each of the receivers is h. A set of h unit rate information sources 

{ }1 2, , , hS S S… is located on the same network node S (source) and simultaneously 

transmits information to a set of N receivers{ }1 2, , , Nt t t… . Then there exists a 

multicast transmission scheme over a large enough finite field q , in which 

intermediate network nodes linearly combine their incoming information symbols 

over q , that delivers the information from the sources simultaneously to each 

receiver at rate equal to h.  

The min-cut max-flow theorem states that each of N receivers{ }1 2, , , Nt t t…  has at 

least h-linear disjoint paths and during the simultaneous multicasting from source to 

N receivers{ }1 2, , , Nt t t… , edges or nodes or both edges and nodes may be overlapped. 

These nodes and links are defined as coding nodes and out-link of coding nodes in 

order. This fundamental concept is used to develop the solutions proposed in this 

thesis. 
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3.1.5 AN EQUIVALENT ALGEBRAIC STATEMENT OF THE THEOREM 

To route the h information sources to a particular receiver, a source has to identify 

h- linear disjoint paths between the source and the receiver. The source can perform 

the augmenting path algorithm and linear disjoint path algorithm for identifying 

these disjoint paths.  Figure 3-11 (a), (b) and (c) show a set of 3-linear disjoint paths 

for receivers t2, t1 and t3 in order. Assume sources{ }1 2 3, ,a b cS S S need to transmit unit 

packets { }, ,a b c  simultaneously to the receivers 1 2 3{ , , }t t t and the packets can be 

routed through only selected disjoint paths in Figure 3-11 (d). In linear network 

coding, shared or overlapped links such as EG, Gt1, Gt2, Gt3 and Ft3 can transmit a 

linear combination of their input packets{ }, ,a b c over q . Such operations may be

performed several times through the network if paths bring different information 

symbols.  

The coefficients used to form this linear combination constitute what is called a 

local coding vector ( )lc e for edge e . The dimension of ( )lc e is1 ( )In e× , where ( )In e

is the set of incoming edges to the parent node of e . The vector of coefficients over

q , which they multiply incoming symbols to the parent node of e and form the 

linearly combined symbol. In Figure 3-11 (d),The local coding vector coefficients 

associated with edges {EG}, {Gt1, Gt2, Gt3} and {Ft3, Ft2} are 1 2( ) [ ]lc EG α α= , 

{ }1 2 3 3 4( , , ) [ ]lc Gt Gt Gt α α=  and 3 2 5 6( , ) [ ]lc Ft Ft α α= . 
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Figure 3-11: The possible linear disjoint paths for each receiver and path overlap over edge EG;  

(d) The linear network coding solution sends over edges EG, Gt1, Gt2, Gt3, Ft2 and Ft3 . 

The multicast transmission initiates from the source symbols and they are coded at 

the   intermediate nodes in the network G. Generally the symbol flowing through any 

edges e of G, given by  

1

2
1 1 2 2 1 2

( )

( ) ( ) ......... ( ) [ ( ) ( )......... ( )]h h h

e

h

x
x

e x e x e x e e e

x
β

β β β β β β

 
 
 + + + =
 
 
 





 

Where 1 2( ) [ ( ) ( ).......... ( )]he e e eβ β β β=  is h- dimensional vector over q  and it is 

referred to as the global coding vector of edge e, or simplicity as the coding vector. 

In Figure 3-11 (d), the global coding vectors associated with edges {EG}, {Gt1, Gt2, 

Gt3} and {Ft3,Ft2}are 1 2( ) [ 0 ]EGβ α α= , { }1 2 3 1 4 3 2 4( , , ) [ ]Gt Gt Gtβ α α α α α= and 

3 2 5 6( , ) [0, , ]Ft Ftβ α α= .  

The global coding vectors 1 2[ ( ) ( ).......... ( )]he e eβ β β associated with the input 

edges of each receiver node and their input symbols 1 2{ ( ), ( )....... ( )}he e eρ ρ ρ  related 

to the global coding vectors define a system of linear equations which can be used by 

each receiver to determine the original source symbols. The system of linear 
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equations for the receiver jt  is shown in Figure 3-12. The receiver jt solves the 

system of linear equations to obtain the original source symbols ,1ix i h≤ ≤ . 

Therefore, all ,1jA j N≤ ≤  are full rank (Appendix A-1), allowing all receivers 

,1jt j N≤ ≤ to obtain the original source symbols ,1ix i h≤ ≤ . 

1 1 1 1

2 22 2

( )

( )

( )

j j

j j

j

j j
h hh h

e x x
x xe

A

x xe

ρ β

ρ β

ρ β

       
       
       = =       
       
          

 
 

 

Figure 3-12 : The system of linear equations for the receiver jt . 

Consequently, matrices ,1jA j N≤ ≤ can be expressed in terms of the components 

of the local coding vector coefficient{ }kα . In Figure 3-11(d), the three receivers

{ }1 2 3,,t t t  observe the matrixes{ }1 2 3,,A A A  which show in Figure 3-13. All matrixes 

,1jA j N≤ ≤  satisfy the condition of det[ ( )] 0; 1j kA j Nα ≠ ≤ ≤ , and then they are 

full rank matrixes. In Figure 3-13 matrixes { }1 2 3,,A A A satisfy the condition.  

1 2 5 6 3 5 6

1 4 3 2 4 1 4 3 2 4 1 4 3 2 4

1 0 0 1 0 0 0 0 1
0 1 0 0 0A A Aα α α α
α α α α α α α α α α α α α α α

    
    = = =    
           

Figure 3-13: The coding matrixes for receivers - t1, t2 and t3. 

Then, the main multicast theorem can be expressed in algebraic language as, in 

linear network coding, the components{ }kα of the local coding vectors are in some 

large enough finite field q , the global coding vectors consist of the components{ }kα

of the local coding vectors over field q , all matrixes ,1jA j N≤ ≤ consist of h- 
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global coding vectors, then all receivers obtain simultaneously the original source 

symbols ,1ix i h≤ ≤  if all matrixes ,1jA j N≤ ≤ are full rank. 

3.2 NETWORK CODE DESIGN ALGORITHMS FOR 

MULTICASTING 

Network code design algorithms are based on the main network coding theorems 

in section 3.1.4 and the assumptions of the network multicast model discussed in 

section 3.1. These algorithms are classified as centralised and decentralised, based 

on the information they require to execute. The former operate on the global 

information of the entire network structure (topological information), whereas the 

latter operate only on local information (without topological information). Here, 

examples are presented of relevant centralised and decentralised algorithms, and their 

efficiency is discussed.   

3.2.1 MEASURING THE EFFICIENCY OF THE ALGORITHMS  

An algorithm can be defined as a sequential procedure or a specific set of 

instructions for solving a problem. Network code design problems are solved by 

algorithms such as Linear Information Flow (LIF) and Random Assignment 

(Random Linear Network Coding), and they are categorised as centralised and 

decentralised algorithms [2].  

The efficiency of the algorithms, and their complexity, are vital topics. 

Complexity analysis addresses how much time is required by the algorithm to solve a 

problem and is based on counting primitive operations (arithmetic, logical, reads, 

writes, etc.). Example: The complexity of an augmenting path algorithm is expressed
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( )| |EΟ , where E is a number of edges in the graph ( , )G V E ; the complexity of LIF 

algorithm is expressed 2( )E NhΟ .  

3.2.2 CENTRALISED ALGORITHM 

3.2.2.1 Linear Information Flow Algorithm 

LIF is a greedy algorithm [Appendix A-4.2] that observes the choice of coding 

vectors which should be able to preserve the multicast property of the network. The 

algorithm sequentially visits the coding points in a topological order3 and assigns 

coding vectors to them. All visited coding points are only assigned the coding 

vectors and it is granted that, these coding vectors preserve the multicast properties 

(such as min-cut condition) for all downstream receivers. Intuitively, the algorithm 

preserves h “degree of freedom” on the paths from the sources { }1 2, , , hS S S… to each 

receiver.  

The explanation of LIF begins by the initial procedures in Algorithm 3.2.2.1. 

Assuming a given multicast instance{ ( , ), , }G V E S t= , the first common steps are: 

(1) Find h edge- disjoint paths {( , ),1 ,1 }i jS t i h j N≤ ≤ ≤ ≤ from the sources to 

receivers, the associated sub graph 1
1

' ( ', ') ( , )i h i j
j N

G V E S t≤ ≤
≤ ≤

= ←  , the set of all coding 

points ( )ϒ , and 

(2) Find the associated minimal configuration. 

3 A topological order is simply a partial order in any acyclic graph G and such an order exists for the 

edges of G 
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Step (1) can be implemented using max flow algorithm which is given by the min-

cut max-flow theorem (Theorem 3.1.3). A flow – augmenting path can be found in 

time ( )| |EΟ , therefore the total complexity is ( )| |E hNΟ . 

Step (2) is essential to significantly reduce the required network resources, such as 

the number of coding points and the number of employed edges by the information 

flow. Algorithm 3.2.2.1 describes a brute force implementation, which sequentially 

attempts to remove each edge and examine the min-cut condition to each receiver is 

still satisfied. This implementation requires ( )2| |E hNΟ  operations. 

( )

1
1

 3.2.2.1:   ,  ,  
( , ) ,

' ( ', ') ( , )

( ', ' \ { }
' ' ' \ { }

' ( ', ')

( ')

i j

i h i j
j N

Algorithm Initial Processing G S t
Find S t for all i j
G V E S t

if V E e satisfies the multicast property
e E E E e

then
G V E

return G

≤ ≤
≤ ≤

= ←


∀ ∈ ←

 ←

  

Some additional notations are mentioned here to precisely describe the LIF in 

Algorithm 3.2.2.2. Let ϒ  and ( )t δ  denote the set of all coding points and the set of 

all receivers that employ a coding point δ in one of their paths. Each coding point δ

appears in at most one path {( , ),1 ,1 }i jS t i h j N≤ ≤ ≤ ≤ for each receiver jt . Let 

( )jf δ← denote the predecessor coding point to δ along this path

{( , ),1 ,1 }i jS t i h j N≤ ≤ ≤ ≤ . The algorithm maintains a set jC of h-coding points and 

a set 1{ ,..... }j j
j hB c c= of h coding vectors for each receiver jt . The set  jC  keeps 
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tracks of the most recently visited coding point in each of the h edge disjoint paths 

{( , ),1 ,1 }i jS t i h j N≤ ≤ ≤ ≤ , and the set jB keeps the associated coding vectors.  

Initially, the set jC consists of the source nodes{ }1 2, , , hS S S…  and the set jB

consists of vectors j
ic relevant to the source nodes (orthonormal basis 1 2{ , ...., }he e e ). 

They are unit vectors and represent j
ic as 1[1 0 0 ]i i h i− − where the ( 1)thi − position of 

the vector is represented by the source node ({ },1 )iS i h≤ ≤ , and it is set 1 and rests of 

them are set 0s. For example the vector 1
jc is 1[1 0 0 ....0 ]h− , and it is represented the 

source 1{ }S  . Moreover the set jB is formed based on the h- dimensional space h
q  

(finite field h
q ) for preserving the multicast properties, and the algorithm maintains 

the condition at its all steps for all receivers jt . The algorithm visits the coding points 

kδ ∈ϒ  at step k, and assigns a coding vector ( )kc δ to the coding point while 

replacing the precedence vector, for all receivers ( )j kt t δ∈ . The condition h
q N>

is satisfied then the vector ( )kc δ always exists [2]. The set jB contains the set of 

linear equations and the receiver jt needs to solve the equations to obtain the original 

source symbols.  
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3.2.3 DECENTRALISED ALGORITHM 

3.2.3.1 Random Assignment 

This algorithm is scalable, yields a very simple implementation and is well 

matched to practical applications such as dynamically changing networks. Each 

coding point randomly selects the coding vector coefficients ( )iα  as its local coding 

vector. The algorithm operates over the finite field q  and the field size q is large 

enough for even choices of the coding vector coefficients to offer the linearly 

independent coding vectors, and consequently all receivers would be able to generate 

full rank coding matrixes. Theorem 3.2.3 states that the associated probability of 

decoding error can be made arbitrarily small by selecting an adequate large alphabet 

size [2]. 
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Theorem 3.2.3: Consider an instance { ( , ), , }G V E S t=  with N t=  receivers, 

where the components of local coding vectors are chosen uniformly at random from 

the finite field q with q N> . The probability that all N receivers can decode all h

sources is at least '(1 / )N q η− , where 'η , ( ' )Eη ≤  is the maximum number of 

coding points employed by any receiver.  

The random coefficients 1[( ,....... ), ' ]µα α η µ< are chosen by the algorithm and 

each network code is valid if the following condition is satisfied by the code. jA is 

the decoding matrix for receiver ,1j j N≤ ≤ . 

1 1 2( ,..... ) det det ......det 0Nf A A Aµα α = ≠  

3.2.4 DECENTRALISED DETERMINISTIC ALGORITHM 

This section discusses a subtree decomposition method for the network code 

design. The basic idea of this method is partitioning the network graph into 

subgraphs through which the same information flows. The structure of the network 

inside these subgraphs is not concerned with the network code design, and the 

network code design method addresses the connection of subgraphs and which 

receivers are in each subgraph. To illustrate this idea, the familiar example of a 

network with two sources and two receivers is used in Figure 3-14 (a), because there 

are three different information flows in the network. The first flow carries uncoded 

symbols from the source S1, the second flow carries uncoded symbols from the 

source S2 and the third flow carriers a linear combination of the symbols from the 

source S1 and S2. The first two flows are referred as the source flows, and the third 

flow is referred as the coding flow. Also each subgraph is a tree, rooted at the coding 
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point or the source, and terminating either at receiver or other coding point. A 

subtree Ti is called a source subtree if it starts with the source and a coding subtree if 

it starts with a coding point. Figure 3-14 (b) shows how these flows are connected 

and how the receivers access to the flows. In Figure 3-14 (b), T1 and T2 are the 

source subtrees and T3 is the coding subtree. This whole process is defined as the 

subtree decomposition or information flow decomposition method.  

D
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t1 t2

a ⊕  b

Sb

1bit
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1bit

a ⊕  b

1bit

a ⊕  b

1bit

b
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t1 t2

(a) (b)

T1 T2
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Figure 3-14: (a) A network with two sources and two receivers; (b) An information flow 

decomposition diagram for the network in Fig 3-14 (a) 

The network code design assigns an h - dimensional coding vector 

1( ) [ ( )......... ( )]i i h ic T c T c T= to each subtree Ti. The receiver ,1jt j N≤ ≤ observes h – 

coding vectors from h distinct subtrees to form the rows of the matrix ,1jA j N≤ ≤ . 

A valid code for the network in Figure 3-14 (a) can be obtained by assigning the 

following coding vectors to the subtree in Figure 3-14 (b): 
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1 2 3( ) [1 0], ( ) [0 1], ( ) [1 1]c T c T and c T= = = . 

The matrix for the receivers 1t and t2 are: 

1 2
1 2

3 3

( ) ( )1 0 0 1
,

( ) ( )1 1 1 1
c T c T

A A
c T c T
      

= = = =      
      

. 

Most of the network code design algorithm performances degrade with graph size, 

but the information flow decomposition method reduces the dimensionality of the 

network code design problem. 

3.3 MULTICAST NETWORK CODE CONSTRUCTION IN THE 

LITERATURE 

The first polynomial time algorithm [Appendix A-4.1], namely LIF for network 

code design was proposed by Sanders et al. [7], and independently by Jaggi et al. 

[8][9]. These algorithms were later extended by Barbero and Ytrehus in [10] 

attempting to minimise the required field size. Randomised algorithms were 

proposed for network code design by Ho et al. [11], and also by Sanders et al. [7]. 

Decentralized deterministic code design was introduced by Fragouli and Soljanin 

[12], who also first introduced minimal configurations and the brute force algorithm 

to identify the network codes.  
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4 EVOLUTIONARY APPROACH FOR NETWORK 

CODE CONSTRUCTION   

The previous chapter has discussed the centralised and decentralised algorithms 

which apply to the network code construction. The focus of these is on network code 

construction without explicit attempts to save network and coding resources. This 

chapter describes a novel code construction method that overcomes issues with 

existing algorithms. It makes use of conflict multi - objective optimisation because 

traditional optimisation methods are unable to provide a reasonable solution. Thus 

evolutionary algorithms provide a significant method to solve the problem based on a 

GA with the following goals: 

1. Minimise code design complexity; 

2. Minimise network and coding resources; 

3. Extend available network resources without dramatic network 
infrastructure alterations; 

4. Design a protocol.  

4.1 EVOLUTIONARY APPROACH AND EXPECTED 

ACHIEVEMENTS  

 The network code design algorithms in chapter 3 are fundamentally based on two 

network code design algorithms (LIF and Random Assignment) that do not 

contribute to identifying the associated minimal configuration or to the minimisation 

of network and coding resources. It is well known that the problem of finding the 

associated minimal configuration of a graph is NP-hard. Moreover, the problem of 

finding the minimum number of coding points is NP-hard for the majority of cases 
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[1]. Rather than tackling these NP-hard problems, the proposed method utilises an 

evolutionary approach to rapidly find a good solution in polynomial time.  

4.1.1  MINIMISING CODE DESIGN COMPLEXITY  

Code design complexity can be defined as the complexity of designing a feasible 

network coding scheme. This can be achieved by identifying the minimal 

configuration that simultaneously minimises network and coding resources during 

their multicast transmission.  

Definition 4.1.1: Feasible Network Coding Scheme. An assignment of coding 

vectors is feasible if the coding vector of an edge e lies in the linear span of the 

coding vectors of the parent edges In(e). A valid linear network code is any feasible 

assignment of coding vectors such that the matrix jA is full rank for each receiver

,1jt j N≤ ≤ . 

Definition 4.1.1: Minimal Configuration. When the removal of one network 

edge causes at least one sink to lose its multicast properties, a configuration is a 

minimal configuration.  

Figure 4-1 shows two multicast transmission minimal configurations for the 

network of Figure 3-1(b). That of Figure 4-1(a) consumes the more network and 

coding resources because transmission cost and coding resource usage (three coding 

nodes) are greater than in Figure 4-1(b). The former uses 19 links as opposed to the 

18 in the latter. Thus the configuration of Figure 4-1(b) is more desirable but its 

identification is difficult even in this small example let alone in a large network 

leading to the proposed GA-based solution.  
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In the method proposed, every minimal configuration is identified by definition 

(4.1.1) satisfies the multicast properties meaning that coding nodes can be 

immediately assigned coding vectors safe in the knowledge that these satisfy the 

desired multicast properties. Unlike the LIF algorithm, coding nodes are not searched 

the topological order to assign the coding vectors rather the source can assign 

linearly independent coding vectors to the coding nodes in the identified minimal 

configuration and be guaranteed that all sinks simultaneously obtain full rank 

decoding matrixes. 
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Figure 4-1: (a) Configuration of higher network and coding cost; (b) Configuration of lower 

network and coding cost. 

4.1.2 MINIMISING THE NETWORK AND CODING RESOURCES 

Network and coding resources are two vital factors during the codes construction 

process, and Chapter 5 considers coding resources and their optimisation in depth. 

The key intention of the proposed solution is to identify the minimal configurations 
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with optimum network and coding resources from which the source selects one (e.g. 

Figure 4-1(b) above) for its code construction process.   

4.1.3 MINIMALLY DISRUPTIVE AVAILABLE NETWORK RESOURCE 

EXTENSION 

The established network infrastructure essentially consists of links and nodes. The 

former are constrained by factors such as bandwidth, cost, delay, availability and so 

on, the overcoming of which is assisted by network coding. The latter can be defined 

as (mostly inaccessible – e.g. satellite or undersea nodes) routers and consist of 

functionalities4, computational power, hardware and software configurations and the 

like. Therefore substantial functional modifications are extremely costly and require 

consideration of hardware and software configurations. Nevertheless, they are 

capable of performing basic functionalities such as forwarding, duplicating, coding, 

decoding and basic mathematical operations which should be used in feasible 

solutions in the manner proposed here.     

4.1.4 PROTOCOL DESIGN 

This section discusses how the proposed solution contributes to design a network 

coding protocol. The previous sections explain that the proposed solution can 

identify the minimal configurations with their sparse matrices, shown for Figure 4-1 

in Figure 4-2. A multicast network coding protocol can be developed based on the 

matrices to provide most essential requirements for network coding protocol design.   

4 A useful function within a computer application or program / The capacity of a computer 
program or application to provide a useful function 
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Figure 4-2: (a) and (b) Adjacent matrix representation for the minimal configuration of Figure 

4-1(a) and (b) in order 

4.1.4.1 Essential Requirements for Network Coding Protocol Design 

1. Node discovery

The previous section explained the minimal configuration and its sparse

matrix representation. This section explains how source nodes, forwarding

nodes, coding nodes and sinks are identified using the sparse matrix

representations (MATLAB code in Appendix B-3).

1.1 Source nodes 

If a node has zero input links and one or more out links, the node 

can be defined as the source node, and may be identified using the 

sparse matrix, when any matrix column consists of all zeros and its 

identical row consists of at least one “1” entry. In Figure 4-2 (a) the 

first three columns consist of all zeros and their identical rows 

consist of entries “1” at column indices {4, 5, 6} indentifying 

sources{ }1 2 3, ,S S S . 
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1.2 Forwarding nodes 

If a node has at least one input link and at least one output link, it is 

a forwarding node; when a forwarding node has more than one 

output link, it forwards identical copies of the original received 

packets. Forwarding nodes can be identified when any matrix 

column consists of at least one “1” entry and its identical row 

consists of at least one “1” entry. Nodes {4,5,6,7,8,9,10} in Figure 

4-2 (a) can be identified as forwarding nodes.  

1.3 Coding nodes 

A coding node is a special type of forwarding node with more than 

one input link that forwards and linearly combines packets. Such 

nodes may be identified when any matrix column consists of more 

than one “1” entry, and its identical row consists of one or more 

“1” entries. Nodes {7,8,10} in Figure 4-2 (a) can be identified as 

the coding nodes.  

1.4 Sink nodes 

A node with one or more input links, and no output links, is a sink 

node that receives original source packets or their linear 

combinations via its input links. The sink node solves a linear 

system equation (Figure 3-12) to obtain the original source packets 

and is identifiable by a matrix column with one or more “1” entries 

and an identical row of all entries “0”. In Figure 4-2 (a), the last 

three columns or their identical rows are the sink nodes{ }1 2 3, ,t t t . 
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2. Path selection 

Additional effort is not necessary for path selection because the proposed 

solution provides the source to sink minimal configuration with its sparse 

matrix comprising hN linear disjoint paths as described in Section 3.1.2.1.   

3. Discovery of coding opportunities  

The proposed solution is able to identify the minimal configuration with 

optimum coding resources finding nodes via the sparse matrix (4.1.4.1-1.3 

above). 

4. Receiver selection 

The proposed solution commences with the two preliminary processes 

explained in Sections 3.1.2.1 and 3.1.2.2. These enable selection of the 

sink (identified as in Section 4.1.4.1-1.4) that is demanding the multicast 

data from the source.   

5. Coding decision 

The coding decision is extremely difficult unless the coding opportunities 

have been discovered as in the proposed solution which delivers the 

minimal configuration with optimal coding opportunities (NP-hard). 

4.2 NETWORK CODE CONSTRUCTION 

This section discusses the network code construction using the sparse matrix, 

which is a representation of the minimal configuration with optimum network and 

coding resources.  
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Figure 4-3: (a) Network codes construction using the sparse matrix; (b) Decoding matrixes for  

sinks {t1, t2, t3}; (c) Decoding matrixes with finite field 
2  

The sparse matrix in Figure 4-2(a) is used to explain the network code 

construction process (NCCP). In section 4.1.4.1, the node discovery method 

identifies the source, forwarding, duplicating, coding and sink nodes using the sparse 

matrix. The source nodes are assigned source vectors, which are unit vectors

1[1 0 0 ]i i h i− − , where the ( 1)thi − position of the vector is represented by the source 

node ({ },1 )iS i h≤ ≤ ; this is set to 1 and other positions are zero. For example the 
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vectors [1 0 0], [0 1 0] and [0 0 1]  are assigned to the source nodes 1 2 3{ , , }S S S  in 

Figure 4-3(a). Moreover, if any node duplicates or forwards original source data then 

it is assigned a related source vector. For example nodes {4,5}are assigned the 

source vectors [1 0 0], [0 1 0] consecutively and nodes {6,9}are assigned the source 

vector[0 0 1] . Implementing the code assignment process requires ( )2nΟ operations 

for an n-sized sparse matrix.  

Mutually-linear independent coding vectors are assigned to the coding nodes of 

the minimal configuration, since this independence is an essential requirement. 

Coding vector coefficients { }iα are chosen in the finite field q , and each in-link of 

the coding node is assigned a vector coefficient{ }iα . Each incoming vector is 

multiplied by the relevant vector coefficient { }iα , and the resultants combined to 

obtain the coding vector. For example, the coding node {7} in Figure 4-3(a) has in-

links from the forwarding nodes {4, 5}, and their source vectors are [1 0 0], [0 1 0]in 

order. The coding coefficients 1 2{ , }α α are assigned to the in-links and the coding 

vector can be obtained by computing [ ] [ ]1 21 0 0 0 1 0α α+ 

 

. The coding node {8} 

can obtain its coding vector as the same as the node {7} but coding node {10} has in-

links from {7, 8} and its coding vector is [ ] [ ]5 1 2 6 3 40 0α α α α α α+ 

 

.  
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4.2.1 VALIDATING THE CODING VECTOR COEFFICIENTS { }iα  

Definition 4.1.1 has laid out what is needed for a feasible network coding 

multicasting scheme in terms of the full rank of jA for each receiver – the valid 

network coding vector coefficients{ }iα contribute to the formation of the full rank 

matrix. 

Here the validation of the coding vector coefficients using the sparse matrix is 

described. Using the method presented in Section 1.4, sinks are identified. Figure 4-3 

(b) shows the decoding matrixes 
1 2 3

{ , , }t t tA A A for sinks 1 2 3{ , , }t t t . For example, the 

sink t1 has unity entries in rows {4,7,10} and their vectors [ ] [ ]1 21 0 0 , 0α α and 

[ ]1 5 2 5 3 6 4 6( )α α α α α α α α+ form the decoding matrix
1t

A . Satisfying the condition:

1 1 2( ,..... ) det det ......det 0Nf A A Aµα α = ≠  ensures that { }iα are valid coefficients. In 

Figure 4-3 (b), the coefficients {𝛼1, … ,𝛼6} should be chosen over q satisfying

1 2 31 2 3 4 5 6( , , , , , ) det det det 0t t tf A A Aα α α α α α = ≠ . As seen in Figure 4-3 (c) 2 is 

sufficient as
1 2 3

(1,1,1,1,1,1) det det det 0t t tf A A A= ≠ .  

This network code design algorithm can be defined as a centralised deterministic 

algorithm because it determines the minimal configuration with coding opportunities 

based on entire network information. The source provides the validated coding 

vector coefficients to their related coding points prior to initiating multicast 

transmission, and multicast packets are routed via the minimal configuration. The 

source can use the path selection method in Section 4.1.4.1-2 as a packet routing 

table. 
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The significant benefits of this algorithm are (a) the linear independency of the 

coding vectors can be tested to avoid decoding errors; (b) the size of finite field can 

be constrained. Moreover, since the proposed solution uses a GA at the source it 

requires only basic operations from simplified intermediate nodes.  

To reduce computational complexity, random linear network coding can be 

introduced. This approach is a partially centralised deterministic algorithm because 

the minimal configuration with the coding opportunities is identified using the entire 

network information but codes are randomly assigned. Network codes are not 

validated and the network coding coefficients{ }iα are randomly chosen in an 

adequate large finite field q . The source forwards its multicast data using the path 

selection method in Section 4.1.4.1-2 and the coding nodes of the minimal 

configuration linearly combine their incoming packets using the random coefficients

{ }R
iα .  

This random approach does mean that there is a higher probability of linear 

dependency which will affect the performance of the system, the finite field size (|q|) 

should be large enough, affecting the computational and network coding resources; 

the functional integration of the coding nodes is essential to a random number 

generation. Although most operating systems can provide “random” number 

generators but the resulting numbers are not always sufficiently random. This may be 

avoided by employing a number generator that has been shown to have acceptable 

performance [2], such as the Mersenne Twister [3].  
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4.3 EVOLUTIONARY ALGORITHMS 

Evolutionary Algorithms (EAs) are heuristic methods that solve combinatorial 

optimisation problems. They originate in Darwin’s theory of evolution [6], which 

introduced three fundamental components of evolution: replication, variation and 

natural selection. The first is the formation of a new organism from a previous one 

such that errors arise, known as variations (such as sexual reproduction) to allow 

evolutionary changes to occur. Natural selection taking place when individuals 

compete for scarce environmental resources and reproduction opportunities allows 

the fittest individuals at the expense of the weakest. GAs are a type of evolutionary 

algorithm inspired by the evolutionist theory explaining the origin of species. In 

nature, weak and unfit species within their environment are faced with extinction by 

natural selection. The strong ones have greater opportunity to pass their genes to 

future generations via reproduction. In the long run, species carrying the correct 

combination in their genes become dominant in their population. Sometimes, during 

the slow process of evolution, random changes may occur in genes. If these changes 

provide additional advantages in the challenge for survival, new species evolve from 

the old ones. Unsuccessful changes are eliminated by natural selection. 

4.3.1 GENETIC ALGORITHM 

In GA terminology, a solution vector x X∈ is called an individual or a 

chromosome made of discrete units called genes, each of which controls one or more 

features of the chromosome. In the original implementation of GA by Holland [6], 

genes are assumed to be binary digits whereas in later implementations, more varied 

gene types have been introduced [11]. Normally, a chromosome corresponds to a 
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unique solution x in the solution space; this requires a mapping mechanism between 

solution space and chromosomes known as an encoding - GAs work on the encoding 

of a problem, not on the problem itself. 

GAs operate with a collection of chromosomes, called a population which is 

normally randomly initialized. As the search evolves, the population includes fitter 

and fitter solutions, and eventually it converges (dominated by a single solution). 

Two operators are used to generate new solutions from existing ones: crossover and 

mutation. The first is the most important in which generally two chromosomes, 

called parents, are combined together to form new chromosomes, called offspring. 

The parents are selected from existing chromosomes in the population with 

preference towards fitness so that offspring are expected to inherit good genes which 

make the parents fitter. By iteratively applying the crossover operator, genes of good 

chromosomes are expected to appear more frequently in the population, eventually 

leading to convergence to an overall good solution. 

Mutation introduces random changes into the chromosome characteristics, and is 

generally applied at the gene level. In typical GA implementations, the mutation rate 

(probability of gene property change) is very small and depends on the chromosome 

length. Therefore, the new chromosome produced by mutation will not be very 

different from the original one. Nevertheless, mutation is crucial in GAs because 

crossover produces population convergence so mutation reintroduces genetic 

diversity assisting in escaping from local optima. 

Reproduction involves selection of chromosomes for the next generation. In the 

most general case, the fitness of an individual determines the probability of its 
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survival for the next generation. There are different selection procedures in a GA 

depending on how the fitness values are used. Proportional selection, ranking, and 

tournament selection are the most popular selection procedures. The procedure of a 

generic GA [7] is given in Figure 4-4. 

Input: K  (population size) 
T  (maximum number of generations) 
pc (crossover probability) 
pm  (mutation rate) 

Output: A  (nondominated set) 

Step 1: Initialization: Set P0 = ∅  and t = 0. For i = 1,…….. K do 
a) Choose i∈I according to some probability distribution /

randomly. 
b) Set P0 = P0 + {i}.

Step 2: Fitness assignment: For each individual i∈Pt determine the encoded  
decision vector x = m(i) as well as the objective vector y = f(x) and 
calculate the scalar fitness value F(i). 

Step 3: Selection: Set P’ = ∅. For i = 1,…….. K do 
a) Select one individual i ∈ Pt according to a given scheme and

based on its fitness value F(i). 
b) Set P’ = P’ + {i}.

The temporary population P’ is called the mating pool. 

Step 4: Recombination: Set P” = ∅. For i = 1,…….. K/2 do 
a) Choose two individuals i, j ∈P’ and remove them from P’.
b) Recombine i and j . The resulting children are k, l ∈ I .
c) Add k, l to P” with probability pc. Otherwise add i , j to P”.

Step 5: Mutation: Set P’’’ = ∅. For each individual i = P’’ do 
a) Mutate i with mutation rate pm. The resulting individual is j ∈ I .
b) Set P’’’ = P’’’ + {j}.

Step 6: Termination: Set Pt+1 = P’’’ and t = t + 1. If t ≥T or another 
stopping criterion is satisfied then set A = p(m(Pt)) else go to Step 2. 

Figure 4-4: Generic GA procedure 

In the selection process, which can be either stochastic or completely 

deterministic, low-quality individuals are removed from the population, while high 
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quality individuals are reproduced. The goal is to focus the search on particular 

portions of the search space and to increase the average quality within the 

population. The quality of an individual with respect to the optimization task is 

represented by a scalar value, the so-called fitness. Note that since the quality is 

related to the objective functions and the constraints, an individual must first be 

decoded before its fitness can be calculated. This situation is illustrated in Figure 4-5. 

Given an individual i ∈I. A mapping function m encapsulates the decoding 

algorithm to derive the decision vector x = m(i ) from i . Applying f to x yields the 

corresponding objective vector on the basis of which a fitness value is assigned to i. 

Figure 4-5: Relation between individual space, decision space, and objective space. 

4.3.2 MULTI-OBJECTIVE GAS 

Being population-based approaches, GAs are well suited to solve multi-objective 

optimization problems. A generic single-objective GA can be modified to find a set 

of multiple non-dominated solutions in a single run. The ability of a GA to 

simultaneously search different regions of a solution space makes it possible to find a 

diverse set of solutions for difficult problems with non-convex, discontinuous, and 
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multi-modal solutions spaces. The first multi-objective GA, called vector evaluated 

GA (or VEGA), was proposed by Schaffer [9]. Afterwards, several multi-objective 

evolutionary algorithms were developed including the Multi-objective Genetic 

Algorithm (MOGA) [10]. Here customised algorithms are designed for multicast NC 

by adapting strategies from VEGA and MOGA.  

4.3.2.1 Multi-Objective Genetic Algorithm (MOGA) 

A generic single-objective GA in Figure 4-4 is modified to find a set of multiple 

non-dominated solutions in a single run. Enhancing the potential of a GA to 

simultaneously search different region of a solution space, MOGA is a promising 

candidate to find a diverse solution set for difficult (e.g. non-convex) problems. The 

GA crossover operator exploits structures of good solutions with respect to different 

objectives to create new non-dominated solutions in unexplored parts of a Pareto 

front.  

4.3.2.2 Vector-Evaluated Genetic Algorithm (VEGA) 

In this method, the GA selection operator is modified, so that at each generation, a 

number of sub-populations is generated by performing proportional selection 

according to each objective function in turn. Thus, for a population size K and 

number of objectives q, each sub-population’s size is K/q. These sub-populations are 

shuffled together to obtain a new population of size K, and new generations created 

by the usual GA operations as shown in Figure 4-6.   
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Figure 4-6: VEGA procedure 

4.3.3 MULTI-OBJECTIVE OPTIMIZATION USING GENETIC ALGORITHMS 

Multi-objective formulations are realistic models for many complex engineering 

optimization problems. In many real-life problems, the objectives under 

consideration conflict with each other (e.g. minimize cost, maximize performance, 

maximize reliability) so optimisation with respect to a single objective can result in 

unacceptable results with respect to the other objectives. A reasonable solution to a 

multi-objective problem is to investigate a set of solutions, each of which satisfies 

the objectives at an acceptable level without being dominated by any other solution. 

This section presents GAs developed specifically for problems with multiple 

objectives that utilise special fitness functions and methods to promote solution 

diversity.   

4.3.3.1 Single-objective optimisation formulation 

The optimization problems are normally stated in a single-objective way. In other 

words, the process must optimise a single objective function complying with a series 

of constraints.  
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A single-objective optimisation problem may be stated as follows: 

Optimise [minimise/maximise] 

Function ( )f X

Subject to 

Functions of constraints 

( ) 0H X =  

( ) 0G X ≤

For this problem three sets of solutions can be defined: 

1. The universal set, which in this case is all possible values of X , whether

feasible or not.

2. The set of feasible solutions, which are all the values of X that comply 

with the constraints.       

3. The set of optimal solutions, which are those values of X that, in addition

to being feasible, comply with the optimal value of function ( )f X ,

whether in a specific [ , ]a b interval (local optimal solutions) or in a global

context [ , ]− +∞ ∞ . In this case, one says that the set of optimal solutions 

may consists of a single element or several elements, provided that the 

following characteristic is met: ( ) ( ')f x f x= , where 'x x≠ . In this case, 

we can say that there are two optimal values to the problem when vector

{ , '}X x x= .  
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4.3.3.2 Multi-objective optimisation formulation 

Consider a decision-maker who wishes to optimize q objectives such that the 

objectives are non-commensurable and the decision-maker has no clear preference 

for the objectives relative to each other. Without loss of generality, all objectives are 

of the minimization type since this can be converted to a maximization type by 

multiplying by minus one. A minimization multi-objective decision problem with q 

objectives is defined as follows: Given an n-dimensional decision variable vector 

1 2{ , ,..... }nx x x x=


in the solution space X , find a vector *x


that minimizes a given set 

of q objective functions * * * *
1 2( ) { ( ), ( ),..... ( )}qz x z x z x z x=

   

. The solution space X is 

generally restricted by a series of constraints, such as *( ) jg x b=


for 1,....j m= , and 

bounds on the decision variables. 

If all objective functions are for minimization, a feasible solution x


is said to 

dominate another feasible solution ( )y x y
  

 , if and only if, ( ) ( )i iz x z y≤
 

for

1,....j K= and ( ) ( )j jz x z y<
 

for least one objective function j. A solution is said to be 

Pareto optimal if it is not dominated by any other solution in the solution space. A 

Pareto optimal solution cannot be improved with respect to any objective without 

worsening at least one other objective. The set of all feasible non-dominated 

solutions in X is referred to as the Pareto optimal set, and for a given Pareto optimal 

set, the corresponding objective function values in the objective space are called the 

Pareto front. For many problems, the number of Pareto optimal solutions is very 

large (perhaps infinite). 
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The ultimate goal of a multi-objective optimization algorithm is to identify 

solutions in the Pareto optimal set. However, identifying the entire Pareto optimal set 

is practically impossible for many multi-objective problems due to its size. In 

addition, for many problems, especially for combinatorial optimization problems, 

proof of solution optimality is computationally infeasible. Therefore, a practical 

approach to multi-objective optimization is to investigate a set of solutions (the best-

known Pareto set) that represent the Pareto optimal set as well as possible. With 

these concerns in mind, a multi-objective optimization approach should achieve the 

following three conflicting goals [8]: 

1. The best-known Pareto front should be as close as possible to the true 

Pareto front. Ideally, the best-known Pareto set should be a subset of the 

Pareto optimal set. 

2. Solutions in the best-known Pareto set should be uniformly distributed and 

diverse over of the Pareto front in order to provide the decision-maker a 

true picture of trade-offs. 

3. The best-known Pareto front should capture the whole spectrum of the 

Pareto front. This requires investigating solutions at the extreme ends of 

the objective function space. 

For a given computational time limit, the first goal is best served by focusing 

(intensifying) the search on a particular region of the Pareto front. On the contrary, 

the second goal demands the search effort to be uniformly distributed over the Pareto 

front. The third goal aims at extending the Pareto front at both ends, exploring new 

extreme solutions. 

74 



 Evolutionary approach for network code construction  

4.4 EVOLUTIONARY APPROACH FOR IDENTIFY THE 

MINIMAL CONFIGURATIONS 

Identify the minimal configuration with optimum network and coding resources is 

extremely difficult. The optimisation problem to find the minimal number of 

required coding nodes is NP-hard [4]. Even approximating the minimal number of 

coding nodes within any multiplicative factor, or within an additive factor of 1| |V ε− , 

is NP-hard [5]. The evolutionary approach based on a genetic algorithm provides 

solutions to avoid the computational complexity that makes the problem NP-hard. 

There now follows a discussion of how the evolutionary algorithm based on a multi-

objective GA is used to identify the minimal configurations with optimum network 

and coding resources. Figure 4-7 shows a block diagram of the process which 

comprises two fundamental processes: the preliminary process (which creates a 

search space) and the multi-objective GA process itself.  

Preliminary Process Search Space Multi – Objective GA 
Process

Feasible Minimal 
Configurations

 

Figure 4-7: Solution phase for identifying the feasible minimal configurations 

4.4.1 PRELIMINARY PROCESS 

The preliminary process provides unevaluated individuals to the search space and 

then the two generic algorithms (path augmenting and linear disjoint path –see 

Section 3.1.2) contribute to create the search space. Figure 3-10 shows all available 

linear disjoint paths from sources { }1 2 3, ,S S S to receivers { }1 2 3, ,t t t for the acyclic 

graph in Figure 3-1(b). Here, Figure 4-8 shows sets of 3-linear disjoint paths and 
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which are classified based on sink IDs. These sets are nominated as 
j

x
tGn  where 

(1 )j N≤ ≤ and x is undefined number. For example, sink – t1 has three sets of 3 – 

linear disjoint paths, which are: 
1 1

1 2,t tGn Gn and
1

3
tGn .  
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Figure 4-8: All available sets of 3 - linear disjoint paths for receivers {t1, t2, t3} 

Based on the sets of 3-linear disjoint paths in Figure 4-8, a search space creation 

process is shown in Figure 4-9. A random shuffled process picks 
j

x
tGn from each sink 

column , (1 )jt j N≤ ≤  and creates a row. A row is defined as an individual and its 

elements 
j

x
tGn are defined as genes. The random shuffled process is terminated when 

a size of the search space (Z) reaches a pre defined number. This method is 

computationally efficient; while it may cause identical individuals this is not a 
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significant issue because the proposed solution is applied to analyse a large scale 

network with a large number of sinks. Moreover this is a significant stage of the 

proposed solution because it is a commencement to map the network coding problem 

into a GA framework.  

The search space of the problem is not smooth or unimodal (all objective 

constraints are unknown) with respect to the number of sets of linear disjoint paths 

because each sink has different combination sets of the linear disjoint paths. The 

search space in this work consists of a large number of feasible or infeasible 

individuals which are created by the different combination sets of linear disjoint 

paths. An NP-hard problem results in which the individuals are not well understood 

and it is not critical that the calculated solution may not be a global optimum. It 

should also be noted that, while it is hard to characterize the structure of the search 

space, once provided with a solution we can verify its feasibility (calculating three 

objective functions in section 4.4.2.1 ) in polynomial time. Thus, if the use of genetic 

operations can suitably limit the size of the space to be actually searched allowing a 

solution to be obtained relatively efficiently. 
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Figure 4-9: The search space creation process 

4.4.2 MULTI-OBJECTIVE GA PROCESS 

This part is vital to identify feasible configurations and section concerns how MOGA 

and VEGA perform on the search space evaluated by means of simulation.  

4.4.2.1 Fitness Assignment and Individual Evaluation { ( ), ( ), ( )}I I i I j I kF f X f Y f Z=  

The individuals in the initial population or mating pool are assigned their fitness 

following the objective functions. Three objective functions are presented below to 

optimise the three major factors in multicast transmission with network coding: 

network resources, network cost and coding resources. 
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1. Number of coding nodes in the individual - I: ( )I if X  

2. Number of hops (edges) in the individual - I: ( )I jf Y  

3. Total hop distances in the individual - I: ( )I kf Z  

Since the usage of network coding resources depends on the number of coding 

nodes, ( )I if X  optimises this aspect. Here, the aim is to identify the minimal 

configuration rather than single paths between the source and sinks, making shortest 

path identification essential but not an overriding concern of the process. Thus 

( )I jf Y provides a way to optimise the number of edges in the minimal configuration, 

which is a strategic technique to identify the shortest paths but avoids an excessive 

number of constraints and objective functions that would prohibitively increase the 

computational complexity. Furthermore, ( )I kf Z  encourages the shortest paths in the 

minimal configuration and consequently both ( )I jf Y and ( )I kf Z  contribute to 

optimise the multicast network cost.  

The objective functions are evaluated for each individual (I) using the sparse 

matrix shown in Figure 4-3(a) for the minimal configuration in Figure 4-1(a). Section 

4.1.4.1-1.3 explains the method to identify the coding nodes in the minimal 

configuration using the sparse matrix, and this provides an excellent way to evaluate 

fI (Xi). Moreover, the ‘1’ entries of the sparse matrix represent the hops of the 

minimal configuration with fI (Yj) being just the sum of all the ‘1’ entries. Section 

3.1.1.2 discusses the adjacent matrix representation for the multicast DAG and its 

weight matrix. In this optimisation, the distances of the hops are used to create the 

weight matrix. The evolutionary approach identifies the feasible minimal 

configuration as the sparse matrix and its elements are compared with the distance 
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matrix of the entire network to obtain the distance matrix of the feasible 

configuration. For a example, Figure 4-10 shows a distance matrix for                    

the minimal configuration in Figure 4-1(a) fI(Zk) is evaluated by                                           

Equation 4-1.  

                                          Equation 4-1 

                                          Where dij – a distance of hop (i,j) 

1

2

3

1

2

1 3

1 2 3 1 2 3

1 ,4

2 ,5

3 ,6

4,7 4,

5,7 5,8 5,

6,8 6,9

7,10 7, 7,

8,10

9

4 5 6 7 8 9 10
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0

S

S

S

t

t

t t

S S S t t t
S d

S d

S d

d d

d d d

d d
d d d

d
d

2 3

1 2 3

, 9,

10, 10, 10,

1

2

3

10 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

t t

t t t

d

d d d

t
t
t  

Figure 4-10: Distance matrix for the minimal configuration in Figure 4-1(a) 

The problem is thus converted to a multi-objective optimisation problem and in 

such problems the objectives are generally in conflict. This is the case here since 

when the number of hops is optimised via ( )I jf Y  it is likely that most of the coding 

nodes will be removed, increasing total hop distances in ( )I kf Z .  

Here, the traditional GA is customised to accommodate multi-objective problems 

by using specialised fitness functions and introducing method to promote solution 

diversity. The approach is to determine an entire Pareto optimal solution set which is 

a highly suitable approach because all three objectives do not have pre-identified 

( )I k ijf Z d= ∑
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constraints. Therefore, the Pareto optimal front is updated at the end of each 

generation by comparing it with that of the previous generation. For example, in 

Figure 4-11, the Pareto optimal front of the (t-1)th – generation is: 

1 1 1 1{ ( ) 0, ( ) 0, ( ) 0}t t t t
OP OP i OP j OP kF f X f Y f Z− − − −= ≠ ≠ ≠  and of the tth–generation is: 

' ' '{ ( ) 0, ( ) 0, ( ) 0}t t t t
OP OP i OP j OP kF f X f Y f Z= ≠ ≠ ≠ . Assuming that if 1

'( ) ( )t t
OP i OP if X f X− < , 

1
'( ) ( )t t

OP j OP jf Y f Y− > and 1
'( ) ( )t t

OP k OP kf Z f Z− < then the Pareto optimal front of the (t+1)th – 

generation 1 1 1 1{ ( ), ( ), ( )}t t t t
OP OP i OP j OP kF f X f Y f Z+ + + +=  is obtained as below. 

1 1( ) ( )t t
OP i OP if X f X+ −⇐  

1
'( ) ( )t t

OP j OP jf Y f Y+ ⇐  

1 1( ) ( )t t
OP k OP kf Z f Z+ −⇐  

A number of coding 
nodes – fI (Xi )

A number of hops – fI (Yj )

Total distances of hops – fI (Zk )
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+
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Figure 4-11: (t+1)th – generation evaluation and obtain Pareto optimal (FOP) for (t+1)th – 

generation 

The mutual comparisons between individuals are extremely hard in multi-

objective optimisation and the proposed method avoids this difficulty because each 
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individual of tth generation is compared with the Pareto optimal ( )t
OPF  of the tth 

generation. In the third step of the generic GA in Figure 4-4, each individual (I) is 

assigned its fitness { ( ), ( ), ( )}I I i I j I kF f X f Y f Z=  using the objective functions and it 

is compared with the Pareto optimum of its generation. Any individual far away from 

this is defined as a less fit or infeasible individual (e.g. I2 in Figure 4-11) and vice 

versa (e.g. I1 in Figure 4-11 which is to be preferred).   

4.4.2.2 GA Operations on the Search Space 

Section 4.4.1 has discussed the preliminary process in detail and the optimisation 

and searching will now be covered. An initial population (Pt=1) is obtained by 

randomly picking individuals in the search space at t=1. The GA operations operate 

on P1 to form a new generation (P2). The population size (K) is constantly 

maintained throughout the GA operations and is equal to the size of the initial 

population. The generation (Pt) is evaluated by the evaluation process in section 

4.4.2.1 and highest fitness individuals are recombined by crossover to form an 

offspring population (Qt). Mutation of this population ensures that individuals 

identical to their parents do not occur, so that generation Pt shows a significant 

diversion from previous generation Pt-1. The iteration ends when the size of Qt is 

equal to K, and Qt is assigned to generation Pt, which is evaluated to find the feasible 

minimal configurations; this process repeats as long as a termination criterion is not 

satisfied.  
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4.4.2.2.1 Crossover 

Each individual created as in Section 4.4.1 is comprised of genes that can be 

denoted by a unique sink-ID so the size (N) of the individual is bounded by the 

number of sinks.  

In the simulation, single point crossover is employed with the crossover pointβ , 

selected as follows for crossover probability cpr : 

{ }
{ }

( ) ( ) 0.5

( ) ( ) 0.5
c c

c c

N pr N pr

N pr N pr
β

 <  = 
≥  

 

 Where { }( )cN pr  denotes the fractional part of ( )cN pr . A value of 0.7 for cpr

was found to give good results after experimentation. Figure 4-12 shows the 

crossover operation at a gene level and the crossover point β  is calculated as 2 

(3x0.7= 2.1, fraction 0.1<0.5 then β = 2). 
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Figure 4-12: Crossover operation at gene level 

Assuming the generation (Pt) does not satisfy the termination criteria and the 

iteration process performs on the generation (Pt) to form the next generation (Pt+1). 

The optimal Pareto 1( )t
OPF + for the generation (Pt+1) is calculated as 1 {2,17,24}t

OPF + = .  
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Figure 4-12 (a) shows these two individuals, and their graph level representations 

are shown by Figure 4-13 (a). These individuals are closer to the optimal Pareto        

( 1t
OPF + ), therefore they are selected as the parents. The crossover operation works on 

them to form the offspring population (Qt+1). The offspring are shown in Figure 4-12 

(b) as the gene level representation and in Figure 4-13 (b) as the graph level 

representation. They show fitness increases compared to their parents.    
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Figure 4-13: Crossover operation at graph level 
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4.4.2.2.2 Mutation  

The mutation operator introduces random changes into chromosome 

characteristics and is generally applied at the gene level. In typical GA 

implementations, the mutation rate (probability of changing the properties of a gene) 

is very small and depends on the length of the chromosome. Therefore, the new 

chromosome produced by mutation should not be very different from the original 

one. Mutation plays critical role in GA. The crossover operator leads to population 

convergence and mutation reintroduces genetic diversity back into the population 

assisting the search to escape from local optima.  

Here, the length of the chromosome is bounded by a number of sinks so if a gene 

is randomly substituted by mutation, the original chromosome is significantly 

changed by the resultant high mutation rate of 1/N. This is addressed by operating on 

a single path in a randomly selected gene and without perturbing a linear disjoint 

feature of the gene, thus reducing the mutation rate by a factor of h.   
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Figure 4-14: Mutation operation at gene level 

The offspring F(I’-1) in Figure 4-13 (b) is formed by the crossover operation and 

the path of a random gene is mutated. Figure 4-14 shows the mutation operation 
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representation at the gene level and Figure 4-15 shows the same representation at the 

graph level. The gene of the offspring is randomly selected for the mutation 

operation, and its path is randomly substituted by another linearly independent path. 

For a example, the first gene of F(I’-1) has been selected for the mutation operation 

and its second path 2 1,5,7,S t has been randomly substituted by a linearly disjoint 

path 2 1,5,S t . Figure 4-15 (b) shows the offspring after mutation and its fitness 

remains unchanged. Therefore this example provides evidence that the proposed 

mutation method prevents the significant divergence of the original offspring or 

chromosome. 
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Figure 4-15: Mutation operation at graph level 

4.4.2.2.3 Selection 

A selector operator plays a vital role in this work because it may pull the search to 

a narrow area of search space. The selector operator is connected with the fitness 

assignment and individual evaluation, (Section - 4.4.2.1). The selector operator 
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selects K of the offspring in the offspring population Qt based on their fitness and 

they are copied into the generation Pt+1, where K is the population size.  

The selector operator performs differently in MOGA and VEGA, as shown in 

Figure 4-16. The GA operators of crossover and mutation work on a mating pool to 

form the offspring population Qt. The selector operator creates two different mating 

pools for MOGA and VEGA. The generation Pt are assigned their fitness using the 

objective functions and they are evaluated using the Pareto optimal 1
OP

tF +
. The selector 

operator in MOGA concerns closer individuals to the Pareto optimal 1
OP

tF +  and the 

MOGA mating pool is filled by them. For example, the individuals I1, I4 and I6 are 

in Figure 4-16. But the selector operator in VEGA concerns closer individuals to 

each objective of the Pareto optimal 1
OP

tF +
 and the VEGA mating pool is filled by them. 

For examples, the individuals from I1 to I6 are closer to 1 ( )OP
tf X+

, the individuals I1, I2, 

I6 are closer to 1 ( )OP
tf Y+  and individuals I4, I5 are closer to 1 ( )OP

tf Z+ , and the VEGA 

matting pool is filled by them. Moreover the offspring population Qt are evaluated 

using the Pareto optimal 1
OP

tF +
 and the selector operator performs on Qt as same as the 

selector operator on MOGA.  
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Figure 4-16: How the selector operator works on MOGA and VEGA 

4.4.2.2.4 Termination criteria 

A process of chromosome generations is terminated when criterion conditions are 

met. When the termination criteria are met, the fitter chromosomes are returned as 

the best solutions found so far.  

This investigation focuses on implementing the whole algorithms in the source 

node, executing them to identify the feasible minimal configurations (individuals). 

Therefore if the source identifies a number, w, being the feasible minimal 

configurations, then the process is terminated, or else the process continues. 

Moreover, if the termination condition is not met during n generations, the entire 

population is removed and the process randomly re-initiated. 
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Figure 4-17: Simulation test bed 
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4.5 SIMULATION SETUP 

To undertake a credible simulation it is essential to have a reliable infrastructure, 

and this will now be described. Figure 4-17 shows the software implementation of 

the simulation test bed.  

4.5.1 SIMULATION PHASE 

Five different randomly generated topologies were used; each consisted of a 

single source with three data streams, and a different number of nodes, links and 

sinks.  

4.5.1.1 Simulation Parameters  

The GA parameters were: Population size ( )zp , Crossover probability ( )cpr , 

Mutation probability ( )prµ and Termination criterion (w). They were represented as a 

parameter set{ , , , }z cp pr pr wµ . The mutation probability ( )prµ was decreased as the 

number of sinks increased. Each run continued until pre-defined generation number 

(g) after which if the GA had not converged to the termination criterion (w) then this 

constituted a ‘failed search’, otherwise the solution was recorded.  

4.5.1.2 Results  

The tests proceeded as four projects, each of which consisted of a different 

number of runs. In each run, an equal size topology was employed but it was 

randomly generated upon commencement. An example is shown in Figure 4-18 for 

run 1 of project 1 and consists of 27 nodes, 57 links and 07 sinks.                        
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Nodes 1-3 3 symbolize three data streams of the source S and Nodes 21-27 

symbolize the sinks with all other nodes being forwarding or coding nodes. 

 

Figure 4-18: A randomly generated topology for run – 1 of project – 1 

This section discusses the simulation outcomes of the GA for run 1 of project 1, 

where the number of sinks was 7, and there were 3 data streams, giving a mutation 

probability of 0.05. The termination criterion was that at least four feasible 

individuals were identifiable within ten generations, giving a parameter {100, 0.7, 

0.05, 04}.  
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Figure 4-19 shows the simulation results for the initial population evolution; there 

is a feasible individual identified by MOGA and VEGA, shown in the sequence 

Figure 4-19(a)-(f). Figure 4-19(b) shows infeasible individuals in the initial 

population. Figure 4-19(c), (d) and (e) show, the individuals evaluated by the 

objective functions fI(Xi – X1
OP), fI(Yj - Y1

OP) and fI(Zk - Z1
OP) in order. Individual 

33 is qualified by the objective functions which imply that it is more closed to Pareto 

optimal (F1
OP) and the individual identified by VEGA as the feasible individual. The 

initial population cannot satisfy the termination criterion and the next generation is 

created by the GA operations.  

 

Figure 4-19: Initial population evaluation for run -1 of project - 1 
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Figure 4-20 shows the simulation results for the third generation evaluation. As 

shown in Figure 4-20 (a), MOGA and VEGA satisfy the termination criterion with 

respective CPU times of 131.07 and 107.58 seconds (Table 4-1: Simulation results 

for project - 1). Figure 4-20 (b) shows infeasible individuals attempting to converge 

towards the Pareto Optimum. Figure 4-20 (c)-(e) show that more individuals are 

qualified by the objective functions, during the third generation. 

 

Figure 4-20: Third generation evaluation for run -1 of project - 1 
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Figure 4-21 shows, an identified sparse matrix of the feasible multicast structure 

and its graphical representation. Node5 in Figure 4-21(b) does not contribute to any 

operation during the multicast transmission.  

 

(a) 

 

(b) 

Figure 4-21:  (a) A sparse matrix for an identified minimal configuration in run -1 of  project – 1 

and (b) its graphical representation 
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Process(Sec){100,0.7, prµ ,4} 

Nodes Links Sinks 
Augmenting 

Paths 
Algorithm 

Linear 
Disjoint Paths 

Algorithm 
MOGA VEGA 

1 

27 57 07 

0.35 3.14 131.07 107.58 
2 0.24 2.35 Failed 40.12 
3 0.24 2.30 Failed 42.30 
4 0.21 2.33 150.64 65.97 
5 0.35 2.85 181.64 46.28 
6 0.29 2.12 Failed 65.88 
7 0.28 2.37 188.07 90.10 
8 0.26 2.49 Failed 67.88 
9 
 
 

0.33 2.31 Failed 43.47 
10 0.23 2.39 Failed 117.65 

Table 4-1: Simulation results for project - 1 

 

(a) 

 
(b) 

Figure 4-22: Simulation results analysis for project – 1 
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R 
u 
n 

Topological detail CPU time for Preliminary 
process (Second) 

CPU time for GA 
Process(Sec){100,0.7 prµ ,4} 

Nodes Links Sinks 
Augmenting 
Paths 
Algorithm 

Linear 
Disjoint Paths 
Algorithm 

MOGA VEGA 

1 

30 68 07 

0.37 4.28 169.89 108.57 
2 0.44 3.77 Failed 63.46 
3 0.28 3.60 96.89 109.09 
4 0.34 4.44 Failed 228.31 
5 0.30 4.65 118.90 115.77 
6 0.41 4.87 200.25 116.89 
7 0.45 3.53 133.74 Failed 
8 0.27 3.65 Failed 157.34 
9 
 
 

0.27 3.67 Failed Failed 
10 0.60 5.33 Failed 152.62 

Table 4-2: Simulation results for project – 2 

 

(a) 

 
(b) 

Figure 4-23: Simulation results analysis for project – 2 
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R 
u 
n 

Topological detail CPU time for Preliminary 
process (Second) 

CPU time for GA Process 
(sec) {100,0.7, prµ ,4} 

Nodes Links Sinks 
Augmenting 
Paths 
Algorithm 

Linear 
Disjoint Paths 
Algorithm 

MOGA VEGA 

1 

35 92 12 

0.54 18.52 178.76 419.73 

2 0.60 20.96 Failed Failed 
3 0.60 17.29 Failed 244.23 
4 0.69 17.54 Failed Failed 
5 0.64 17.85 435.26 99.92 
6 0.66 18.11 131.97 99.68 
7 0.54 18.64 171.83 Failed 

8 0.76 20.99 132.62 Failed 
9 
 
 

0.72 27.26 281.90 Failed 
10 0.94 25.77 195.45 314.67 
11 1.11 33.11 372.90 Failed 
12 1.11 30.33 Failed Failed 
13 0.81 28.07 490.24 Failed 
14 0.69 24.59 73.11 88.71 
15 1.21 29.58 116.48 158.20 

Table 4-3: Simulation results for project – 3 

 
(a) 

 
(b) 

Figure 4-24: Simulation results analysis for project – 3 
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R 
u 
n 

Topological detail CPU time for Preliminary process 
(Second) 

CPU time for GA Process 
(Second){100,0.7, prµ ,4} 

Nodes Links Sinks 
Augmenting 
Paths 
Algorithm 

Linear Disjoint 
Paths Algorithm MOGA VEGA 

1 

40 113 17 

0.82 29.60 286.85 213.31 
2 1.44 42.17 Failed 681.68 
3 1.01 40.65 Failed Failed 
4 0.80 43.95 Failed Failed 
5 1.05 42.45 Failed 423.94 
6 1.31 44.44 Failed Failed 
7 1.64 41.76 189.37 238.01 
8 1.76 47.51 180.22 Failed 
9 
 
 

0.86 40.88 177.25 708.40 
10 1.37 39.98 374.84 621.62 
11 2.21 47.94 559.45 Failed 
12 1.31 48.53 96.40 132.50 
13 0.93 42.61 185.63 221.30 
14 0.98 41.96 89.77 116.06 
15 1.45 42.55 713.62 Failed 

Table 4-4: Simulation results for project – 4 

 

(a) 

 
(b) 

Figure 4-25: Simulation results analysis for project – 4 
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4.6 RESULTS AND DISCUSSION  

 For each project a number of simulations were executed. Each project used a 

different size topology and consisted of a different number of runs, each of which 

employed a randomly-generated topology. The results demonstrate the potential to 

identify the minimal configurations between the source and sinks, and they are 

comprised the optimised network and coding resources. For example, Figure 4-21 (b) 

shows the identified minimal configuration whose identification is actually shown in 

Figure 4-20 (f). It consists of two coding nodes (Node 12 and Node 13), thirty eight 

links, and eighty links’ distances.  

Close inspection of Figure 4-21 (b) shows that it obeys the minimum cut capacity 

-maximum flow theorem. When S feeds three different data streams into Nodes 1-3, 

and either these streams are coded or not by intermediate nodes, all sinks are able to 

obtain simultaneously the multicast data via the sets of the linear disjoint paths.  

These simulations do not attempt to deliver the actual multicast traffic levels, 

rather they identify the minimal source to sink configurations, which is NP-hard. The 

performance of the proposed solution is considered in two parts, the preliminary 

process and the evolutionary process. Figure 4-26 shows the performance of the two 

preliminary algorithms as a function of increasing scale (project) analysis for the 

simulations in the all projects. The path augmentation is largely independent of 

network size, in contrast to the linear disjoint path algorithm, which has a more 

difficult task to perform as the network gets larger.  

With respect to the evolutionary process, the search performance of the two multi-

objective GA techniques MOGA and VEGA differed as the network size varied. The 
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two algorithms were applied to the same initial population for testing. For project 1, 

Figure 4-22 (a) shows the CPU time for MOGA and VEGA, and the latter exhibits 

superior performance. Moreover, Figure 4-22 (b) shows that VEGA was also 

superior in its searching as it is did not fail to find a solution unlike MOGA. Project 2 

used networks and scales that are much higher than project 1. As Figure 4-23 (a) 

shows, MOGA had a slight improvement on the CPU time and VEGA a slight 

degradation. Figure 4-23 (b) shows that the searching potential of MOGA improved 

by 6.66% by comparing with project 1, but VEGA shows a corresponding significant 

degradation. Nevertheless, VEGA still showed good performance over MOGA in 

project 2. Moving to projects 3 and 4, where the networks were large, the algorithm 

performances are shown in Figure 4-24 and Figure 4-25.  VEGA showed good 

performance rather than MOGA, in terms of both on the CPU time and the searching 

potential for small scale networks, but MOGA performance in both ways got better 

as the network scale was increased. This is a significant observation based on the 

simulation results, VEGA is ideal for searching small scale networks and MOGA is 

good for searching large scale networks. An exact reason was not clear this 

observation, but just the decision is vital, based on the simulation results.   
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Figure 4-26: Preliminary process analysis for all projects 
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of the problem is increased, because the minimal configuration identified should 

comprise the optimum network and coding resources.  

The complexity of network codes construction and network coding protocol 

development is tacked via the identification of the minimal configuration. The 

solution here contributes to minimise complexity problems, and does not require 

dramatic alterations of a well-established network infrastructure. Moreover, 

functional integrations of the network nodes are not necessary to execute the 

algorithms. The algorithmic solution is designed to be implemented in the source 

nodes, since these are enriched with high computational resources, such as memory 

and processing capabilities. The solution allows the intermediate nodes to perform 

their fundamental operations, such as forwarding and coding only. Therefore the 

solution contributes to an escape from a costly functional integration of the 

intermediate nodes.  

Simulation results from the augmenting path algorithm as preliminary process 

showed good performance in terms of the CPU time, and this was largely 

independent of network size. This was in marked contrast to the linear disjoint path 

algorithm which has a more difficult task to perform as the network gets larger. 

Moreover, in the simulation results of the evolutionary process, VEGA showed good 

performance rather than MOGA, in terms of both the CPU time and the searching 

potential for small scale networks but MOGA performance in both ways improved as 

the network scale was increased. 
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5 EVOLUTIONARY APPROACH FOR NETWORK 

CODING RESOURCE OPTIMISATION   

Before recent advances in multicast coding techniques, multicast transmission was 

extremely demanding and consumed considerable network resources such as channel 

bandwidth and network power. Hence, research efforts have focused on minimising 

network resource usage, introducing novel and efficient network coding techniques 

[1]. Prior to this, network nodes only performed packet routing, forwarding and 

duplicating functions. The novel multicast coding technique of network coding 

employed an additional function at the intermediate nodes of the network to combine 

two of more independent bits streams via binary addition or linear combination. At 

present, considerable efforts are being made to minimise the coding resources in the 

multicast scenario [1], [2]. In this chapter, the evolutionary approach is proposed to 

solve the problem.  

5.1 THE PROBLEM AND ITS CONTEXT 

Here the communication network is represented by a directed acyclic graph 

( , )G V E= with unit capacity edges and that the value of the min cut between the 

source and each of the sinks is h . The source node S is required to transmit 

simultaneously, h, unit-rate independent information streams 1 2{ , ...... }hs s s , and a set 

of N sinks 1 2{ , ...... }Nt t t  is required to receive the multicast data from the source S. 

The source needs to apply the multicast coding technique in this multicast 

transmission and it requires  identification of the minimal configurations between the 
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source itself and the set of N sinks. Moreover these minimal configurations have 

abilities to minimise the network coding resources during the multicast transmission.  

Fundamentally, the coding nodes are enriched in terms of buffer memory, 

computational capability and operating power, and these additional abilities are 

defined as the coding resources. These resources are rapidly consumed and 

ultimately exhausted by computational complexity, packet delay, congestion, packet 

misrouting and so forth. The packet delay, congestion and packet misrouting 

contribute to cause synchronising errors at the coding nodes and decoding errors at 

the sinks.  

The network coding resources for multicasting are comprehensively discussed by 

Fragouli and Soljanin [1] who describe the major complexity components as Set-up 

complexity and Operational complexity. The former denotes the complexity of 

designing the network coding scheme, which includes selecting the paths through the 

information flows and determining the operations (coding, forwarding etc.) that the 

nodes of the network perform. The latter encompasses the running cost of using 

network coding, that is, the amount of computational and network resources required 

per information unit successfully delivered. Moreover, this complexity is strongly 

correlated with the network coding scheme employed. For example, Figure 4-3 

shows the coding scheme which can be used to deliver the multicast traffic with 

optimum network and coding resources usages.  

The operational complexity is further discussed using assumptions that the source 

S simultaneously emits multicast packets 1 2{ , ...... }hσ σ σ which are elements of some 

finite field q , and they are transmitted via the minimal configuration 'G of G  
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consisting of hN paths. In linear network coding, these elements are linearly 

combined and forwarded by some intermediated nodes of G’, and these combined 

packets are elements of q . The linear combination of h information streams 

requires 2( )hΟ finite field operations. The complexity is further affected by the size 

of the finite field over which operations take place as the cost of finite field arithmetic 

grows with the field size. For example, typical algorithms for multiplication or 

inversion over a field of size 2nq = require 2( )n binary operations. Moreover the field 

size affects the required storage capabilities at intermediate network nodes. The 

computational complexity is further affected by the number of coding points in 'G . 

Coding points are, in general, more expensive due to need to equip them with 

encoding capabilities. In addition, coding points incur delay and increase the overall 

complexity of the network [3]. The computational complexity at each coding point of  

G’ is considerably increased by a number of in-links per coding point and which 

exhausts the coding resources via increasing operational network complexity [3].  

To recover the source packets 1 2{ , ...... }hσ σ σ , which have been linearly combined 

over q by the coding nodes, each sink needs to solve a system of h h× linear 

equations, which requires 3( )hΟ operations over q if Gaussian elimination is used. 
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Figure 5-1: Congestion, packets delay and packet misrouting exhaust network coding resources 

and cause decoding errors  

Figure 5-1 is used to explain the issues mentioned in section 5.1 and their effects 

on the network coding resources. Packet ‘a’ is congested in link AC by a packet, in 

fact it is delayed by time d. Node C is receiving packet ‘b’ on link BC and it has to 

store this in a Node C input buffer during the time d until ‘a’ arrives. This is defined 

as a ‘synchronous error to coding operation’ and consumes Node C’s power to 

maintain its buffer memory. As a result, coded packet ' 'a b⊕  is routed throughout 

the network with time delay d. Therefore Sinks t1 and t2 face a synchronous error 

like Node C and this is defined as a ‘synchronous error to decoding operation’.  

Moreover Node G misroutes packet ‘a’ through link GE and an unwanted coding 

operation proceeds at Node E. The coded packet ' 'a b⊕  is routed throughout the 

network and t2 is able to receive identical packets ' 'a b⊕ and ‘a 'b⊕  meaning it is 

impossible for this sink to obtain the original packets ‘a’ and ‘b’ by solving linear 

equations. This issue is defined as a ‘decoding error’ and t2 re-requests the multicast 
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data from S, which then attempts to redeliver the multicast data ‘a’ and ‘b’ not only 

to t2 but also to t1 and t3. Therefore network and coding resources are allocated to 

retransmit the same set of the multicast data ‘a’ and ‘b’. The decoding error causes 

fatal damage to the network and coding resources.  

5.2 WORKS RELATED TO THE PROPOSED SOLUTION 

The proposed solution intends to identify the minimal configurations between the 

source and the set of sinks and these configurations have the capability to save 

coding resources during multicast transmission. The solution uses evolutionary 

algorithms based on GAs. 

This problem is somewhat similar to that of the “Travelling Salesman Problem 

(TSP)” [4] and in both cases GAs may be employed to search for the suitable 

geometrical properties. The TSP is the classic NP-hard problem in combinatorial 

optimisation studies and an optimal solution for even moderate size problems is 

intractable. Given a list of cities and their pair wise distances, the task is to find the 

shortest possible route that visits each city exactly once and returns to the original 

city. The TSP is modelled as an undirected weighted graph, such that cities are the 

graph’s vertices, paths are the graph’s edges, and a path’s distance is the edge’s 

length. Considering the complexity of NP-hard problems, a GA is employed to solve 

the problems efficiently.  

Unlike source coding, network coding is performed by a lower layer device such 

as a router with the capability of mixing its inputs. Therefore this kind of router  has 

special capabilities, such as mathematical manipulation, buffer memory maintenance 

and operational power management. Comprising these capabilities, the traditional 
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router is converted to an expensive piece of equipment and it is of natural interest to 

reduce the number of such devices deployed, whilst satisfying the communication 

demand. The problem of determining a minimal set of nodes where coding is 

required to achieve the given multicast rate is NP-hard, because this decision can be 

taken by reducing the problem into a multiple Steiner subgraph problem, which is 

NP-hard [5]. As Figure 5-2 shows, the butterfly network is reduced to the multiple 

Steiner subgraph problem to take the decision on the minimal set of the coding 

nodes, which are required to achieve the multicast rate 2.   

S
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A B

C

t1 t3

(a)

S

D

A B

C

t1 t3

(b)  

Figure 5-2: Multiple Steiner subgraphs  

Fragouli et al.[6] show that coding is required at no more than ( 1d − ) nodes in 

acyclic networks, with two unit-rate sources and d sinks. The butterfly network in 

Figure 5-2 (a) contains two unit-rate sources and the two sinks, and so requires 

coding at only one node. The disadvantage of this result is that it cannot be 

generalised to more than 2 sources. Moreover [6] introduced an algorithm to 

construct a minimal subtree graph that has been discussed previously in Section 

3.2.4. To achieve the target rate R , the algorithm initially selects a subgraph 

consisting of R link-disjoint paths to each of d sinks. The given network is 
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transformed to a labelled line graph and each link is sequentially examined and 

removed if its removal does not affect the achievable rate.  

Langberg et al. [3] derive an upper bound on the number of required coding nodes 

for both acyclic and cyclic networks. The bounds depend only on the desired 

multicast rate and the number of sinks. In this method, the given network is 

transformed into a new network in which each node has at most degree three. The 

new network is used to obtain a minimal subgraph by sequentially examining and 

removing the edge whether its removal does not affect to the achievable rate. The 

bounds are calculated for the obtained minimal subgraph. Moreover it is also shown 

in [3] that approximating the minimum number of coding points is NP-hard.  

Kim et al. [2] investigate two algorithms which were proposed in [6] and [3]. 

Each algorithm removes the edges of the given network to find a suboptimal solution 

(a minimal sub-graph), in a greedy fashion5 and assumes all intermediate nodes of 

the remaining graphs can perform the network coding with their incoming links. 

Figure 5-3 shows how these approaches are able to lead to the suboptimal solution in 

a simple network. Assume that edge l in Figure 5-3(a) has capacity 2, which it is 

represented in Figure 5-3(b) as two parallel unit-capacity links 1l and 2l . Here it may 

also be mentioned that the additional capacity allows the achievement of a multicast 

rate of 2 without network coding. In Fragouli et al.’s approach, either link 1l or link 

2l  may be removed while selecting the subgraph, network coding is necessary at 

5 A greedy algorithm is performed in a greedy fashion and it follows the problem solving heuristic 
of making the locally optimal choice at each stage with the expectation of searching a global 
optimum. 

110 

                                                 



 Evolutionary approach for network coding resource optimisation  

node C to achieve the multicast rate 2. Moreover whether coding is required depends 

on the order in which the links are visited to construct a minimal subtree graph; for 

example, if the order of link inspection is randomly chosen, then coding is required 

with probability 0.5.   
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Figure 5-3: Sample networks 

Langberg et al.’s approach initially decomposes nodes C and D as in Figure 

5-3(c). This network consists of many sequences of link removals that result in a 

subgraph where coding is required, for example, if 1l is the first visited link then node 

C4 must perform coding. An Empirical test shows that, if the order of link inspection 

is randomly chosen, then coding is required with probability 0.68.  

Kim et al. [2] observe in the above two approaches that finding a good order of 

link transversal in a large number of many possible sequences may be detrimental to 

the quality of solutions. These two approaches do not contain any method to evaluate 

the solutions obtained. Therefore, they may cause the problem that the decision as to 

where to perform coding involves a selection out of a large number of choices. 

Figure 5-3 also illustrates a possible trade-off between network coding and link 
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usage. Fragouli et al.’s method increases coding in the remaining subgraph when 

reducing link usage as in the subgraph selection; minimising coding first may 

increase links usage. Therefore an optimal choice depends on the relative cost of 

each of the resources; the proposed method in [2] focuses on optimising these two 

costs. 

Kim et al. [2] consider the problem of minimising the resources used for network 

coding while achieving the desired throughput in the multicast scenario. Rather than 

tackling this NP-hard problem they focus on quickly finding a sufficiently good 

solution. Their method consists of an evolutionary algorithm based on the GA, with 

the latter working in an algebraic framework, combined with randomised polynomial 

identity testing methods.  

In Kim et al.’s approach, the network is considered to be as the acyclic directed          

multigraph ( , )G V E= , where each link has a unit capacity. To represent links with 

larger capacities, multiple links are allowed between a pair of nodes. Only integer 

flows are allowed, so there is no flow or a unit rate of flow on each link. The packet 

transmission is a single source multicast in which the source, S V∈ , transmits data 

at rate R to a set of T ⊂ V sink nodes, where |T| = d. The rate, R ,is said to be 

achievable if the transmission scheme available is able to transmit multicast data to 

all d sinks simultaneously. Given an achievable rate, R , their solution needs to 

determine a minimal set of nodes where coding is required in order to achieve this 

rate. The maximum achievable multicast rate is the minimum of the individual max-

flow bounds between the source and each of the sinks [8]. Linear network coding is 

sufficient for multicast [7], and Kim et al.’s approach considers that a node’s output 

on the outgoing link is the linear combination of the inputs from its incoming links. 
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The general network coding problem is algebraically formulated by Koetter et al [9], 

and Kim et al.’s approach considers how this algebraic formulation can be applied to 

the case where network coding is performed only at some subset of the nodes.  

In Kim et al.’s approach, they first construct the labelled line graph ' ( ', ')G V E=

corresponding to G [8]. Then each link of 'G is assigned a link coefficient, denoted 

by iξ ξ∈ , and system vector is constructed which is necessary to form a system 

matrix at each of d sinks. Each system matrix is an R×R matrix which describes how 

the individual source packets are linearly combined at the intermediate nodes. If all 

system matrixes of d sinks are full rank over the ring of polynomial in ξ [9], then the 

approach verifies that the given multicast rate R is achievable. But this verification 

procedure is complicated when several nodes are considered together. Whether 

coding is required or not at a node depends on whether coding is performed at other 

nodes; therefore the verification procedure cannot be applied separately to each node. 

For example, in Figure 1-1(b) with three sinks and a desired multicast rate of two, 

when Node C or Node E is tested separately, they show that neither must be a coding 

node. When all nodes are considered together, coding is required at least at one of 

Node C and Node E to achieve the multicast rate of two. When the number of 

involved nodes is augmented, exponentially large selections of link coefficients are 

necessarily evaluated to identify where coding may be required. The proposed 

solution in [2]  intends to minimise the number of coding links and the solution is 

comprised the structure of the standard GA introduced by Holland [10]. 

Later work by Kim et al. [11] is a GA- based solution to minimise the resources 

used for network coding, and it is a significant improvement of their previous 
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approach [2]. The previous algorithm can be applied only to acyclic network but 

their new approach [11] is suitable for both acyclic and cyclic networks. The new 

approach enriches the set of components used in the GA, which improves the 

performance. Moreover they introduce a novel distributed framework which is 

combined with the distributed random network coding scheme [12] and the resources 

used for coding are optimised in the setup phase by running the evolutionary 

algorithm based on GA at each node of the network.  

The major drawbacks of Kim et al.’s approaches are: 

1. A node where coding is required cannot be decided independently 

which implies that whether coding is required at a node or not depends on 

whether coding is performed at other nodes; therefore the verification 

procedure cannot be applied separately to each node. So, when the number of 

involved nodes is augmented, the complexity of the verification procedure 

becomes complicated. For example, the network in Figure 1-1(b) with three 

sinks and a desired multicast rate of two, when either Node C or Node E is 

tested separately, shows that neither must be a coding node. When all nodes 

are considered together, coding is required at least one of Node C and Node E 

for achieve the multicast rate of two.  

 

2. The approach comprises an evolutionary algorithm based on a GA, 

and the GA operations are performed at each node on an individual basis. It is 

well known that the GA is a demanding and memory-hungry algorithm, 

therefore it may cause packet delays, packet misrouting, synchronous errors at 

the coding nodes and excessive transmission complexities. Most of the 
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network nodes are located beyond the human access limit such as satellite 

nodes, under sea nodes, etc., therefore these nodes cannot be integrated on 

their function, hardware or software; moreover it is a costly process. A large 

number of nodes in the network perform fundamental operations such as 

packet forwarding and mathematical operations (binary addition, subtraction 

etc), and they do not consist of adequate buffer memories and processing 

capabilities. Considering these drawbacks, the GA operations cannot be 

efficiently performed in each node.  Consequently their approach for 

optimising the network coding resources contributes to exhaust excessively 

the operational resources of the network nodes and introduce large scale 

complexities to the data transmission. 

 

3. A fitness evaluation process of the approach is very inefficient (or 

even impossible) when the network size is augmented exponentially. Each 

link in the labelled line graph G’=(V’,E’) is assigned a link coefficient ( iξ ), 

and a system matrix is constructed for each of d sinks, where R is the 

multicast rate. The product of the determinant of those d matrices is denoted 

by ( )P ξ . The components of vector ξ  consist of all link coefficients iξ and the 

link coefficient iξ , is selected as the m-dimensional binary vector from  a 

finite field 
2m . Each chromosome is represented by m-dimensional binary 

vector, its associated kth link coefficient is kξ . If a chromosome y is given, 

then the polynomial ( )P ξ is evaluated to find y ’s feasibility.  Each transfer 

(decoding) matrix (1 )iM i d≤ ≤ , which is defined as 1( ) T
i iM A I F B−= − in 
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[9], has a size R×R for multicast rate R , and each of its elements is a 

polynomial consisting of 2( )O Eµ terms, where µ is the maximum number 

of ways to traverse from any link to another in the network, which, in general, 

grows exponentially with the size of the network. The determinant of iM thus 

contains 2( ) . !RO E Rµ  terms, which makes keeping ( )P ξ in polynomials 

form very inefficient (or even impossible) for its exponential size. 

5.3 PROPOSED SOLUTION TO OPTIMISE NETWORK 

CODING RESOURCES 

The identification of the minimal configuration with optimised network coding 

resources is NP-hard. The proposed solution, based on a GA, accepts the challenge 

of solving this and can to quickly identify a solution instead of tackling the NP-hard 

problem. Section 5.3.1 discusses how the identification of the minimal configuration 

solves the problems discussed in section 5.1, and the major drawbacks of Kim’s 

approach. Section 5.3.2 explains the proposed solution and its framework.  

5.3.1 IDENTIFICATION OF THE MINIMAL CONFIGURATION AND ITS 

BENEFITS 

The two major complexities below conspire to exhaust the network coding 

resources [1], and there now follows a discussion of how these complexities are 

optimised by identifying the minimal configuration:- 

1. Optimisation of the operational complexity 

2. Optimisation of the setup complexity 

3. Overcoming the major drawbacks of Kim’s approach 
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The minimal configuration in Figure 5-4(a) has three coding points {‘7’, ‘8’, ‘9’}. 

The two linear disjoint paths 1 3 2 1, 4,7, , ,5,7,S t S t pass through node 7 as its input 

links, and node 7’s input buffer is allocated to store two bits or two packets. 

Moreover node 7 performs a binary operation ( )a b⊕ ,where 2,a b∈  6. But node 8 

is unlike node 7 because it is passed through by three linear disjoint paths 

1 24 8 10S t> > > > , 2 35 8 10S t> > > >  and 3 16 8 10S t> > > > and its input 

buffer is allocated to store three bits or three packets. Furthermore node 8 performs a 

binary operation ( )a b c⊕ ⊕ , where 2, ,a b c∈ . Therefore node 8 consumes more 

coding resources rather than node 7 and node 9.  
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Figure 5-4: The minimal configurations with network coding resources usage; all sinks in   each 

configuration can be simultaneously obtained the full rank matrixes 

Considering the network coding resource usage, Figure 5-4(b) and (c) are in a 

same condition and they are better than Figure 5-4(a). Among the minimal 

6 2 is a finite field with two elements {0,1}. 
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configurations in    Figure 5-4 , that in Figure 5-4(c) shows the best performance 

because it contributes to save more network resources. The numbers of disused paths 

in Figure 5-4(a), (b) and (c) are 4, 5 and 6, respectively. It is well known that the 

concept of network coding was introduced to save network resources (link’s 

capacity) during multicast transmission, therefore Figure 5-4(c) is a best selection of 

the configurations in Figure 5-4. It is interesting how Figure 5-4(c) has become the 

best selection because it consists of an optimum number of coding nodes (coding 

resources) and they are optimally shared by all sinks. The coding resources of node 7 

are directly shared by sink t1 and t3 via links (7>t1) and (7>t3), and indirectly shared 

by sink t1 and t2 via paths 17 10 t> >  and 27 10 t> > . Moreover the coding 

resources of node 10 are shared by sink t1 and t2 via links (10>t1) and (10>t2). In 

Figure 5-4(c), the coding resource sharing ratio per coding node is 3 (six shared 

links/a number of coding nodes = 6/2). This ratio is calculated for Figure 5-4(a) and 

(b) as 2.34 and 2.5 respectively. 

Each minimal configuration in Figure 5-4 either contributes to save network 

coding resources or not, nodes of each minimal configuration with their operations 

(coding, forwarding etc), and their interconnected paths can be clearly defined by 

identifying the minimal configuration. The complexities are always built when the 

paths via nodes and their operations are clearly identified; it is called the setup 

complexity. It is essential when the network coding scheme is constructed. For 

example section - 4.2 discusses how the minimal configuration is deployed to 

construct the network coding scheme.  
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Figure 5-5:  (a), (b) and (c) show sets of linear disjoint paths for sink – t1, t3 and t2; (d) shows 

how the minimal configuration makes for sink – t1, t3; (e) shows how the minimal 

configuration makes for sink – t1, t3 and t2  

The solution phase previously shown in Figure 4-7 is applicable to solve the problem 

formulated in Section-5.1, but the fitness evaluation process is the only difference in 

comparing the implementation of section 4.4.2.1. In Section-4.4, the preliminary 

process identifies the different sets of linear disjoint paths from the source to each 

receiver. The GA process (see Section-4.4.2) combines these sets to form the 

minimal configuration, and the objective functions in section-5.3.2.1 contribute to 

constrain the coding resources of which the minimal configuration is  composed.  
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Figure 5-5 (a), (b) and (c) show the sets of the linear disjoint paths for sinks t1,t2 

and t3. It is very clear that each sink is entitled to receive the multicast data without 

errors, because each sink can form an identity matrix. Figure 5-5 (d) shows a 

combination of the two sets of linear disjoint paths (Figure 5-5 (a) and (b)), and it is a 

possible minimal configuration for sinks t1 and t3. The minimal configuration in 

Figure 5-5 (d) does not consist of overlapped paths or nodes, which implies that the 

coding resources are not engaged to its multicast transmission. Moreover, sinks t1 

and t3 are able to form identity matrixes, and they can obtain simultaneously 

multicast data without errors. Figure 5-5 (e) shows a combination of the three sets of 

linear disjoint paths (Figure 5-5 (a), (b) and (c)) and it is a possible minimal 

configuration for sinks t1, t3 and t2. The minimal configuration in Figure 5-5 (e) 

consists only of overlapped nodes (node 7 and node 10), which implies that the 

coding resources are engaged in its multicast transmission. Moreover, sinks t1, t3 and 

t2 are able to form the full rank matrixes, and they obtain multicast data without 

errors.  

The proposed solution is able to overcome the three major drawbacks of Kim’s 

approach. A node where coding is required can be decided independently which 

implies that whether coding is required at a node does not depend on whether coding 

occurs at other nodes. The fitness evaluation process contributes to include the 

optimum number of coding points to the feasible minimal configuration during the 

GA operations. The GA operations are not concerned where the coding is required 

and the minimal configuration independently includes the optimum coding points by 

the GA operations. Therefore, when the number of involved nodes is augmented 
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(such as a large scale network), the verification procedure does not become 

complicated.  

The intermediate nodes in the network are unlike the source node. The source  

consists of adequate memory and processing capacity, and these resources are 

essential to perform the GA operations. The proposed solution is thus implemented at 

the source node. The GA operations find the feasible minimal configurations for the 

source to deliver its multicast traffic. Hence, the source node is the only one required 

to have hardware and software modifications. The intermediate nodes are only 

allowed to perform their fundamental operations (packet routing and coding). 

Therefore the proposed solution is significant in overcoming the second major 

drawback of Kim’s approach.  

The fitness evaluation process of the proposed solution focuses on optimising the 

coding resources only, and it does not concern all sinks which can form full rank 

matrices. As in Figure 5-5, and, based on the explanation above, whether coding 

resources are optimised or not, all sinks of the minimal configuration can form full 

rank matrices without any complexities. For example, Figure 5-4 shows the three 

different minimal configurations which comprise different quantities of coding 

resources, but all sinks in each configuration can form full rank matrices. Therefore, 

the proposed approach contributes to prevent the third major drawback of Kim’s 

approach.  

5.3.2 THE PROPOSED SOLUTION AND ITS FRAMEWORK 

The entire process of the proposed solution has been thoroughly discussed in 

section 4.4, and its framework shown in Figure 4-7. However, the fitness evaluation 
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process here differs from the process of section 4.4.2.1. Therefore, this section is 

only concerned with the fitness evaluation  process, simulation results, and their 

discussion.  

5.3.2.1 Fitness Assignment and Individual Evaluation { ( ), ( ), ( )}I I i I j I kF f X f Y f Z=  

The fitness evolution process of the proposed solution concentrates on optimising 

the network coding resources in the multicast scenario. The proposed solution is 

intended to identify the minimal configurations between the source and sinks, and the 

fitness evaluation process contributes to optimising the coding resources in those 

minimal configurations. The fitness evaluation process consists of three objective 

functions. The individuals in the initial population or mating pool are assigned their 

fitness following the objective functions. These three objective functions are 

addressed below to optimise the network coding resources.  

1. Optimise the number of coding nodes in individuals - ( )I if X ; 

2. Achieve a desired throughput rate (constraining a number of in-links 

at each coding point) - ( )I jf Y ; 

3. Optimally share coding resources in individuals - ( )I kf Z .  

The first two objectives optimise the network coding resources; the first and third 

optimise network resources. If an optimum number of coding nodes are in the 

multicast routes of the minimal configuration, then the multicast transmission 

consumes the optimum coding resources when that minimal configuration is selected 

by the source for its multicast transmission. The use of coding nodes in multicast 

transmission automatically implies that a number of channels convey simultaneously 

more than one packet, contributing to efficient channel capacity use and network 

resource savings.  
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The second objective allows the source to maintain a desired throughput rate 

during its multicast transmission. This can be achieved by constraining the number of 

input links at each coding point. Moreover, it allows the saving of coding resources 

(storage capacity and computation) at the coding nodes.  

The third objective allows the sharing of the optimum coding resources with all 

sinks, and may be endorsed by considering the average coding resource sharing per 

coding node, defined as the sum of the number of receivers connected to each coding 

node divided by the number of coding nodes. In addition, it also improves the usage 

of the coding resources that are discovered via the first two objectives.  

The problem is thus one of multi-objective optimisation, and such cases generally 

exhibit conflicting objectives, preventing the simultaneous optimisation of each. In 

this case, the first and third objectives are in direct conflict, since, when the number 

of coding points is optimised, they are unlikely to be evenly spread. Here, the 

standard GA is customised to accommodate multi-objective problems by using 

specialised fitness functions, and introducing methods to promote solution diversity. 

The approach is to determine an entire Pareto optimal solution set rather than a single 

fitness calculation in traditional GA. It is a most suitable solution, because neither the 

first nor third objectives have pre-identified constraints. Therefore, the Pareto 

optimal solution is updated at each generation by comparing it with the one obtained 

in the previous generation.  

It is assumed that the source intends to identify w minimal configurations. 

Minimal configuration I may be viewed as a point in the solution space

{ ( ), ( ), ( )}I i I j I kf X f Y f Z . The points (XOP, YOP, ZOP) are objective constraints and 
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the feasible set of them forms a Pareto optimal front. Figure 5-6 (a) shows the 

objective constraints and Figure 5-6 (b) shows a surface that is Pareto optimal on 

ZOP. The Pareto optimal surface is updated at each generation with the first arising 

from the randomly selected initial population. The value of YOP is maintained to be 

≥2 but XOP and ZOP are updated at each generation with the minimum value being 

preferred for XOP and the maximum value for ZOP.    For example, Figure 5-6 (b) 

shows Pareto optimal (OPt-1, OPt and OPt+1)  for generation- ( 1), , ( 1)t t t− +

consecutively and they are updated at each generation. Pareto optimal (OPt-1) is: 

1 1 1( , , )t t t
OP OP OPX Y Z− − − and  OPt is: ( , , )t t t

PO PO POX Y Z . The comparison of (OPt-1) and OPt is: 

1 1 1
1([ ],[ ],[ ]).t t t t t t

PO PO PO PO PO POX X Y Y Z Z Z− − −> > = =  Therefore the Pareto optimal (OPt-1) is 

moved to the position (OPt) on surface Z1.  

The mutual comparison between individuals is extremely challenging in multi-

objective optimisation and the proposed method can avoid the difficulty of 

comparison. At each selection operation, the individuals are assigned their fitness 

{ ( ), ( ), ( )}I i I j I kf X f Y f Z using objective functions. Then each individual is   

compared with the Pareto optimal (XPO, YPO, ZPO), using

[( ) 0, ( ) 0, ( ) 0]C i OP j OP k OPf X X Y Y Z Z− ≥ − ≥ − ≥ . If any individual is far away from the 

Pareto optimal, it can be defined as a weakly fitter or infeasible individual. With 

reference to     Figure 5-6 (b), the individual I3 on surface Z1 is in this position but 

individual I1 is a fitter individual that should be selected in preference.  
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Figure 5-6: Pareto optimisation process for the problem considered (a) objective constraints;                   

(b) Pareto optimal front. 

As shown in Figure 4-8 and Figure 4-9, individuals are in a path-based format 

which is hard to analyse at the fitness assignment process stage. Therefore each 

individual is converted to a sparse matrix as shown in Figure 5-7, where {7, 8 and 

10} can be identified as coding nodes because {7} is connected to {4} and {5}, 

which are in turn connected to sources {S1} and {S2}. Moreover {8} is connected to 

{S2} and {S3} via {5} and {6}. Node {10} is connected to coding nodes {7} and 

{8}. Then objective function ( )I if X  can be calculated as 3.  

The ‘1’s entries of all coding nodes are counted and objective function ( )I jf Y can 

be calculated by taking a value of average ‘1’ entries per coding point (6/3).  

The objective function ( )I kf Z  calculation process is: sort all the sinks’ columns 

for entries ‘1’. If entry ‘1’ is found in the coding node’s row, then it is counted. Also 

if a first coding node is connected to a second coding node, and the second coding 

node connects to a sink, then the sink is contributed by two coding points. In Figure 

5-7 (b), sink {t1} has entry ‘1’ at row – 7 (coding node 7), sinks {t1, t2, t3} have 
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entries ‘1’s at row – 10 (coding node 10) and also node {10} is connected to coding 

node {7} and {8}. Therefore sinks {t1, t2, t3} are contributed by coding nodes {7}, 

{8} and {10}. Consequently the objective function ( )I kf Z  can be calculated for 

Figure 5-7 (b) as (10/3), and the individual’s fitness is: f(3,2,10/3).  
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Figure 5-7: (a) An individual in a path format; (b) A related sparse matrix 

5.3.2.2 Simulation Results and Discussion 

Table 5-1 shows the results of initial simulations of the methods described above 

for randomly generated networks with the parameters (nodes, links, sinks) shown. 

The GA parameter set was {100, 0.7, 0.06, 5} and the simulations were run for ten 

generations using three data streams from the source. Several features are apparent 

from these results. The available data paths between the source and sinks were 

rapidly identified by the path-augmenting algorithm. Moreover, the identification of 

the sets of linear disjoint paths by the linear disjoint path algorithm is also relatively 

fast. The MOGA and VEGA stages consume considerably more time, as would be 
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expected, given that they are performing a stochastic search of a very large 

workspace. MOGA offers advantages in general over VEGA, in that it is generally 

faster, and a little more likely to satisfy the termination criteria during the ten 

generations. 

Topological details CPU time for Preliminary process 
(Seconds) 

CPU time for GA 
Process (Seconds)  
{100,0.7, 0.06, 5} 

Nodes Links Sinks Augmenting 
Paths Algorithm 

Linear Disjoint 
Paths Algorithm MOGA VEGA 

25 51 5 0.21 1.65 14.7 18.3 

26 54 5 0.25 1.77 90.0 131.3 

26 54 6 0.29 1.93 55.4 62.3 

26 54 6 0.19 2.37 98.5 89.5 

25 54 6 0.20 2.33 fails fails 

26 58 6 0.24 2.63 114.3 fails 

Table 5-1: Initial Simulation Results 

    Table 5-2 shows simulation results for five randomly-generated topologies using 

the same parameters as above, but for population sizes of 500 and 1000, in addition 

to the 100 already employed. The details of the random topologies were (Nodes, 

Links, Sinks): RT1 (25, 54, 6); RT2 (25, 51, 5); RT3 (26, 58, 6); RT4 (26, 57, 6); 

RT5 (26, 59, 5). For each topology, ten runs were performed, and the table shows the 

mean CPU times used and the mean number of failures (F) for each of the random 

topologies. It may be observed that VEGA generally takes considerably longer than 

MOGA and produces marginally more failures. Thus, MOGA is to be preferred as 

the selection algorithm for this process. 
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 Average CPU time in seconds for GA Process 

Topology 
K = 100 K = 500 K = 1000 

MOGA F VEGA F MOGA F VEGA F MOGA F VEGA F 

RT 1 66.5 1 79.3 1 104.3 0 131.6 0 198.7 0 241.4 0 

RT 2 129.4 0 141.5 0 185.3 1 352.2 0 315.2 1 387.6 0 

RT 3 78.7 0 101.6 1 157.2 0 254.4 2 245.5 0 311.8 1 

RT 4 59.2 0 104.4 0 179.2 0 189.2 1 211.3 0 287.5 2 

RT 5 81.4 0 79.3 0 211.3 1 332.8 0 256.5 1 389.5 1 

Table 5-2: Simulation Results 

5.4 CONCLUSION  

There are many situations where multicast is required and it has historically 

presented a demanding challenge in terms of network resources such as channel 

bandwidth and network power. The introduction of network coding offers the 

prospect of substantial reductions in resource requirements and this has been 

addressed here. The solution presented consists of a preliminary process and a GA 

optimisation stage. The former deals with the aspects of path augmentation and linear 

disjoint path determination and produces a set of possible multicast structures to 

deliver traffic from the source to multiple sinks. These consist of three features 

(objectives) and which are optimised simultaneously during the multicast 

transmission. Searching for the optimum choices of paths is NP-hard, so heuristic 

methods (MOGA and VEGA) are employed. Simulations show that MOGA is better 

than VEGA at efficiently identifying feasible multicast structures. Moreover, it also 

returns a lower search failure rate.  The approach taken has shown itself to be of 

great utility in minimizing complexity and resource demands, laying the foundations 

for efficient multicast network schemes for future traffic delivery. 
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6 EVOLUTIONARY APPROACH FOR SECURE 

NETWORK CODING  

The joint optimisation of network parameters in the multicast scenario is a 

complex process and the evolutionary approach appears essential to overcome its 

complexity. Among the many network parameters, in which the network user 

community is interested, the two most vital parameters of both network security and 

cost are essentially optimised in a correlated manner. These two parameters have 

been jointly investigated by Tan et al. [1] as a first attempt. This chapter discusses 

how these two parameters are optimised simultaneously for multicast transmission. 

The first parameter, network security for multicasting, is discussed in section 6.1 

under two fundamental threats, namely the wire tapper adversary and the Byzantine 

modification. The second parameter, network cost for multicasting with network 

coding, is considered in section 6.2 with respect to two basic costs, network cost and 

coding cost.  

The proposed solution for a minimum cost secure network coding problem is 

composed of the following two steps, that is, to:- 

1. Identify low cost minimal configurations with lowest wire tapper threats. 

2. Examine these minimal configurations for Byzantine modification detection.  

The first step is achieved by the evolutionary approach, based on the genetic 

algorithm. Chapter 4 discusses identification of the minimal configurations 'G G∈  

with optimum network and coding resources, and network code construction based 

on the minimal configuration identified. The proposed solution in chapter 4 can be 

directly applied to achieve the first step, if the randomly generated networks in 
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section 4.5 are composed of random sets of the wire tapper adversaries. The solutions 

against the wire tapper adversaries are prevention techniques, because their 

detections are extremely complicated. In the solution here, the minimal 

configurations, 'G , are categorised as highly vulnerable '
H

G , or partially vulnerable

'
L

G . The first category can never be protected from wire tappers but simulation 

results show that a proposed GA based heuristic7 solution has great potential for 

identifying the second category. An interesting point of the proposed solution is that 

the optimisation process is performed without introducing the objective function to 

the wire tapper adversary because the adversary cannot be physically detected. 

Moreover, the partially vulnerable configurations can be perfectly protected by a 

proposed coding scheme based on random linear network coding [2] without random 

packet mixing; this is a significant advantage for minimising the network and coding 

cost.  

This work has addressed single source multicast problems and the proposed GA 

based centralised algorithm is implemented at the source node. It is guaranteed that 

the proposed solution previously described allows the source to identify low cost 

minimal configurations for its multicast transmission. However, the source does not 

have a way to verify the partial vulnerability of any low cost minimal configuration 

that it selects. Fortunately, the selected minimal configuration is either partially 

vulnerable or not, and its Byzantine modifications can be detected by a proposed 

simple technique. The Byzantine modification detection in the network ( , )G V E is 

7 Heuristic is a technique designed for solving a problem quicker when classic method are too 
slow, or for finding an approximate solution when classic method fail to find any exact solution. 
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impossible, and a costly method, because all nodes ( )V and links ( )E  do not 

contribute to each multicast transmission. In identification of the minimal 

configuration '(( ' ), ( ' ))G V V E E< < contributes to overcome these issues because 

'( ', ')G V E  consists of a well known certain number of nodes and links. Assume the 

network ( , )G V E is error free but it is threatened by the wire tappers and Byzantine 

modifications. The source is potent enough to select a low-cost, partially-vulnerable 

configuration, which it then examines for Byzantine modifications prior to initiation 

multicast transmission. The source sends an identical set of packets through 

'( ', ')G V E  as its multicast transmission and the sinks obtain these packets by solving 

the system equations. Each sink independently obtains its solution and reconstructs 

the set of packets, which may or may not be identical to what was transmitted. Each 

sink individually sends back its ‘acknowledgement' to the source, if the set of packet 

is identical, otherwise ‘error’. If the source has received at least one ‘error’ message 

then '
L

G consists of Byzantine modification, and the source continues its examination 

with the rest of '( ', ')G V E . This method is described in more detail later in the 

chapter. 

6.1 NETWORK SECURITY 

Leon Panetta, the US secretary of defence, said recently8 that “the reality is that 

there is the cyber capability to basically bring down our power grid…to paralyse our 

financial system in this country to virtually paralyse our country.” Moreover Army 

Gen. Keith B. Alexander, US cyber commander told participants in an American 

8 Speaking at the Business Executives for National Security dinner, New York, October 2012 
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Enterprise Institute seminar titled “Cybersecurity and American power”9 that the 

capabilities exist today for destructive cyber attacks against critical infrastructures. 

He stated that “An attacker may originate in a country or a criminal gang within the 

country. It does not matter who did it, you still lose your financial sector or the 

power grid or systems capabilities for a period of time.” Their statements pledge that 

the cyber world is essentially protected from cyber attacks for consistency of the 

future generations.    

Network coding is an elegant technique to protect naturally (i.e. without 

additional security mechanisms) multicast data against the wire tappers. Linearly 

combined packets, instead of uncoded data, naturally create a multipath diversity 

against wire tapper adversaries. For example, consider the simple networks in Figure 

6-1, consisting of two parallel unit-capacity channels. There are two independent 

unit-rate information sources (e.g. two movies) located at node A, and they intend to 

securely multicast their data {x1 and x2} to legitimate users (who have paid to 

receive the information from both sources) at node D. Assume the eavesdroppers in 

the network are able to tap only one link during a time slot and they do not mutually 

share the received information. Figure 6-1(a) does not show multi path diversity, the 

independent symbols {x1 and x2} are sent uncoded, and each adversary is able 

intercept one of them. Figure 6-1(b) shows how linearly combined symbols (over 

some finite field) are sent via the different routes, but each wire tapper is unable to 

retrieve any part of the data. The interesting point is that Figure 6-1(a) is defenceless 

9 Washington DC, July 2012 
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against the wire tappers, but its node D prevents decoding complexity, whereas the 

protected Figure 6-1(b) pays some complexity price.  

A

B

C

D

x1 x1

x2 x2

A

B

C

D

x1+ x2 x1+ x2

x1+2 x2 x1+2 x2

(a) (b)
 

Figure 6-1: (a) uncoded packets are unprotected by the wire tappers; (b) coded packets offer a 

natural protection against wiretapping.   

Considering further that the network in Figure 6-1 consists of not only the 

eavesdroppers but also a Byzantine attacker at node B that performs a jamming 

attack. Assume node B in Figure 6-1(a) modifies symbol {x1} to symbol {x3} and in 

Figure 6-1(b) modifies {x1+x2} to symbol {x4 + x5}. The legitimate users at node D 

in Figure 6-1(a) are still able to receive symbol {x2}, error free, but at node D in 

Figure 6-1(b) decoding errors occur and the users are unable to obtain both symbols. 

Therefore mixing information streams is harmful if the network consists of the 

Byzantine attackers.     

6.1.1 WIRE TAPPER ADVERSARY 

The information theoretically secure concept was introduced by Shannon [3] and 

concerns two channels which are defined as “public” and “secure” for the 

theoretically secure data transmission. Suppose a sender expects to send the output of 

random source messageΨ  with alphabet {0,1.....( 1)}A p= − to a receiver. The sender 

can send information via the public channel, whose output can be accessed by the 
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receiver as well as the wiretapper who tries to obtain some information aboutΨ , or 

the sender can send information via the secure channel, whose output can be 

accessed only by the receiver. The usual way to protect Ψ from the wiretapper is that 

the sender generates a “secret key” K independent of the source message Ψ and 

uniformly distributed over A. Letting m be the outcome of Ψ and k the outcome of K, 

the sender sends the key k to the receiver via the secure channel, and sends m+k 

(mod p) via the public channel. The receiver can obtain m by performing a 

mathematical manipulation on m and m+k. If the wiretapper taps either the secure 

channel or the public channel, it is unable to obtain any m by knowing either m+k or 

k. The major disadvantage of the Shannon cipher system is that if the wiretapper is 

able to tap both the channels simultaneously, m may be obtained.  

However, the Shannon cipher system can be improved by designing the secure 

codes shown in Figure 6-2 with two linear disjoint paths from the source. 

Consequently the wiretapper cannot obtain any m by knowing either k or k + m or k – 

m.  

S

a2a1 a3

t2t1 t3

k k + m
k - m

 

Figure 6-2: A wiretap network representing the (2, 3) – threshold secret sharing scheme.  
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Based on the observations above and the butterfly network coding model [4], Cai 

and Yeung [5] proposed a secure network coding model which is called the wiretap 

network.  

 
S

b

a1 a2

a0

t1 t3

k

k +
 m

k -
 m

k + m

k - m
k - m

k 
+ 

m

k k

 

Figure 6-3: Admissible codes for a wiretap network. 

This is shown in Figure 6-3 with admissible codes, and consists of a 

communication network and a collection of subsets of wiretap channels. Any link is 

susceptible to the wiretapper adversaries and the admissible codes protect the source 

message m from them. Moreover, the admissible codes allow legal users t1, and t3 to 

obtain m without any errors. In the [5], a definition of the wiretap network (WN) was 

modified such that the collection of wiretap subsets is all subset of channels with 

cardinalities no larger than r, designated r-WN. A network code is r-secure if it is 

secure for an r-WN. That is, for an r-secure network code, a wiretapper can obtain no 

information about the secure message by accessing any r-channels. For example, the 

Shannon cipher system is the simplest 1-secure network code. Moreover the 

wiretapper cannot obtain information about the secure message by accessing any 1-

channel. This basic model provides a key inspiration to build the proposed security 
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scheme here to protect against wiretappers in multicast networks. It is clear that for 

the existence of r-secure network codes, it is necessary that r is strictly smaller than 

the value of maximum flow from the source node to every sink node. This is because 

otherwise a wiretapper accessing all the channels at a minimum cut between the 

source node and a sink node would have all the information received by the sink 

node, and therefore could correctly decode the secure message. The proposed 

security scheme minimizes the size of the r-channels using a GA-based heuristic 

method and the security of the r-WN is strengthened by the proposed coding scheme 

and source packet forwarding technique at an output buffer of the source.   

The r-secure linear network code was strengthened to the strongly r-secure linear 

network code by Harada and Yamamoto [6]. For such a network code, a wiretapper 

can obtain no information about any S components of the source message by 

accessing n – s channels, provided that the maximum flows to all the sink nodes are 

at least n, where s ≤ n – r. They presented a polynomial-time algorithm to construct 

strongly secure linear network codes. In [7], Cai showed that a random linear 

network code [8] is strongly secure with high probability, provided that the order of 

the coding field is sufficiently large.  

Jain [9] focused on the relation between security and network topology. In his 

model there is a single source node and a single sink node in the network, and the 

entire node may generate random packets to help secure transmission. The model 

means that messages can be transmitted with perfect security and there is no 

consideration of the cost incurred. The trade-off between security and the cost of 

network coding was studied by Tan and Médard [1]. In their model there is a 

probability that each channel may be accessed by a wiretapper who is interested in 
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the messages from a subset of sources. Their criterion of security is the probability 

that the wiretapper is able to decode the message of interest correctly. They proposed 

two heuristic solutions and compared their performance with traditional routing by 

simulation. Their results showed that network coding may be more effective for both 

reducing the cost and increasing the security. In the above literature, security is 

measured by information theoretic quantities (mutual information or entropy) or 

decoding probability.  

6.1.2 BYZANTINE MODIFICATION 

Byzantine modification is a fatal threat in network coding multicast because 

network coding allows the intermediate nodes to mix information. Therefore network 

coding not only offers benefits but also it unintentionally allows fatal errors. A 

malicious node usually pretends to forward packets from source to sink, while in 

reality it injects corrupted packets into the information flow. Since network coding 

makes the coded packets at the routers, a single corrupted packet can cause a fatal 

disruption to the decoding operations at the sinks. Therefore this problem is 

essentially solved unless network coding may perform much worse than traditional 

network routing in the presence of adversaries.   

A few papers have studied the interplay of network coding and Byzantine 

adversaries, and some of them focus on the detection of the presence of the 

adversaries[11], others correct the errors which adversaries inject under specific 

conditions [12],[13]. Ho et al.’s approach against Byzantine adversaries [11] is based 

on distributed randomised network coding [8]. In it, a packet-based random network 

coding scheme is used, where source nodes include in each source packet some hash 
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symbols calculated as simple polynomial functions of the source data. The sinks 

check the data and hash values of their decoded packets to determine if modifications 

have been introduced. This approach requires minimal additional computation 

because it does not included cryptographic hash functions10. The essential condition 

of the method is that sinks obtain one or more unmodified packets, their contents are 

unknown when the Byzantine attacker modifies them. These unmodified packets are 

termed good. For example, consider a set of s source packets and g good packets, 

which the source packets are multicast using distributed randomized network coding 

in the finite field q . The decoding process performs on g good packets and s – g 

modified packets.  

Jaggi et al.[14] introduce the first distributed polynomial-time rate-optimal 

network codes that work in the presence of Byzantine nodes. Their algorithms 

concern adversaries with different attacking capabilities. When the adversary can 

eavesdrop on all links and jam z0 links, their first algorithm achieves a rate on C-2z0, 

where C is the maximum multicast rate. In contrast, when the adversary has limited 

snooping capabilities, their algorithms achieve the higher rate of C-z0. They are 

information theoretically secure and operate in a distributed manner, assume no 

knowledge of the topology, and can be designed and implemented in polynomial 

time. The decoding process of the system equation is infeasible except by employing 

redundancy. The adversary injects packets and coding nodes combine them and 

original source packet with random coefficients. However the system equation 

10 A hash function takes an input and return an output based on that input and it is a one-way 

function.  
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becomes extremely complicated as the number of unknowns grows. To address this 

fatal situation, the source needs to add redundancy to its transmitted packets. 

Although this is vital to overcome the issue in the decoding process redundancy 

exhausts network and coding resources (cost).   

6.2 COST CRITERION  

The cost calculation is considered as a basic function of resource allocation for a 

unit packet successfully delivered from the source to a set of sinks during a unit time 

period. The resources required for the process are split into two categories, namely 

network resources and coding resources. The first of these resource categories 

contains costs associated with setup complexity [10], which implies the complexity 

associated with the computation of the minimal subgraph 'G G∈ needed to provide 

the connections. For instance, in routed networks a cheapest cost approach to a 

unicast connection usually selects a single path. However, when the connection is to 

be resilient against wiretapping, multiple disjoint paths may be used, which may 

increase the network cost [15], [16]. While the minimum cost multicast problem in 

routed networks requires the finding of a directed Steiner tree (NP-hard), the same 

problem in coded networks can be solved by a linear program in polynomial time 

[17]; implementation is also possible in a decentralized manner [15]. Moreover, 

simulation results have shown that network coding can provide multicast connections 

at a lower cost than traditional routing [15], [18]. 

The second category (coding) includes buffer memory allocations and the 

computational power of each coding node and sink node [10]. The computational 

power of the multicast network is degraded by computational complexity and the 
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coding resources are exhausted, consequently the coding cost is affected by the 

computational complexity. These issues have been discussed at length in Chapter 5. 

The majority of the security schemes to date have been fully focused on 

improving the quality of the security against wiretappers and Byzantine attackers 

without considering the network and coding cost. Moreover, the schemes have been 

highly concerned with the ability to decode the source messages at all sinks with zero 

errors rather than the impact of randomness on the channel capacity. Utilizing 

randomness to protect the source messages from wiretappers is effective but 

contributes to exhaustion of the channel capacity and an increase in codec 

complexity at the coding and sink nodes. Consequently, the network and coding cost 

is greatly increased by approaching randomness, but the transmission in the network 

has to be randomized because otherwise a channel output would be either a function 

depending on the messages, or simply a constant. Therefore the proposed secure 

scheme here introduces a method to modify packet forwarding at a source output 

buffer instead of employing randomness.  

6.3 THE PROBLEM AND ITS CONTEXT 

Considers a communications network represented by a directed acyclic graph        

( , )G V E= with unit capacity edges, with the min-cut between the source node and 

each of the receivers of h . There is a set of h  unit rate information sources 

1 2{ , ....... }hS S S and a set of N receivers 1 2{ , ....... }Nt t t . The source, Si, emits σi which is 

an element of some finite field, q . In random linear network coding, intermediate 

nodes linearly combine source symbols with random coefficients, and coded symbols 

are elements of some finite field, q . Moreover each sink is able to communicate 
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reversibly with the source and it sends an acknowledgement of multicast data, which 

then can be perfectly decoded by Gaussian elimination. 

The network is considered to be delay free and error free; the former implies that 

all nodes simultaneously receive all their inputs and produce their outputs and the 

later conveys that all packets are routed with zero errors when adversaries are not 

intercepting.  Moreover here it is assumed that each receiver has at least a single set 

of h-Linear Disjoint Paths which are denoted by ( , ),1 ,1i jS t i h j N≤ ≤ ≤ ≤ , from the 

source to the receiver node j.  

The choice of paths is not unique. The object of interest is the minimal subgraphs 

G' of G, consisting of the hN paths. Moreover the minimal subgraph G' is able to 

show lower network and coding cost during its multicasting, and potentially it should 

be partially vulnerable because it can be perfectly protected against adversaries 

(wiretapping and Byzantine modification) by the proposed method (coding scheme 

and technique).  

The communication system is introduced on adversaries (CSA); a CSA consists of 

a network, a collection W of wire tapped subsets of channels and a collection B of 

malicious nodes. A set of independent wire tappers (with knowledge of the coding 

employed) is denoted 1 2{ , ...... }iA A A , i is any unknown positive integer. A wiretapper,

iA , can arbitrarily choose one but only one wiretap subset w W∈ , and fully access 

(the output of) all the channels in w . The communicators over a CSA know the 

collection W of wiretap subsets, but do not know which subset w is chosen by the 

wiretapper and have no detection method to identify it.  
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Each w consists of an r-subset of channels, where r can vary arbitrarily. G' 

consists of sets (Si ,tj ) of  h-Linear Disjoint Paths (h-LDP), and one or more of the  

h-LDPs may be laid through w and Ai may selects that wiretap. The set of 

wiretappers 1 2{ , ...... }iA A A is interested in a wiretap set 1 2{ , ...... }iw w w in G' and the 

wiretap set 1 2{ , ...... }iw w w consists of an r-subset 1 2{ , ...... }ir r r of the channels 

consecutively. If the ri – subset is located in the sets ( , )i jS t of h-LPDs and the 

condition ir h< is satisfied then the subgraph G'  is partially vulnerable, otherwise 

the condition ir h≥ is satisfied and the subgraph G'  is highly vulnerable. When Ai 

satisfies the latter condition (highly vulnerable subgraph '
HG ) it can obtain the source 

messages 1 2{ , ...... }hS S S with zero errors by solving the h-linear equations by 

Gaussian elimination, implying that Ai is authorised as a legal sink node tj in the 

network for 1 2{ , ...... }hS S S . When G' is partially vulnerable, this implies that the 

wiretapper Ai is able to tap any single channel (or channels less than h) of the ri-

subset, and, if that channel is transmitting uncoded packets of the data stream Si, then 

the wiretapper Ai can obtain Si with zero errors. Therefore the random linear-coding 

based scheme provides a solution that strengthens the protection of the partially 

vulnerable subgraph '
LG . Moreover, the proposed packet forwarding technique 

provides significant protection to '
LG  except using the costly random packets.  

Moreover a set of Byzantine attackers (independently performed) is denoted by

1 2{ , ...... }jB B B , where j is unknown positive integer. A Byzantine attacker, jB , can 

arbitrarily select a node (call a malicious node) but only one node v V∈ except the 
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source or sinks, and all outgoing packets of the malicious node are modified without 

changing their packet size. 

Chapter 4 defined the cost calculation process more firmly, and the simulation 

results therein showed that the proposed algorithmic solution has a strong potential to 

identify the low cost minimal subgraph G'. Moreover, it also explained network code 

construction based on the sparse matrix of G'. The simulation in this chapter is a 

modification of that of chapter 4, because the randomly-generated networks for each 

project are additionally introduced by adversaries. The GA searches to identify '
LG s, 

and, once identified, these are examined to detect the malicious nodes.  

To illustrate the issues, the network shown in Figure 6-4 is considered. The source 

S wishes to multicast three data streams 31 2{ , , }ss sa b c  to a set of sinks t1, t2 and t3. 

The example link costs (ξ(v,u)) are indicated on the figure. There are three wiretap sub 

sets 1 2 3{ , , }w w w  and one malicious node {7} shown on the network. Figure 6-4 

shows, two wiretappers 1 2{ , }A A who select the wiretap subsets 2 3{ , }w w , and one 

Byzantine attacker (B1) selects the malicious node {7}. First, prior initiating 

multicast transmission, the source expects to identify the minimum cost, partially 

protected multicast subgraph '
LG  in the network G.  
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Figure 6-4: The communication system on adversaries to illustrate the problem and proposed 

method.  

Figure 6-5 (a) and (b) show two different low cost minimal subgraphs G' in the 

network G of Figure 6-4, assuming that the G's were identified by the proposed GA 

based method. Each sink t1, t2, t3 belongs to the two different subsets of the 3- linear 

disjoint paths in each of Figure 6-5 (a) and Figure 6-5 (b). In Figure 6-5 (a), the 

wiretap subset w1 is laid on the 1- linear disjoint path 3 2,S t , w2 is laid on 1-linear 

disjoint path 1 3,6,S t and the set of 2-linear disjoint paths 2 2 3 2( ,5, , , )S t S t and w3 

is laid on the set of 1-linear disjoint path 1 2,S t and the set of 2-linear disjoint paths

2 1 3 1( ,5,7, , , 4, )S t S t . However, during the multicast transmission session, the 

wiretap subset w1 is not selected by the wiretappers A1 or A2 and the wiretap subset 

w2 is selected by the wiretapper A1 at links 1 2 3 2( ,6), (5, ), ( , )S t S t . These links do not 

originate at coding nodes and A1 can easily obtain 31 2{ , , }ss sa b c . A2 selects wiretap 

subset w3 at links 1 2 1 1( , ), (4, ), (7, )S t t t , but link 1(7, )t originates at coding node 7 and 
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A2 has to make an additional effort rather than A1 to solve the system equations via 

Gaussian elimination. Therefore the subgraph G' in Figure 6-5 (a) is defined as 

highly vulnerable ( '
HG ) and cannot be protected using the multicast network coding 

technique. 

In Figure 6-5 (b), the wiretap subset w2 is laid on the 2-linear disjoint paths

1 2 3 2( ,6, , , )S t S t . The wiretapper A1 is unable to form three linear equations 

tapping the 2-linear disjoint paths, and source data 31 2{ , , }ss sa b c  cannot be obtained 

by Gaussian elimination. It is possible that A1 can obtain the source data 31{ , }ssa c

because the tapped links 1 3 2( ,6), ( , )S S t are not naturally protected by the multicast 

network coding technique. Moreover, the wiretap subset w3 is laid on the 1-linear 

disjoint path 3 1, 4,S t , and A2 cannot obtain the source data by Gaussian 

elimination. Also the tapped link 1(4, )t is a coded link at the coding node 4 and the 

link 1(4, )t is protected. Therefore the subgraph G' is defined as a partially-vulnerable 

minimal subgraph ( '
LG ) and can be protected by the proposed method (random 

coding scheme and packet forwarding technique at the source).  
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Figure 6-5: (a) Highly vulnerable minimal subgraph G’H; (b) partially vulnerable             

minimal    subgraph G’L. 

Second, prior to initiating multicast transmission, the source examines G' (most 

probably '
LG ) for the malicious nodes. Assume the source selects '

HG in Figure 6-5 (a) 

for its examination and it forwards identical test packets 31 2{ , , }ss sσ σ σ as its multicast 

transmission. The Byzantine attacker (B1) at node 7 randomly modifies its outgoing 

packets as 1 3 1 3( , ) ( , ){ , }s s s sα β . Sinks t1,t3 are unable to obtain 31 2{ , , }ss sσ σ σ  and each of 

them sends a message ‘error’ to the source. Moreover sink t2 send its 

acknowledgement because it obtained 31 2{ , , }ss sσ σ σ . The proposed solution is 

defined as a theoretically secured network coding scheme, therefore the network is 

considered error free and the source justifies, '
HG in Figure 6-5 (a) is comprised by 

the malicious nodes and discarded. Sinks t1,t2,t3 in Figure 6-5 (b) obtain 

31 2{ , , }ss sσ σ σ and each of them sends its acknowledgment; consequently the source 

selects '
LG for its multicast transmission.  
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6.4 CODING SCHEME AND PACKET FORWARDING 

TECHNIQUE AT SOURCE 

The GA based method can potentially identify '
LG s, and their malicious nodes can 

be simply detected by the multicasting of identical test packets (e.g. 31 2{ , , }ss sσ σ σ ). 

However the G’L s are not fully protected from the wiretappers. Links which carry 

uncoded packets are potentially vulnerable without randomness. Utilizing 

randomness to protect the source messages from wiretappers is effective but 

contributes to exhaustion of the channel capacity and an increase in codec 

complexity at the coding and sink nodes. Consequently, the network cost is greatly 

increased by approaching randomness but the transmission in the network has to be 

randomized because otherwise a channel output would be either a function 

depending on the messages or simply a constant. Here there follows a discussion of 

how the random coding scheme and packet forwarding technique at the source 

provides full protection to '
LG except costly randomness.    

6.4.1 CODING SCHEME 

The proposed coding scheme is based on the linear random coding method [2] and 

the proposed coding scheme in section 4.2. The source intends to forward its 

multicast packets through G’ and coding nodes combine them linearly with random 

coefficients ( )i qα ∈ . The linear random coding method can minimize the coding 

complexity of the network coding scenario and thus the network coding cost. This 

technique naturally introduces path diversity and prevents a channel output as either 

a function or simply a constant, depending on the messages. 
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However, a major disadvantage is that the method may generate linearly 

dependent local coding vectors at the coding nodes, meaning that the sinks may be 

unable to form full rank matrixes as their global coding vectors. If at least a sink 

obtains a non full rank matrix, it causes decoding errors and it must send an error 

message to the source, which has to transmit the same set of simultaneous packets to 

all sinks, increasing the complexity and cost. If i sα are chosen in sufficiently large 

q , then this issue is sufficiently small (example in section 2.1.1).  

6.4.2 PACKET FORWARDING TECHNIQUE AT THE SOURCE 

This is a prominent part of the low cost security scheme and the technique is 

introduced here instead of costly randomness. The source in '
LG  connected with 

strictly h nodes as its first set of edges. Assume the multicast session is split by τ

simultaneous sets of packets (1 ;0 1)
i

j
s i h j τΦ ≤ ≤ ≤ ≤ − . During the multicast session 

each simultaneous set of the packets 
i

j
sΦ  is circularly shifted by a jth value. Figure 

6-6 shows the packet forwarding technique at the source node. This technique 

protects all uncoded links in '
LG but does not mix costly random packets. The 

simulation results show that the wiretappers are confused and unable to obtain any 

clear message during the multicast session. 
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Figure 6-6: The packets forwarding technique at the source 

6.4.3 SIMULATION PHASE 

The implementation of both techniques in section 6.4.1 and 6.4.2 is now 

discussed, consisting of a virtual network with only basic functions (forwarding and 

coding) at intermediate nodes. The source node forwards packets with via the 

technique of section 6.4.2, intermediate nodes follow section 6.4.1, and sinks 

perform Gaussian elimination to solve the system equations. The wiretap subsets 

were implemented in the same way as the sinks. Only links and nodes of '
LG were 

kept ‘active’ and the remainder were kept ‘inactive’. The link ‘active’ implies that an 

output buffer of tail node can be accessed by an input buffer of head node. If any 

node has two or more active in – links then it can be sensed, it has to perform as 

coding node and rest of intermediate nodes have to perform as only forwarding 

nodes. A simple packet format was used here with payload and header; the latter 

consisted of a source vector or coding vector, packet order number and destination 

address. The payloads utilised were symbols taken from some q . If any coding node 

detected packets with identical order numbers, then they were combined linearly 
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with random coefficients in some q . Each sink obtained the decoding matrix to 

solve the system equations based on the packet’s order number.  

6.5 SIMULATION RESULTS AND DISCUSSION 

Simulations of the proposed solution consisted of two parts. The first focused on 

the identification of '
LG s. Each GA technique is evaluated based on potential of their 

identifications, here it is defined as the probability of identifying at least one '
LG

(without malicious nodes) during each run '
( / )(Pr )

L

MOGA VEGA
G

. For example, in Table 6-1, 

MOGA and VEGA are evaluated as '
( )Pr

L

MOGA
G

and '
( )Pr

L

VEGA
G

,and their evaluations are 

50% and 80% respectively. These simulations were similar to those in section 4.5 but 

with the difference here that networks were randomly generated with a level of 

adversaries.  
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Run 

Topological detail and level of adversaries                                                                     
Nodes - 27; Links – 57; Sinks – 07; Wiretap subsets – 03; Malicious nodes - 02 

 

MOGA VEGA 

'G
 

'
LG  '

HG  
 

'G
 

'
LG  '

HG  

With 
maliciou
s nodes 

Without 
malicious 

nodes 

With 
malicio
us nodes 

Without 
malicio
us nodes 

With 
malicio
us nodes 

Without 
malicious 

nodes 

With 
malicious 

nodes 

Without 
malicio
us nodes 

1 4 1 2 1 0 5 1 2 1 1 

2 - - - - - 6 2 1 3 0 

3 5 2 1 2 0 4 1 1 1 1 

4 4 1 0 1 2 4 2 1 0 1 

5 - - - - - - - - - - 

6 - - - - - 5 1 1 2 1 

7 4 1 2 0 1 4 1 2 1 0 

8 4 0 1 2 1 4 
 

2 
 

0 
 

1 
 

1 
 

9 5 1 1 1 2 5 1 1 1 2 

10 - - - - - 4 1 1 2 0 

Table 6-1: Simulation results for project – 1, each run uses a randomly generated acyclic 

network with a level of adversaries. 

In Table 6-1, the hyphen (-) indicates ‘failed search’ and the rest of runs were able 

to identify at least four low cost minimal subgraphs ( ')G . These simulations were not 

performed on actual multicast traffic delivery. Moreover, an objective function was 

not assigned for the detection of the wiretappers. However, a graphical representation 

(e.g. Figure 4-21(b)) of the subgraph ( ')G is used to identify '
LG without the malicious 

nodes. 

In Table 6-2, MOGA represents poor performance for small scale networks but 

VEGA performs differently. Moreover MOGA shows better performance than 

VEGA for large scale networks.  
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Project 

Topological detail Level of adversaries 
Probability of identifying at 

least one '
LG (without malicious 

nodes) during each run 

Nodes Links Sinks Wiretap sub 
sets 

Malicious 
nodes '

( )Pr
L

MOGA
G

 '
( )Pr

L

VEGA
G

 

1 27 57 07 03 02 50% 80% 

2 30 68 07 04 03 60% 90% 

3 35 92 12 05 04 66.67% 60% 

4 40 113 17 06 05 70% 53.33% 

Table 6-2: Simulation results analysis for all projects 

The second part of simulations investigates how '
LG (without malicious nodes) is 

perfectly protected by the proposed methods in section 6.4.1 and 6.4.2. This 

simulation used '
LG in Figure 6-5 (b). The payload of each packet is a symbol of the 

finite field 322
 , and the random coefficients are selected by 42

 . The first row of 

Figure 6-7 shows, multicast data transmitted from 1 2 3{ , , }S S S . The second, third and 

forth rows of Figure 6-7show that sinks 1 2 3{ , , }t t t obtained source data via the 

Gaussian elimination. The row 5 of Figure 6-7 shows, wiretappers (A2,A1) obtained 

data. A2 tapped only coded link 1(4, )t and thus could not form the system equations. 

A1 tapped two uncoded links 1 3 2( ,6), ( , )S S t  but it could not obtain the source data 

because the proposed techniques in section 6.4.1 and 6.4.2 interrupted the tapping 

without additional cost or effort.  
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Figure 6-7: Simulation results analysis, how G’L is fully protected by the proposed 

techniques. 

6.6 CONCLUSION 

This has been a first attempt to investigate jointly network cost, coding cost, 

wiretapper adversary, and Byzantine modification in the multicast scenario. The 

proposed solution expects to identify low cost (network cost and coding cost) 

minimal configurations ( ')G  in the adversary network, which is categorised as NP-

hard; an evolutionary approach is essential to solve it. These G’ are classified as 

highly vulnerable minimal configurations '( )HG and lower vulnerable minimal 

configurations '( )LG . The '
LG s can only be protected from the wiretappers because 

each wiretap subset does not cover h  linear disjoint paths. However '
LG s cannot be 

identified straightforwardly because the wiretapper adversaries cannot be detected. 

Therefore, the proposed solution is heuristic and the simulation results show that it 

has good potential to identify '
LG s. The network is assumed to be error free, except 

the errors are caused by the adversaries, and '
LG s are examined for malicious nodes. 
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A certain number of nodes (only nodes in '
LG  ) is considered for this examination 

instead of all nodes in G.  

The random coding scheme and packet forwarding technique at the source have 

good potential to provide optimum uncertainty to data on paths and paths diversity. 

These techniques affect the wiretappers in '
LG .  

The first part of simulation results shows that VEGA performance is better than 

MOGA for small scale networks, and vice versa for large scale networks. The second 

part shows that any '
LG can be perfectly protected by the proposed random coding 

and packet forwarding technique at the source without costly randomness.  
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APPENDIX A … 

1 FULL RANK MATRIX 

    Definition: When all of the vectors in a matrix are linearly independent, the 

matrix is said to be full rank. Consider the matrices A and B below. 

1 0 2
1 2 3

2 1 0
2 4 6

3 2 1
A B

 
   = =       

 Notice that row 2 of matrix A is a scalar multiple of row 1; that is, row 2 is equal 

to twice row 1. Therefore, rows 1 and 2 are linearly dependent. Matrix A has only 

one linearly independent row, so its rank is 1. Hence, matrix A is not full rank. 

Now, look at matrix B. All of its rows are linearly independent, so the rank of 

matrix B is 3. Matrix B is full rank. 

2 GAUSSIAN ELIMINATION 

Gaussian elimination is a method for solving matrix equations of the form 

AX b=  

To perform Gaussian elimination starting with the system of equations 

11 12 1 1 1

21 22 2 2 2

1 2

k

k

k kk k kk

a a a x b
a a a x b

x ba a a

     
     
     =
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Compose the “augmented matrix equation” 

11 12 1 1 1

21 22 2 2 2

1 2

k

k

kk k kk k

a a a b x
a a a b x

xa a a b

   
   
   
   
   
    







  



Here, the column vectors in the variables X is carried along for labelling the 

matrix rows. Now, perform elementary row operations to put the augmented matrix 

into the upper triangular form 

' ' ' '
11 12 1 1

' ' '
22 2 2

' '

0

0 0

k

k

kk k

a a a b

a a b

a b

 
 
 
 
 
 
  





  



Solve the equation of the thk row for kx then substitute back into the equation of the 

( 1)stk −  row to obtain a solution for 1kx − , etc., according to the formula 

' '
'

1

1 k

i i ij j
j iii

x b a x
a = +

 
= − 

 
∑
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3 BINARY FIELD 

Example (binary field
2 4 ) The elements of 

2 4 are the 16 binary polynomials of

degree at most 3:  

2 3 3 2

2 3 3 2

2 3 3 2

2 3 3 2

0
1 1 1 1

1 1 1 1

Z Z Z Z
Z Z Z Z

Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z

+

+ + + +

+ + + +

+ + + + + + + +

The followings are some examples of arithmetic operations in 
2 4 with reduction

polynomial 4( ) 1f z Z Z= + + .  

1. Addition: 3 2 2 3 2 3( 1) ( 1) (1 1) (1 1)Z Z Z Z Z Z Z Z Z+ + + + + = + + + + + = +

2. Subtraction:
3 2 2 3 2 3( 1) ( 1) (1 ( 1)) (1 ( 1))Z Z Z Z Z Z Z Z Z+ + − + + = + + − + + + − = +

(Note that since -1=1 in 2 , we have a a− =  for all
2ka∈ ).

3. Multiplication: 3 2 2 2( 1).( 1) 1Z Z Z Z Z+ + + + = +  since
3 2 2 5( 1).( 1) 1Z Z Z Z Z Z+ + + + = + +  and    

5 4 2( 1) mod ( 1) 1Z Z Z Z Z+ + + + = +  

54

5 2

2

1( 1)

1

Z
Z ZZ Z
Z Z Z

Z

+ + ++ +

+ +

+

 

4. Inversion: 3 2 1 2( 1)Z Z Z−+ + = since 
3 2 1 2 4( 1) . mod 1 1Z Z Z Z Z−+ + + + =  
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3.1 MODULO – 2 OPERATIONS

    Modulo – 2 Addition (XOR)              Modulo – 2 Multiplication (AND) 

4 ALGORITHM ANALYSIS 

4.1 POLYNOMIAL TIME 

Definition: An algorithm is said to be solvable in polynomial time if the number 

of steps required to complete the algorithm for a given input size n  is ( )knΟ  for 

some nonnegative integer k . 

i.e. An algorithm A is polynomial time if ( ) ( )time n f n≤A and f is a polynomial 

1
1 2( ....... )k k

mf a n a n a−= + + + . 

Polynomial time algorithms are said to be “fast”. Mathematical operations such as 

addition, subtraction, multiplication, division can be performed in polynomial time. 

Computing the digits of mathematical constant, including π can also be done in 

polynomial time. 

4.2 GREEDY ALGORITHM 

Definition: An algorithm that always takes the best immediate, or local, solution 

while finding an answer. Greedy algorithms can find the overall, or globally, optimal 

solution for some optimisation problems.  

⊕ 0 1 

0 0 1 

1 1 0 

. 0 1 

0 0 0 

1 0 1 
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Greedy algorithms are usually quicker because they do not consider the details of 

possible alternatives. Example Prim-Jarnik algorithm is used to compute a minimum 

spanning tree. The Linear Information Flow algorithm is used to network code 

design. 
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APPENDIX B … 

1 MATLAB CODES TO CREATE A FUNCTION FILE TO 

SEQUENTIALLY RUN THE ALGORITHMS 

%% A MATLAB programme for run 'myDir' files 

%  Lalith P. Karunarathne, BEng(Hons) 
%  University Of Warwick, Coventry 
%******************************************************* 
function RunFirst_Res()  

myDir = 'C:\Users\LALITHK\Documents\MATLAB\First_ResearchPaper'; 

d = dir([myDir filesep '*.m']); 
for jj=1:numel(d)  
    try 
        toRun = fullfile(myDir, d(jj).name); 
        fprintf('Running "%s"', toRun);  
        run(toRun)  
    catch E 
        % Up to you! 
    end 
end 

2 MATLAB CODES FOR CREATING AND VIEWING A RANDOM 

ACYCLIC NETWORK 

%% 
******************************************************************** 
%  Random Acyclic Network Creation 

%  Lalith P. Karunarathne, BEng(Hons) 
%  University Of Warwick, Coventry 
%% 
********************************************************************
**** 
%  Acyclic Network Creation with Sparse Matrix  

NumNodes = 27; % Define A number of Nodes (V) in the Random Network 

Nd_Lk_Mtx = zeros(NumNodes,NumNodes);% Create Zero matrix with size 
%|V|*|V|  
Nd_Lk_Mtx(1,[4 6 14 22])=1;    
Nd_Lk_Mtx(2,[5 8 10 14 23])=1;    
Nd_Lk_Mtx(3,[7 9 16 21])=1;    
Nd_Lk_Mtx(4,[10 11])=1;   
Nd_Lk_Mtx(5,[11 12])=1; 
Nd_Lk_Mtx(6,[13 25])=1; 
Nd_Lk_Mtx(7,[12 14])=1; 
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Nd_Lk_Mtx(8,[13 16])=1; 
Nd_Lk_Mtx(9,[12 13])=1;  
Nd_Lk_Mtx(10,[15 20 24])=1;  
Nd_Lk_Mtx(11,[17 19 24])=1;  
Nd_Lk_Mtx(12,[15 22 24 25])=1; 
Nd_Lk_Mtx(13,[19 25])=1; 
Nd_Lk_Mtx(14,[17 18 24])=1;  
Nd_Lk_Mtx(15,[21 23])=1; 
Nd_Lk_Mtx(16,[18 20 21 22])=1; 
Nd_Lk_Mtx(17,[23])=1; 
Nd_Lk_Mtx(18,[21 24])=1; 
Nd_Lk_Mtx(19,[22])=1; 
Nd_Lk_Mtx(20,[23])=1; 
Nd_Lk_Mtx([13 16 15],[26])=1; 
Nd_Lk_Mtx([1 2 16],[27])=1; 

%% MATLAB Codes from Bioinformatics Tool Box for Viewing the Acyclic 
Network 

bg = biograph(Nd_Lk_Mtx); 
h=view(bg); 

%% ADD Weight to graph 
Weight=[2 1 2 3 1 2 1 3 2 2 3 1 4 1 4 2 3 3 1 4 2 1 3 2 3 2 1 2 1 3 
2 1 1 2 3 2 4 1 2 3 2 3 2 3 1 2 2 2 3 3 2 1 2 3 1 2 3 0]; 
Direct_Graph=sparse([1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 5 5 6 6 7 7 8 8 9 
9 10 10 10 11 11 11 12 12 12 12 13 13 14 14 14 15 15 16 16 16 16 17 
18 18 19 20 13 16 15 1 2 16 27],... 

[4 6 14 22 5 8 10 14 23 7 9 16 21 10 11 11 12 13 
25 12 14 13 16 12 13 15 20 24 17 19 24 15 22 24 25 19 25 17 18 24 21 
23 18 20 21 22 23 21 24 22 23 26 26 26 27 27 27 27],Weight); 

%% MATLAB Codes from Bioinformatics Tool Box for Viewing the Direct 
with 
% weights of its edges  

%bg = biograph(Nd_Lk_Mtx);  
%h=view(bg); 
h = view(biograph(Direct_Graph,[],'ShowWeights','on')); 

3 MATLAB CODES FOR IDENTIFYING THE SOURCE, SINKS 

AND CODING NODES IN THE ACYCLIC NETWORK 

%% 
******************************************************************** 
 %  The Nodes Classification in the Acyclic Network 
 %  Lalith P. Karunarathne, BEng(Hons) 
 %  University Of Warwick, Coventry 
 % 
********************************************************************
**** 

tic  %Measure performance using stopwatch timer 
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%% Codes for Sinks identification  (Following Graph Theory) 
All_Sinks = []; 
for i=1:NumNodes 
    if all(Nd_Lk_Mtx(i,:)==0) 
        All_Sinks(i,:)=i; 
    end 
end 
All_NeWok_Sinks = find(All_Sinks);  %find::function(MATLAB) 
Test_All_Net_Sink = zeros(1,NumNodes); 
for i=1:length(All_NeWok_Sinks) 
    Test_All_Net_Sink(1,All_NeWok_Sinks(i))=1; 
end 

%% Codes for Source Nodes identification (Following Graph Theory) 
All_Sources = []; 
for j=1:NumNodes 
    if all(Nd_Lk_Mtx(:,j)==0) 
        All_Sources(:,j)=j; 
    end 
end 
All_NeWok_Sources = find(All_Sources); 
Test_All_Netw_Sour=zeros(1,NumNodes); 
for i=1:length(All_NeWok_Sources) 
    Test_All_Netw_Sour(1,All_NeWok_Sources(i))=1; 
end 

%% Codes for Coding Nodes Identification 
 %Identify coding & Sinks Nodes together 
Mer_Sink_Nod=zeros(1,NumNodes); 
for i=1:NumNodes 
    [Row2,Col2]=find(Nd_Lk_Mtx(:,i)); 
    if length(Row2)>=2 
        Mer_Sink_Nod(1,i)=1; 
    end 
end 
[Row3,Col3]=ind2sub(size(Mer_Sink_Nod),find(Mer_Sink_Nod(1,:)==1)); 

%% Separation the Merging nodes from Sinks 
Merg_Nodes = zeros(1,NumNodes); 
for j =1:length(Col3) 
    [Row4,Col4]= find(Nd_Lk_Mtx(Col3(j),:)); 
    if length(Col4)>=1 
        Merg_Nodes(1,Col3(j))=1; 
    end  
end 
[Row5,Col5]=ind2sub(size(Merg_Nodes),find(Merg_Nodes(1,:)==1)); 
All_Coding_Node = Col5; 

%% Find Parent chiled nodes 
Parent_Chiled = {}; 
%All_Paths={}; 
for i=1:NumNodes 
    for j=1:NumNodes 
        Parent_Chiled{1,i}(1,j)= Nd_Lk_Mtx(i,j); 
        Parent_Chiled{2,i}=find(Parent_Chiled{1,i}); 
        Parent_Chiled{3,i}=size(Parent_Chiled{2,i}); 
    end 
end 
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toc  %Measure performance using stopwatch timer 

4 MATLAB CODES FOR IMPLEMENTING THE AUGMENTING 

PATH ALGORITHM 

%% 
********************************************************************
**** 
 %  Implementation Augmenting Path Algorithm 

 %  Lalith P. Karunarathne, BEng(Hons) 
 %  University Of Warwick, Coventry 
********************************************************************
****  

%% All Paths Identification - Maximum 6 Hope Only 

tic  %Measure performance using stopwatch timer 

All_Paths={}; All_Paths1={}; All_Paths2={};All_Paths3={}; 
All_Paths4={}; 
All_Paths5={}; All_Paths6={}; 

Final_All_Paths1={}; Final_All_Paths2={}; Final_All_Paths3={}; 
Final_All_Paths4={}; Final_All_Paths5={}; Final_All_Paths6={}; 

Par_Chi_All_Paths={}; Par_Chi_All_Paths1={}; Par_Chi_All_Paths2={}; 
Par_Chi_All_Paths3={}; Par_Chi_All_Paths4={}; Par_Chi_All_Paths5={}; 

size_All_Paths1={}; size_Par_Chi_All_Paths1={}; 
size_Par_Chi_All_Paths2={}; 
size_Par_Chi_All_Paths3={};size_Par_Chi_All_Paths4={};size_Par_Chi_A
ll_Paths5={}; 

for k=1:length(All_NeWok_Sources) 
    All_Paths{1,k}(1,1)= All_NeWok_Sources(k); 
    % Hope 1 
    for i=1:NumNodes 
        Par_Chi_All_Paths{1,k}= 
Parent_Chiled{2,All_Paths{1,k}(1,1)}; 
    end 
    size_Par_Chi_All_Paths{1,k}=size(Par_Chi_All_Paths{1,k}); 
    for t=1:size_Par_Chi_All_Paths{1,k}(1,2) 
        All_Paths1{k,t}(1,1)= All_Paths{1,k}(1,1); 
        All_Paths1{k,t}(1,2)= Par_Chi_All_Paths{1,k}(1,t); 

        % Test for any completed paths - Hope 1 
        Test_One_zero1{k,t}=zeros(3,NumNodes); 
        for j=1:length(All_NeWok_Sinks) 

Test_One_zero1{k,t}(1,All_NeWok_Sinks(j))=1; 
        end 
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        Test_One_zero1{k,t}(2,All_Paths1{k,t}(1,2))=1; 

        for i=1:NumNodes 
if Test_One_zero1{k,t}(1,i)==1 && 

Test_One_zero1{k,t}(2,i)==1 
Test_One_zero1{k,t}(3,i)=1; 

end 
All_Paths1{k,t}(2,i)= Test_One_zero1{k,t}(3,i); 

if All_Paths1{k,t}(2,i)~=0 
Final_All_Paths1{k,t}(1,[1 2])=All_Paths1{k,t}(1,[1 

2]); 
end 

        end 

        %***** Hope 2 
        for i=1:NumNodes 

Par_Chi_All_Paths1{k,t}= 
Parent_Chiled{2,All_Paths1{k,t}(1,2)}; 
        end 

        size_Par_Chi_All_Paths1{k,t}=size(Par_Chi_All_Paths1{k,t}); 
        for t1=1:size_Par_Chi_All_Paths1{k,t}(1,2) 

All_Paths2{k,t,t1}(1,[1 2])= All_Paths1{k,t}(1,[1 2]); 
All_Paths2{k,t,t1}(1,3)=Par_Chi_All_Paths1{k,t}(1,t1); 

%Test for any completed paths - Hope 2 
     Test_One_zero2{k,t,t1}=zeros(3,NumNodes); 

for j=1:length(All_NeWok_Sinks) 
Test_One_zero2{k,t,t1}(1,All_NeWok_Sinks(j))=1; 

end 
Test_One_zero2{k,t,t1}(2,All_Paths2{k,t,t1}(1,3))=1; 

for i=1:NumNodes 
if Test_One_zero2{k,t,t1}(1,i)==1 && 

Test_One_zero2{k,t,t1}(2,i)==1 
Test_One_zero2{k,t,t1}(3,i)=1; 

end 
All_Paths2{k,t,t1}(2,i)= 

Test_One_zero2{k,t,t1}(3,i); 
if All_Paths2{k,t,t1}(2,i)~=0 

Final_All_Paths2{k,t,t1}(1,[1 2 
3])=All_Paths2{k,t,t1}(1,[1 2 3]); 

end 
end 
% ******** Hope 3 
for i=1:NumNodes 

Par_Chi_All_Paths2{k,t,t1}= 
Parent_Chiled{2,All_Paths2{k,t,t1}(1,3)}; 

end 

size_Par_Chi_All_Paths2{k,t,t1}=size(Par_Chi_All_Paths2{k,t,t1}); 

for t2=1:size_Par_Chi_All_Paths2{k,t,t1}(1,2) 
All_Paths3{k,t,t1,t2}(1,[1 2 3])= 

All_Paths2{k,t,t1}(1,[1 2 3]); 

All_Paths3{k,t,t1,t2}(1,4)=Par_Chi_All_Paths2{k,t,t1}(1,t2); 
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%Test for any completed paths - Hope 3 
Test_One_zero3{k,t,t1,t2}=zeros(3,NumNodes); 
for j=1:length(All_NeWok_Sinks) 

Test_One_zero3{k,t,t1,t2}(1,All_NeWok_Sinks(j))=1; 
end 

Test_One_zero3{k,t,t1,t2}(2,All_Paths3{k,t,t1,t2}(1,4))=1; 

for i=1:NumNodes 
if Test_One_zero3{k,t,t1,t2}(1,i)==1 && 

Test_One_zero3{k,t,t1,t2}(2,i)==1 
Test_One_zero3{k,t,t1,t2}(3,i)=1; 

end 
All_Paths3{k,t,t1,t2}(2,i)= 

Test_One_zero3{k,t,t1,t2}(3,i); 
if All_Paths3{k,t,t1,t2}(2,i)~=0 

Final_All_Paths3{k,t,t1,t2}(1,[1 2 3 
4])=All_Paths3{k,t,t1,t2}(1,[1 2 3 4]); 

end 
end 

% ******** Hope 4 
for i=1:NumNodes 

Par_Chi_All_Paths3{k,t,t1,t2}= 
Parent_Chiled{2,All_Paths3{k,t,t1,t2}(1,4)}; 

end 

size_Par_Chi_All_Paths3{k,t,t1,t2}=size(Par_Chi_All_Paths3{k,t,t1,t2
}); 

for t3=1:size_Par_Chi_All_Paths3{k,t,t1,t2}(1,2) 
All_Paths4{k,t,t1,t2,t3}(1,[1 2 3 4])= 

All_Paths3{k,t,t1,t2}(1,[1 2 3 4]); 

All_Paths4{k,t,t1,t2,t3}(1,5)=Par_Chi_All_Paths3{k,t,t1,t2}(1,t3); 

%Test for any completed paths - Hope 4 
Test_One_zero4{k,t,t1,t2,t3}=zeros(3,NumNodes); 

        for j=1:length(All_NeWok_Sinks) 

Test_One_zero4{k,t,t1,t2,t3}(1,All_NeWok_Sinks(j))=1; 
end 

Test_One_zero4{k,t,t1,t2,t3}(2,All_Paths4{k,t,t1,t2,t3}(1,5))=1; 

for i=1:NumNodes 
if Test_One_zero4{k,t,t1,t2,t3}(1,i)==1 && 

Test_One_zero4{k,t,t1,t2,t3}(2,i)==1 
Test_One_zero4{k,t,t1,t2,t3}(3,i)=1; 

end 
All_Paths4{k,t,t1,t2,t3}(2,i)= 

Test_One_zero4{k,t,t1,t2,t3}(3,i); 
if All_Paths4{k,t,t1,t2,t3}(2,i)~=0 

Final_All_Paths4{k,t,t1,t2,t3}(1,[1 2 3 
4 5])=All_Paths4{k,t,t1,t2,t3}(1,[1 2 3 4 5]); 

   end 
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end 

% ******** Hope 5 
for i=1:NumNodes 

Par_Chi_All_Paths4{k,t,t1,t2,t3}= 
Parent_Chiled{2,All_Paths4{k,t,t1,t2,t3}(1,5)}; 

end 

size_Par_Chi_All_Paths4{k,t,t1,t2,t3}=size(Par_Chi_All_Paths4{k,t,t1
,t2,t3}); 

for 
t4=1:size_Par_Chi_All_Paths4{k,t,t1,t2,t3}(1,2) 

All_Paths5{k,t,t1,t2,t3,t4}(1,[1 2 3 4 5])= 
All_Paths4{k,t,t1,t2,t3}(1,[1 2 3 4 5]); 

All_Paths5{k,t,t1,t2,t3,t4}(1,6)=Par_Chi_All_Paths4{k,t,t1,t2,t3}(1,
t4); 

%Test for any completed paths - Hope 5 

Test_One_zero5{k,t,t1,t2,t3,t4}=zeros(3,NumNodes); 
for j=1:length(All_NeWok_Sinks) 

Test_One_zero5{k,t,t1,t2,t3,t4}(1,All_NeWok_Sinks(j))=1; 
end 

Test_One_zero5{k,t,t1,t2,t3,t4}(2,All_Paths5{k,t,t1,t2,t3,t4}(1,6))=
1; 

for i=1:NumNodes 
if 

Test_One_zero5{k,t,t1,t2,t3,t4}(1,i)==1 && 
Test_One_zero5{k,t,t1,t2,t3,t4}(2,i)==1 

Test_One_zero5{k,t,t1,t2,t3,t4}(3,i)=1; 
end 
All_Paths5{k,t,t1,t2,t3,t4}(2,i)= 

Test_One_zero5{k,t,t1,t2,t3,t4}(3,i); 
if All_Paths5{k,t,t1,t2,t3,t4}(2,i)~=0 

Final_All_Paths5{k,t,t1,t2,t3,t4}(1,[1 2 3 4 5 
6])=All_Paths5{k,t,t1,t2,t3,t4}(1,[1 2 3 4 5 6]); 

end 
end 

% ******** Hope 6 
for i=1:NumNodes 

Par_Chi_All_Paths5{k,t,t1,t2,t3,t4}= 
Parent_Chiled{2,All_Paths5{k,t,t1,t2,t3,t4}(1,6)}; 

end 

size_Par_Chi_All_Paths5{k,t,t1,t2,t3,t4}=size(Par_Chi_All_Paths5{k,t
,t1,t2,t3,t4}); 

for 
t5=1:size_Par_Chi_All_Paths5{k,t,t1,t2,t3,t4}(1,2) 
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All_Paths6{k,t,t1,t2,t3,t4,t5}(1,[1 2 3 
4 5 6])= All_Paths5{k,t,t1,t2,t3,t4}(1,[1 2 3 4 5 6]); 

All_Paths6{k,t,t1,t2,t3,t4,t5}(1,7)=Par_Chi_All_Paths5{k,t,t1,t2,t3,
t4}(1,t5); 

%Test for any completed paths - Hope 6 

Test_One_zero6{k,t,t1,t2,t3,t4,t5}=zeros(3,NumNodes); 
for j=1:length(All_NeWok_Sinks) 

Test_One_zero6{k,t,t1,t2,t3,t4,t5}(1,All_NeWok_Sinks(j))=1; 
end 

Test_One_zero6{k,t,t1,t2,t3,t4,t5}(2,All_Paths6{k,t,t1,t2,t3,t4,t5}(
1,7))=1; 

for i=1:NumNodes 
if 

Test_One_zero6{k,t,t1,t2,t3,t4,t5}(1,i)==1 && 
Test_One_zero6{k,t,t1,t2,t3,t4,t5}(2,i)==1 

Test_One_zero6{k,t,t1,t2,t3,t4,t5}(3,i)=1; 
end 
All_Paths6{k,t,t1,t2,t3,t4,t5}(2,i)= 

Test_One_zero6{k,t,t1,t2,t3,t4,t5}(3,i); 
if 

All_Paths6{k,t,t1,t2,t3,t4,t5}(2,i)~=0 

Final_All_Paths6{k,t,t1,t2,t3,t4,t5}(1,[1 2 3 4 5 6 
7])=All_Paths6{k,t,t1,t2,t3,t4,t5}(1,[1 2 3 4 5 6 7]); 

end 
end   

end 
end 

end 
end 

        end 
    end 
end 
 toc %Measure performance using stopwatch timer 

5 MATLAB CODES FOR IMPLEMENTING THE LINEAR 

DISJOINT PATH ALGORITHM 

%% 
********************************************************************
**** 
 %  Implementation: Linear Disjoint Paths Algorithm 

 %  Lalith P. Karunarathne, BEng(Hons) 
 %  University Of Warwick, Coventry 
********************************************************************
**** 

%% Linear Disjoint Paths Algorithm 
 % It Should be modified when add more sources 
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tic %Measure performance using stopwatch timer 
final_Path_from_S1_to_Sk={}; 
Test_fi_fro_S1_to_Sk = {}; 
for k=1:length(All_NeWok_Sources) 
    final_Path_from_S1_to_Sk{k,1}=(cat(1,Final_All_Paths1{k,:})); 
    final_Path_from_S1_to_Sk{k,2}=(cat(1,Final_All_Paths2{k,:,:})); 

final_Path_from_S1_to_Sk{k,3}=(cat(1,Final_All_Paths3{k,:,:,:})); 

final_Path_from_S1_to_Sk{k,4}=(cat(1,Final_All_Paths4{k,:,:,:,:})); 

final_Path_from_S1_to_Sk{k,5}=(cat(1,Final_All_Paths5{k,:,:,:,:,:}))
; 

final_Path_from_S1_to_Sk{k,6}=(cat(1,Final_All_Paths6{k,:,:,:,:,:,:}
)); 

    for i=1:6 

Test_fi_fro_S1_to_Sk{k,i}=size(final_Path_from_S1_to_Sk{k,i}); 
    end    
end 

%% Based on Source S1 
S1_All_Paths1={};S1_All_Paths2={};S1_All_Paths3={};S1_All_Paths4={};
S1_All_Paths5={};S1_All_Paths6={}; 

for i=1:Test_fi_fro_S1_to_Sk{1,1}(1,1) 
    S1_All_Paths1{1,i}(1,NumNodes)=0; 
    S1_All_Paths1{1,i}=final_Path_from_S1_to_Sk{1,1}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{1,2}(1,1) 
    S1_All_Paths2{1,i}(1,NumNodes)=0; 
    S1_All_Paths2{1,i}=final_Path_from_S1_to_Sk{1,2}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{1,3}(1,1) 
    S1_All_Paths3{1,i}(1,NumNodes)=0; 
    S1_All_Paths3{1,i}=final_Path_from_S1_to_Sk{1,3}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{1,4}(1,1) 
    S1_All_Paths4{1,i}(1,NumNodes)=0; 
    S1_All_Paths4{1,i}=final_Path_from_S1_to_Sk{1,4}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{1,5}(1,1) 
    S1_All_Paths5{1,i}(1,NumNodes)=0; 
    S1_All_Paths5{1,i}=final_Path_from_S1_to_Sk{1,5}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{1,6}(1,1) 
    S1_All_Paths6{1,i}(1,NumNodes)=0; 
    S1_All_Paths6{1,i}=final_Path_from_S1_to_Sk{1,6}(i,:); 
end 

%% Based on Source S2 
S2_All_Paths1={};S2_All_Paths2={};S2_All_Paths3={};S2_All_Paths4={};
S2_All_Paths5={};S2_All_Paths6={}; 
for i=1:Test_fi_fro_S1_to_Sk{2,1}(1,1) 
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    S2_All_Paths1{1,i}(1,NumNodes)=0; 
    S2_All_Paths1{1,i}=final_Path_from_S1_to_Sk{2,1}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{2,2}(1,1) 
    S2_All_Paths2{1,i}(1,NumNodes)=0; 
    S2_All_Paths2{1,i}=final_Path_from_S1_to_Sk{2,2}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{2,3}(1,1) 
    S2_All_Paths3{1,i}(1,NumNodes)=0; 
    S2_All_Paths3{1,i}=final_Path_from_S1_to_Sk{2,3}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{2,4}(1,1) 
    S2_All_Paths4{1,i}(1,NumNodes)=0; 
    S2_All_Paths4{1,i}=final_Path_from_S1_to_Sk{2,4}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{2,5}(1,1) 
    S2_All_Paths5{1,i}(1,NumNodes)=0; 
    S2_All_Paths5{1,i}=final_Path_from_S1_to_Sk{2,5}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{2,6}(1,1) 
    S2_All_Paths6{1,i}(1,NumNodes)=0; 
    S2_All_Paths6{1,i}=final_Path_from_S1_to_Sk{2,6}(i,:); 
end 

%% Based on Source S3 
S3_All_Paths1={};S3_All_Paths2={};S3_All_Paths3={};S3_All_Paths4={};
S3_All_Paths5={};S3_All_Paths6={}; 
for i=1:Test_fi_fro_S1_to_Sk{3,1}(1,1) 
    S3_All_Paths1{1,i}(1,NumNodes)=0; 
    S3_All_Paths1{1,i}=final_Path_from_S1_to_Sk{3,1}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{3,2}(1,1) 
    S3_All_Paths2{1,i}(1,NumNodes)=0; 
    S3_All_Paths2{1,i}=final_Path_from_S1_to_Sk{3,2}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{3,3}(1,1) 
    S3_All_Paths3{1,i}(1,NumNodes)=0; 
    S3_All_Paths3{1,i}=final_Path_from_S1_to_Sk{3,3}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{3,4}(1,1) 
    S3_All_Paths4{1,i}(1,NumNodes)=0; 
    S3_All_Paths4{1,i}=final_Path_from_S1_to_Sk{3,4}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{3,5}(1,1) 
    S3_All_Paths5{1,i}(1,NumNodes)=0; 
    S3_All_Paths5{1,i}=final_Path_from_S1_to_Sk{3,5}(i,:); 
end 
for i=1:Test_fi_fro_S1_to_Sk{3,6}(1,1) 
    S3_All_Paths6{1,i}(1,NumNodes)=0; 
    S3_All_Paths6{1,i}=final_Path_from_S1_to_Sk{3,6}(i,:); 
end 
%% 
Cat_S1_All_Paths=horzcat(S1_All_Paths1,S1_All_Paths2,S1_All_Paths3,S
1_All_Paths4,S1_All_Paths5,S1_All_Paths6); 
Cat_S2_All_Paths=horzcat(S2_All_Paths1,S2_All_Paths2,S2_All_Paths3,S
2_All_Paths4,S2_All_Paths5,S2_All_Paths6); 
Cat_S3_All_Paths=horzcat(S3_All_Paths1,S3_All_Paths2,S3_All_Paths3,S
3_All_Paths4,S3_All_Paths5,S3_All_Paths6); 
%% 
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size_Cat_S1_All=size(Cat_S1_All_Paths); 
Spar_Cat_S1_All_Paths = {}; 
size_Cat_S1_All_Paths={}; 
for i=1:size_Cat_S1_All(1,2) 
    size_Cat_S1_All_Paths{1,i}=size(Cat_S1_All_Paths{1,i}); 
    for i1=1:NumNodes 
        for j=1:size_Cat_S1_All_Paths{1,i}(1,2) 

Spar_Cat_S1_All_Paths{1,i}(1,i1)=0; 

Spar_Cat_S1_All_Paths{1,i}(1,j)=Cat_S1_All_Paths{1,i}(1,j); 

Spar_Cat_S1_All_Paths{1,i}(2,Cat_S1_All_Paths{1,i}(1,j))=1; 
        end 
    end 
end 
%% 
size_Cat_S2_All=size(Cat_S2_All_Paths); 
Spar_Cat_S2_All_Paths = {}; 
size_Cat_S2_All_Paths= {}; 
for i=1:size_Cat_S2_All(1,2) 
    size_Cat_S2_All_Paths{1,i}=size(Cat_S2_All_Paths{1,i}); 
    for i1=1:NumNodes 
        for j=1:size_Cat_S2_All_Paths{1,i}(1,2) 

Spar_Cat_S2_All_Paths{1,i}(1,i1)=0; 

Spar_Cat_S2_All_Paths{1,i}(1,j)=Cat_S2_All_Paths{1,i}(1,j); 

Spar_Cat_S2_All_Paths{1,i}(2,Cat_S2_All_Paths{1,i}(1,j))=1; 
        end 
    end 
end 
%% 
size_Cat_S3_All=size(Cat_S3_All_Paths); 
Spar_Cat_S3_All_Paths = {}; 
size_Cat_S3_All_Paths = {}; 
for i=1:size_Cat_S3_All(1,2) 
    size_Cat_S3_All_Paths{1,i}=size(Cat_S3_All_Paths{1,i}); 
    for i1=1:NumNodes 
        for j=1:size_Cat_S3_All_Paths{1,i}(1,2) 

Spar_Cat_S3_All_Paths{1,i}(1,i1)=0; 

Spar_Cat_S3_All_Paths{1,i}(1,j)=Cat_S3_All_Paths{1,i}(1,j); 

Spar_Cat_S3_All_Paths{1,i}(2,Cat_S3_All_Paths{1,i}(1,j))=1; 
        end 
    end 
end 
%% 
Comb_Cat_S1_S2_All={}; 
for i=1:size_Cat_S1_All(1,2) 
    for j=1:size_Cat_S2_All(1,2) 

Comb_Cat_S1_S2_All{i,j}(1,:)=Spar_Cat_S1_All_Paths{1,i}(1,:); 

Comb_Cat_S1_S2_All{i,j}(2,:)=Spar_Cat_S2_All_Paths{1,j}(1,:); 

Comb_Cat_S1_S2_All{i,j}(3,:)=Spar_Cat_S1_All_Paths{1,i}(2,:); 

Comb_Cat_S1_S2_All{i,j}(4,:)=Spar_Cat_S2_All_Paths{1,j}(2,:); 
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        Comb_Cat_S1_S2_All{i,j}(5,:)=Test_All_Net_Sink(1,:); 
    end 
end 

%% 
for i=1:size_Cat_S1_All(1,2) 
    for j=1:size_Cat_S2_All(1,2) 
        for j1=1:NumNodes 

if Comb_Cat_S1_S2_All{i,j}(3,j1)==1 && 
Comb_Cat_S1_S2_All{i,j}(4,j1)==1 && Comb_Cat_S1_S2_All{i,j}(5,j1)==1 

Comb_Cat_S1_S2_All{i,j}(6,j1)=1; 
end 

        end 
    end 
end 
%% 
size_Comb_Cat_S1_S2_All={}; 
for i=1:size_Cat_S1_All(1,2) 
    for j=1:size_Cat_S2_All(1,2) 
        Test_One_Zero_S1_S2(i,j)=0; 
        size_Comb_Cat_S1_S2_All{i,j}=size(Comb_Cat_S1_S2_All{i,j}); 
        if size_Comb_Cat_S1_S2_All{i,j}(1,1)==6 

Test_One_Zero_S1_S2(i,j)=1; 
        end 
    end 
end 
[Row1,Col1]=ind2sub(size(Test_One_Zero_S1_S2),find(Test_One_Zero_S1_
S2(:,:)==1)); 
sizRow1=size(Row1); 
%% 
Lineup_Comb_Cat_S1_S2={}; 
for i=1:sizRow1(1,1) %length(Row1) 
    Lineup_Comb_Cat_S1_S2{1,i}= Comb_Cat_S1_S2_All{Row1(i),Col1(i)}; 
End 

%Comb_Cat_S1_S2_All{1,1} 
%Lineup_Comb_Cat_S1_S2{1,1} 
%% 
size_Lineup_Comb_Cat_S1_S2=size(Lineup_Comb_Cat_S1_S2); 
Comb_Cat_S1_S2_S3_All={}; 
for i=1:size_Lineup_Comb_Cat_S1_S2(1,2) 
    for j=1:size_Cat_S3_All(1,2) 

        Comb_Cat_S1_S2_S3_All{i,j}=Lineup_Comb_Cat_S1_S2{1,i}([1 
2],:); 

Comb_Cat_S1_S2_S3_All{i,j}(3,:)=Spar_Cat_S3_All_Paths{1,j}(1,:); 

Comb_Cat_S1_S2_S3_All{i,j}(4,:)=Lineup_Comb_Cat_S1_S2{1,i}(3,:); 

Comb_Cat_S1_S2_S3_All{i,j}(5,:)=Lineup_Comb_Cat_S1_S2{1,i}(4,:); 

Comb_Cat_S1_S2_S3_All{i,j}(6,:)=Spar_Cat_S3_All_Paths{1,j}(2,:); 

Comb_Cat_S1_S2_S3_All{i,j}(7,:)=Lineup_Comb_Cat_S1_S2{1,i}(6,:); 
    end 
end 
%% 
for i=1:size_Lineup_Comb_Cat_S1_S2(1,2) 
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    for j=1:size_Cat_S3_All(1,2) 
        for j1=1:NumNodes 

if Comb_Cat_S1_S2_S3_All{i,j}(6,j1)==1 &&  
Comb_Cat_S1_S2_S3_All{i,j}(7,j1)==1 

Comb_Cat_S1_S2_S3_All{i,j}(8,j1)=1; 
end 

        end 
    end 
end 

%% 
size_Comb_Cat_S1_S2_S3_All={}; 
for i=1:size_Lineup_Comb_Cat_S1_S2(1,2) 
    for j=1:size_Cat_S3_All(1,2) 
        Test_One_Zero_S1_S2_S3(i,j)=0; 

size_Comb_Cat_S1_S2_S3_All{i,j}=size(Comb_Cat_S1_S2_S3_All{i,j}); 
        if size_Comb_Cat_S1_S2_S3_All{i,j}(1,1)==8 

Test_One_Zero_S1_S2_S3(i,j)=1; 
        end 

    end 
end 
[Row2,Col2]=ind2sub(size(Test_One_Zero_S1_S2_S3),find(Test_One_Zero_
S1_S2_S3(:,:)==1)); 
%% 
Lineup_Comb_Cat_S1_S2_S3={}; 
for i=1:length(Row2) 
    Lineup_Comb_Cat_S1_S2_S3{1,i}= 
Comb_Cat_S1_S2_S3_All{Row2(i),Col2(i)}; 
end 
%% Identify the sets of the Linear disjoint paths 
siz_Li_up_Cmb_Cat_S1_S2_S3=size(Lineup_Comb_Cat_S1_S2_S3); 
Test_One_Zero_Lin_S1_S2_S3={}; 
for i=1:siz_Li_up_Cmb_Cat_S1_S2_S3(1,2) 
    for j=1:NumNodes 
        Test_One_Zero_Lin_S1_S2_S3{1,i}(1,j)=0; 
        if Lineup_Comb_Cat_S1_S2_S3{1,i}(4,j)==1 && 
Lineup_Comb_Cat_S1_S2_S3{1,i}(5,j)==1 ||... 

Lineup_Comb_Cat_S1_S2_S3{1,i}(4,j)==1 && 
Lineup_Comb_Cat_S1_S2_S3{1,i}(6,j)==1 ||... 

Lineup_Comb_Cat_S1_S2_S3{1,i}(5,j)==1 && 
Lineup_Comb_Cat_S1_S2_S3{1,i}(6,j)==1 ||... 

Lineup_Comb_Cat_S1_S2_S3{1,i}(4,j)==1 && 
Lineup_Comb_Cat_S1_S2_S3{1,i}(5,j)==1 &&... 

Lineup_Comb_Cat_S1_S2_S3{1,i}(6,j)==1 
Test_One_Zero_Lin_S1_S2_S3{1,i}(1,j)=1; 

        end 

    end 
end 
%% Feasible set of Lineat Disjoint paths 
find_Test_one_zero_S1_S2_S3={}; 
for i=1:siz_Li_up_Cmb_Cat_S1_S2_S3(1,2) 
    Test_find_one_zero_S1_S2_S3(1,i)=0; 
    find_Test_one_zero_S1_S2_S3{1,i}= 
find(Test_One_Zero_Lin_S1_S2_S3{1,i}); 
    find_Test_one_zero_S1_S2_S3{1,i}(2,[1 
2])=size(find_Test_one_zero_S1_S2_S3{1,i}); 
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    if find_Test_one_zero_S1_S2_S3{1,i}(2,2)==1 
        Test_find_one_zero_S1_S2_S3(1,i)=1; 
    end 

end 

[Row3,Col3]=ind2sub(size(Test_find_one_zero_S1_S2_S3),find(Test_find
_one_zero_S1_S2_S3(:,:)==1)); 
%% Line up Set of Linear Disjoint path sets 
Lineup_All_Linr_Disjo_Path ={}; 
for i=1:length(Col3) 

Lineup_All_Linr_Disjo_Path{1,i}=Lineup_Comb_Cat_S1_S2_S3{1,Col3(i)}; 
end 
%% 
size_Lin_All_Linr_Disjo_Path=size(Lineup_All_Linr_Disjo_Path); 
Comb_Sink_Set_Lin_Dis={}; 
for i=1:length(All_NeWok_Sinks) 
    for j=1:size_Lin_All_Linr_Disjo_Path(1,2) 
        Comb_Sink_Set_Lin_Dis{i,j}([1 2 3 4],:)= 
Lineup_All_Linr_Disjo_Path{1,j}([1 2 3 7],:); 
        for j1=1:NumNodes 

Comb_Sink_Set_Lin_Dis{i,j}(5,All_NeWok_Sinks(i))=1; 
        end 
    end 
end 
%% Comparison 
Test_Comb_Sink_Set_Lin_Dis={}; 
find_Test_Comb_Sink_Set_Lin_Dis={}; 
for i=1:length(All_NeWok_Sinks) 
    for j=1:size_Lin_All_Linr_Disjo_Path(1,2) 
        Test_One_Zero_Comb_Sink_Set_Lin(i,j)=0; 
        for j1=1:NumNodes 

if Comb_Sink_Set_Lin_Dis{i,j}(4,j1)==1 && 
Comb_Sink_Set_Lin_Dis{i,j}(5,j1)==1 

Test_One_Zero_Comb_Sink_Set_Lin(i,j)=1; 

end 

Test_Comb_Sink_Set_Lin_Dis{1,i}(1,j)=Test_One_Zero_Comb_Sink_Set_Lin
(i,j); 

find_Test_Comb_Sink_Set_Lin_Dis{1,i}=find(Test_Comb_Sink_Set_Lin_Dis
{1,i}); 
        end 
    end 
end 
%% 
Size_fi_Tet__Lin_Dis=size(find_Test_Comb_Sink_Set_Lin_Dis); 
size_fin_Te_Comb_Sink_Lin_Dis={}; 
Set_Linr_Disjo_base_Sink={}; 
for i=1:Size_fi_Tet__Lin_Dis(1,2) 

size_fin_Te_Comb_Sink_Lin_Dis{1,i}=size(find_Test_Comb_Sink_Set_Lin_
Dis{1,i}); 
    for j=1:size_fin_Te_Comb_Sink_Lin_Dis{1,i}(1,2) 
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Set_Linr_Disjo_base_Sink{j,i}=Comb_Sink_Set_Lin_Dis{i,find_Test_Comb
_Sink_Set_Lin_Dis{1,i}(1,j)}([1 2 3],:); 
    end 
end 
toc %Measure performance using stopwatch timer 

6 MATLAB CODES FOR SELECT THE INITIAL POPULATION 

%% Implementation: select the Initial Population 

 %  Lalith P. Karunarathne, BEng(Hons) 
 %  University Of Warwick, Coventry 
% **************************************************** 
% Randomly select the initial population 

tic  %Measure performance using stopwatch timer 

Population_Size=100; 
value_Set={}; 
Perm_Matrix=[]; 
for i=1:Size_fi_Tet__Lin_Dis(1,2) 
    for j=1:Population_Size 

value_Set{j,i}=randperm(size_fin_Te_Comb_Sink_Lin_Dis{1,i}(1,2)); 
        Perm_Matrix(j,i)=value_Set{j,i}(1,1); 
    end 
end 
Population={}; 
for i=1:Size_fi_Tet__Lin_Dis(1,2) 
    for j=1:Population_Size 

Population{j,i}=Set_Linr_Disjo_base_Sink{Perm_Matrix(j,i),i}; 
    end 
end 

toc %Measure performance using stopwatch timer 

7 MATLAB CODES FOR IMPLEMENT THE CROSSOVER AND 

MUTATION OPERATORS IN MULTI OBJECTIVE – GA 

(MOGA) 

%%******************************************************************
******** 
%% Implementation: Multi - Objective GA 
%  Lalith P. Karunarathne, BEng(Hons) 
%  University Of Warwick, Coventry 
%************************************************** 

%% Multi - Objective GA (Crossover & Mutation operation) 
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tic %Measure performance using stopwatch timer 
siz_Popula=size(Population); 
NubOfGen=2; 
Crosoverd_Popu={}; 
Previous_Genran={}; 
NewGeneration={}; 
CrossoverNewGen={}; 
Muta_Crosoverd_Popu={}; 

for ig =1:NubOfGen 

    if ig==1 
        Previous_Genran=Population; 

run('C:\Users\LALITHK\Documents\MATLAB\First_ReseEvolve\GFitnessEvol
ve') 

    else 
        %Crossover>>>> 

        for ip =1:siz_Popula(1,1) 
for jp = 1:siz_Popula(1,2) 

if ip <= (siz_Popula(1,1)/2) 
Crosoverd_Popu{2*ip-1,jp}= NewGeneration{(2*ip),jp}; 
Crosoverd_Popu{2*ip-1,5}= NewGeneration{(2*ip-1),5}; 
Crosoverd_Popu{2*ip-1,6}= NewGeneration{(2*ip-1),6}; 

Crosoverd_Popu{2*ip,jp}= Crosoverd_Popu{(2*ip-
1),jp}; 

Crosoverd_Popu{2*ip,5}= Crosoverd_Popu{(2*ip),5}; 
Crosoverd_Popu{2*ip,6}= Crosoverd_Popu{(2*ip),6}; 
end 

      end 
        end 

%Mutation>>>>> 
for ip =1:siz_Popula(1,1)*2 

for jp = 1:siz_Popula(1,2) 
Muta_Crosoverd_Popu{ip,jp}= Crosoverd_Popu{ip,jp}; 

ra_Pernum = randperm(siz_Popula(1,2)); 
ra_Pernumx = randperm(siz_Popula(1,1)); 
ra_ Pernumy = randperm(length(All_NeWok_Sources)); 

Muta_Crosoverd_Popu{ip, ra_Pernum }( ra_ Pernumy,:)= ... 
Crosoverd_Popu{ra_Pernumx, ra_Pernum}( ra_ Pernumy,:); 

end 
      end 

        if ig >1 
Previous_Genran= Muta_Crosoverd_Popu;

run('C:\Users\LALITHK\Documents\MATLAB\First_ReseEvolve\GFitnessEvol
ve') 
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        end 
    end 

end 

8 MATLAB CODES FOR IMPLEMENT THE SELECTOR 

OPERATOR, FITNESS ASSIGNMENT AND INDIVIDUAL 

EVALUATION FOR  MULTI – OBJECTIVE GA (MOGA) 

%*******************************************************************
***** 
%% Implementation: Fitness assignment and individual evaluation for    
Multi - Objective GA 
%  Lalith P. Karunarathne, BEng(Hons) 
%  University Of Warwick, Coventry 
%*******************************************************************
*** 

%% Fitness Evoluton for Generation 
%Previous_Genran 

Num_Source=length(All_NeWok_Sources); 
Trans_Population_fist={}; 
Trans_Pop_link_fist={}; 
Dub_Num_Source=2*Num_Source; 

for i=1:Size_fi_Tet__Lin_Dis(1,2) %<-Number of sinks 
    for j=1:Population_Size 
        for i1=1:NumNodes 

for j1=1:Num_Source 

Trans_Population_fist{j,i}(i1,j1)=Previous_Genran{j,i}(j1,i1); 
end 

        end 
    end 
end 
odd_Num=(1:2:Dub_Num_Source); 
even_Num=(2:2:Dub_Num_Source); 
Row_Index=(2:NumNodes); 
Fina_Trans_Pop_link_fist={}; 

for i=1:Size_fi_Tet__Lin_Dis(1,2) 
    for j=1:Population_Size 
        for i1=1:length(Row_Index) 

for j1=1:length(odd_Num) 
Trans_Pop_link_fist{j,i}(i1,odd_Num(j1))= 

Trans_Population_fist{j,i}(i1,j1); 
Trans_Pop_link_fist{j,i}(i1,even_Num(j1))= 

Trans_Population_fist{j,i}(Row_Index(i1),j1); 
if Trans_Pop_link_fist{j,i}(i1,odd_Num(j1))~=0 && 

Trans_Pop_link_fist{j,i}(i1,even_Num(j1))~=0 
Fina_Trans_Pop_link_fist{j,i}(i1,odd_Num(j1))= 

Trans_Pop_link_fist{j,i}(i1,odd_Num(j1)); 
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Fina_Trans_Pop_link_fist{j,i}(i1,even_Num(j1))= 
Trans_Pop_link_fist{j,i}(i1,even_Num(j1)); 

end 
end 

        end 
    end 
end 
%Previous_Genran{1,1} 
%NewGeneration=Previous_Genran; 
%%  Fina_Trans_Pop_link_fist{j,i} convert to spares matrix 
% Fitness assignment 
Vercat_Fina_Trans_Pop_link_fist={}; 
One_zero_Tran_Pop_fist={}; 
size_Fina_Trans_Pop_link_fist = size(Fina_Trans_Pop_link_fist); 
size_Vercat_Fina_Trans_fist={}; 
Numof_links_individ=[]; 
Weight_Indivi={}; 
Weightof_links_individ=[]; 

for i=1:size_Fina_Trans_Pop_link_fist(1,1) 
    Vercat_Fina_Trans_Pop_link_fist{i,1}= 
vertcat(Fina_Trans_Pop_link_fist{i,:}); 

size_Vercat_Fina_Trans_fist{i,1}=size(Vercat_Fina_Trans_Pop_link_fis
t{i,1}); 
    for i1 =1:NumNodes 
        for j1 =1:NumNodes 

One_zero_Tran_Pop_fist{i,1}(i1,j1)=0; 
        end 
    end 
    for i2 =1:size_Vercat_Fina_Trans_fist{i,1}(1,1) 
        for j2 =1:length(odd_Num) 

if 
Vercat_Fina_Trans_Pop_link_fist{i,1}(i2,odd_Num(j2))~=0 && 
Vercat_Fina_Trans_Pop_link_fist{i,1}(i2,even_Num(j2))~=0 

One_zero_Tran_Pop_fist{i,1}(Vercat_Fina_Trans_Pop_link_fist{i,1}(i2,
odd_Num(j2)),... 

Vercat_Fina_Trans_Pop_link_fist{i,1}(i2,even_Num(j2)))=1; 
end 

        end 
    end 
    Numof_links_individ(i,1)=sum(sum(One_zero_Tran_Pop_fist{i,1})); 

    for i1 =1:NumNodes 
        for j1 =1:NumNodes 

if One_zero_Tran_Pop_fist{i,1}(i1,j1)==1 && 
Weight_Mtx(i1,j1)~=0 

Weight_Indivi{i,1}(i1,j1)=Weight_Mtx(i1,j1); 
end 

        end 
    end 
   Weightof_links_individ(i,1)=sum(sum(Weight_Indivi{i,1})); 

end 

min_Numof_links_indi=min(Numof_links_individ); 
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min_Weightof_links_ind=min(Weightof_links_individ); 

%One_zero_Tran_Pop_fist{1,1} 
%Weight_Indivi{1,1} 
%Weightof_links_individ(1,1) 
%Numof_links_individ(2,1) 

One_Zero_Coding_Colm_fist={}; 
for i=1:size_Fina_Trans_Pop_link_fist(1,1) 
    for i1 =1:NumNodes 
        for j1 =1:NumNodes 

One_Zero_Coding_Colm_fist{i,1}(i1,j1)=0; 
        end 
    end 
    for j2=1:length(All_Coding_Node) 
        One_Zero_Coding_Colm_fist{i,1}(:,All_Coding_Node(j2))= 
One_zero_Tran_Pop_fist{i,1}(:,All_Coding_Node(j2)); 
    end 
end 
%One_Zero_Coding_Colm_fist{1,1} 
%% Individual evaluation 
size_Rowx ={}; 
size_Rowy ={}; 
find_size_Rowx={}; 
Num_Inlink_Coin_pt={}; 
Codin_Pt={}; 
Num_Inlink_each_Indi={}; 
Test_One_zero_size_Rowx={}; 
Average_inlinks_per_CodingPt=[]; 
plot_X=[]; 
plot_Y=[]; 
Presen_Gen=[]; 

%Pareto Fronts 
% Objective 1 
ParetoFront_CodinPts=2; % Optimal Pareto for Objective 1 

% Objective 2 
ParetoFront_Numof_links=min_Numof_links_indi; % Optimal Pareto for 
Objective 2 

% Objective 3 
ParetoFrontWeightof_links=min_Weightof_links_ind; % Optimal Pareto 
for Objective 3 

for i=1:size_Fina_Trans_Pop_link_fist(1,1) 
    for j=1:NumNodes 
        [Rowx,Colmx]=find(One_Zero_Coding_Colm_fist{i,1}(:,j)); 
        size_Rowx{i,1}(j,[1 2])=size(Rowx); 
        if size_Rowx{i,1}(j,1)<2 

size_Rowx{i,1}(j,1)=0; 
        end 
        % coding points index 
        Codin_Pt{i,1}=find(size_Rowx{i,1}(:,1)); 

        Test_One_zero_size_Rowx{i,1}(1,j)=size_Rowx{i,1}(j,1); 
        if Test_One_zero_size_Rowx{i,1}(1,j)~=0 

Test_One_zero_size_Rowx{i,1}(1,j)=1; 
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        end 

        [Rowy,Colmy]=find(size_Rowx{i,1}(:,1)); 
        size_Rowy{i,1}(1,[1 2])=size(Rowy); 
    end 

    plot_X(i,1)=size_Rowy{i,1}(1,1); % Objective -1, 
Number of coding point 
    Presen_Gen(i,1)=size_Rowy{i,1}(1,1); 

    % Good individual - objective 1 
    if (size_Rowy{i,1}(1,1)-ParetoFront_CodinPts)>=0 && 
(size_Rowy{i,1}(1,1)-ParetoFront_CodinPts)<=1 
        plot_X(i,1)=size_Rowy{i,1}(1,1); %-ParetoFront_CodinPts; 

    else 
        plot_X(i,1)=0; 
    end 

    % Bad individual - objective 1 
    if  (size_Rowy{i,1}(1,1)-ParetoFront_CodinPts)>2 

      Bad_plot_X(i,1)=size_Rowy{i,1}(1,1); 
    else 
        Bad_plot_X(i,1)=0; 
    end 

    % Good Individual - objective 2 
    if (Numof_links_individ(i,1)-ParetoFront_Numof_links)>=0 &&... 

(Numof_links_individ(i,1)-ParetoFront_Numof_links)<=1 
        plot_Y(i,1)=Numof_links_individ(i,1); %-
ParetoFront_Numof_links; 
    else 
        plot_Y(i,1)=0.0000; 
    end 

    % Bad Individual - objective 2 
    if  (Numof_links_individ(i,1)-ParetoFront_Numof_links)>2 
        Bad_plot_Y(i,1)=Numof_links_individ(i,1); 
    else 
        Bad_plot_Y(i,1)=0.000; 
    end 

     % Good Individual - objective 3 
    if (Weightof_links_individ(i,1)-min_Weightof_links_ind)>=0 &&... 

(Weightof_links_individ(i,1)-min_Weightof_links_ind)<=1 
        plot_Z(i,1)=Weightof_links_individ(i,1); %- 
min_Weightof_links_ind; 
    else 
        plot_Z(i,1)=0.0000; 
    end 

    % Bad Individual - objective 3 
    if  (Weightof_links_individ(i,1)-min_Weightof_links_ind)>2 
        Bad_plot_Z(i,1)=Weightof_links_individ(i,1); 
    else 
        Bad_plot_Z(i,1)=0.000; 
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    end 
end 

%% 
%Vercat_Fina_Trans_Pop_link{1,1} 
%Test_One_zero_Codin_Pt{[1 2],1} 

size_Codin_Pt=size(Codin_Pt); 
Test_size_Codin_Pt={}; 
Test_One_zero_Codin_Pt={}; 
for i=1:size_Codin_Pt(1,1) 
    for j=1:NumNodes 
        Test_One_zero_Codin_Pt{i,1}(1,j)=0; 
    end 
    Test_size_Codin_Pt{i,1}(1,[1 2])=size(Codin_Pt{i,1}); 
    for i1=1:Test_size_Codin_Pt{i,1}(1,1) 
        Test_One_zero_Codin_Pt{i,1}(1,Codin_Pt{i,1}(i1,1))=1; 

    end 
end 

size_Previous_Genran=size(Previous_Genran); 
size_Cell_Previous_Genran=size(Previous_Genran{1,1}); 
Test_MatrPrevious_Genran=[]; 
%VerCat_Gen1_Gen2{1,2} 
TestPrevious_Genran={}; 
TestPrevious_Cells={}; 
conca_TestPrevious_Cells={}; 
count_conca_Test=[]; 
count_Test_One_zero_Codin=[]; 
Coding_Resou_Shar_ratio=[]; 

for i=1:size_Previous_Genran(1,1) 
    for j=1:size_Previous_Genran(1,2) 
        for i1=1:size_Cell_Previous_Genran(1,1) 

for j1=1:size_Cell_Previous_Genran(1,2) 
TestPrevious_Cells{i,j}(1,j1)=0; 
if Previous_Genran{i,j}(i1,j1)~=0 

TestPrevious_Genran{i,j}(i1,Previous_Genran{i,j}(i1,j1))=1; 
end 

TestPrevious_Genran{i,j}(4,j1)=Test_One_zero_Codin_Pt{i,1}(1,j1); 
if TestPrevious_Genran{i,j}(1,j1)==1 && 

TestPrevious_Genran{i,j}(4,j1)==1||... 
TestPrevious_Genran{i,j}(2,j1)==1 && 

TestPrevious_Genran{i,j}(4,j1)==1||... 
TestPrevious_Genran{i,j}(3,j1)==1 && 

TestPrevious_Genran{i,j}(4,j1)==1 

TestPrevious_Cells{i,j}(1,j1)=1; 

end 
%TestPrevious_Cells{i,j}(1,j1) = 

TestPrevious_Genran{i,j}(5,j1); 

conca_TestPrevious_Cells{i,1}(j,j1)=TestPrevious_Cells{i,j}(1,j1); 
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count_conca_Test(i,1)=nnz(conca_TestPrevious_Cells{i,1}); 

count_Test_One_zero_Codin(i,1)=nnz(Test_One_zero_Codin_Pt{i,1}); 

end 
        end  
    end   
end 

%% 3D plot for fitness diagram 
for i=1:length(plot_Y) 

    if plot_X(i,1)~=0 && plot_Y(i,1)~=0 && plot_Z(i,1)~=0 
        subplot(3,2,1);plot3(plot_X(i),plot_Y(i),plot_Z(i,1),'b*'); 

    end 

    if Bad_plot_X(i,1)~=0 && Bad_plot_Y(i,1)~=0 && 
Bad_plot_Z(i,1)~=0 

subplot(3,2,2);plot3(Bad_plot_X(i),Bad_plot_Y(i),Bad_plot_Z(i,1),'bo
'); 

    end 

    clear on 
    grid on 
    box on 
    hold on 

end 

%% 
Feasib_Individual =[]; 
for i=1:length(plot_Y) 
    if plot_X(i,1)~=0 && plot_Y(i,1)~=0 && plot_Z(i,1)~=0 
        Feasib_Individual(i,1)=1; 
    else 
        Feasib_Individual(i,1)=0; 
    end 
end 

fin_Feasib_Individual=find(Feasib_Individual); 
siz_fin_Feasib_Indiv=size(fin_Feasib_Individual); 
if siz_fin_Feasib_Indiv(1,1)>=4 
    fprintf('Feasible Individual  =',toc) 
end 

Testgood_indi=[]; 
Testbad_indi=[]; 
for i=1:length(plot_Y) 
    if plot_X(i,1)~=0 && plot_Y(i,1)~=0 && plot_Z(i,1)~=0 
        Testgood_indi(i,1)=1; 
    else 
        Testgood_indi(i,1)=0; 
    end 
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    if Bad_plot_X(i,1)~=0 && Bad_plot_Y(i,1)~=0 && 
Bad_plot_Z(i,1)~=0 
        Testbad_indi(i,1)=1; 
    else 
        Testbad_indi(i,1)=0; 
    end 

end 
find_Testgood_indi=find(Testgood_indi); 
siz_fin_Tesgod=size(find_Testgood_indi); 
find_Testbad_indi=find(Testbad_indi); 
siz_fin_Testbad=size(find_Testbad_indi); 

siz_Previous_Genran = size(Previous_Genran); 
Ran_siz_Previous=randperm(siz_Previous_Genran(1,1)); 

Persn_siz_Previous=siz_Previous_Genran(1,1)*0.05; 
for i = 1:siz_Previous_Genran(1,1) 
    for j = 1:siz_Previous_Genran(1,2) 
        if siz_fin_Tesgod(1,1)>=Persn_siz_Previous 

for i1=1:Persn_siz_Previous 
Previous_Genran{find_Testbad_indi(i1),j}= 

Previous_Genran{find_Testgood_indi(i1),j}; 
end 

        else 
for i2=1:siz_fin_Tesgod(1,1) 

Previous_Genran{find_Testbad_indi(i2),j}= 
Previous_Genran{find_Testgood_indi(i2),j}; 

end 

        end 
    end 
end 

for i = 1:siz_Previous_Genran(1,1) 
    for j = 1:siz_Previous_Genran(1,2) 
        NewGeneration{i,j}=Previous_Genran{Ran_siz_Previous(i),j}; 

    end 
end 
NewGeneration; 
toc; %Measure performance using stopwatch timer 
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9 MATLAB CODES FOR IMPLEMENT THE CROSSOVER AND 

MUTATION OPERATORS IN VECTOR EVELUATED – GA 

(VEGA) 

%%******************************************************************
***** 
%% Implementation: Vector - Evaluated GA 
 %  Lalith P. Karunarathne, BEng(Hons) 
 %  University Of Warwick, Coventry 
%%******************************************************************
*****  
%% Vector - Evaluated GA (Crossover & Mutation operation) 

tic %Measure performance using stopwatch timer 
siz_Popula_VecEv=size(Population); 
NubOfGen_VecEv=15; 
Crosoverd_Popu_VecEv={}; 
Previous_Genran_VecEv={}; 
NewGeneration_VecEv={}; 
CrossoverNewGen_VecEv={}; 

for igv =1:NubOfGen_VecEv 

    if igv==1 
    Previous_Genran_VecEv=Population;  % same population 

run('C:\Users\LALITHK\Documents\MATLAB\First_ReseEvolve\FitnessEvolu
Vector') %Vector Evaluated GA 

    else 
    %NewGeneration; 

    for ip =1:siz_Popula_VecEv(1,1) 
        for jp = 1:siz_Popula_VecEv(1,2) 

if ip <= (siz_Popula_VecEv(1,1)/2) 
Crosoverd_Popu_VecEv{2*ip-

1,jp}=NewGeneration_VecEv{(2*ip),jp}; 
Crosoverd_Popu_VecEv{2*ip-1,5}= 

NewGeneration_VecEv{(2*ip-1),5}; 
Crosoverd_Popu_VecEv{2*ip-1,6}= 

NewGeneration_VecEv{(2*ip-1),6}; 

        Crosoverd_Popu_VecEv {2*ip,jp}= Crosoverd_Popu_VecEv {(2*ip-
1),jp}; 
        Crosoverd_Popu_VecEv {2*ip,5}= Crosoverd_Popu_VecEv 
{(2*ip),5}; 
        Crosoverd_Popu_VecEv {2*ip,6}= Crosoverd_Popu_VecEv 
{(2*ip),6}; 

end 
        end 
    end 

%Mutation>>>>> 
for ip =1: siz_Popula_VecEv(1,1)*2 

for jp = 1: siz_Popula_VecEv(1,2) 
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Muta_Crosoverd_Popu_VecEv {ip,jp}= Crosoverd_Popu_VecEv 
{ip,jp}; 

ra_Pernum_VecEv = randperm(siz_Popula_VecEv (1,2)); 
ra_Pernum_VecEvx = randperm(siz_Popula_VecEv (1,1)); 
ra_ Pernum_VecEvy = randperm(length(All_NeWok_Sources)); 

Muta_Crosoverd_Popu_VecEv{ip, ra_Pernum_VecEv }(ra_ 
Pernum_VecEvy,:)= ... Crosoverd_Popu_VecEv {ra_Pernum_VecEv x, 
ra_Pernum_VecEv}...     ( ra_ Pernum_VecEvy,:); 

end 
      end 

    if igv >1 
        Previous_Genran_VecEv= Muta_Crosoverd_Popu_VecEv; 

run('C:\Users\LALITHK\Documents\MATLAB\First_ReseEvolve\FitnessEvolu
Vector) 

    end 
    end 

end 

10 MATLAB CODES FOR IMPLEMENT THE SELECTOR 

OPERATOR, FITNESS ASSIGNMENT AND INDIVIDUAL 

EVALUATION FOR  VECTOR EVALUATED - GA (VEGA) 

%*******************************************************************
***** 
%% Vector-Evaluated GA   
%Fitness Evolution for Generation 
%  Lalith P. Karunarathne, BEng(Hons) 
 %  University Of Warwick, Coventry 
%%******************************************************************
***** 
%Previous_Genran 

Num_Source=length(All_NeWok_Sources); 
Trans_Population_VecEv={}; 
Trans_Pop_link_VecEv={}; 
Dub_Num_Source=2*Num_Source; 

for i=1:Size_fi_Tet__Lin_Dis(1,2) %<-Number of sinks 
    for j=1:Population_Size 
        for i1=1:NumNodes 

for j1=1:Num_Source 

Trans_Population_VecEv{j,i}(i1,j1)=Previous_Genran_VecEv{j,i}(j1,i1)
;  

end 
        end    
    end 
end 
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odd_Num=(1:2:Dub_Num_Source); 
even_Num=(2:2:Dub_Num_Source); 
Row_Index=(2:NumNodes); 
Fina_Trans_Pop_link_fist={}; 

for i=1:Size_fi_Tet__Lin_Dis(1,2) 
    for j=1:Population_Size 
        for i1=1:length(Row_Index) 

for j1=1:length(odd_Num) 
Trans_Pop_link_VecEv{j,i}(i1,odd_Num(j1))= 

Trans_Population_VecEv{j,i}(i1,j1); 
Trans_Pop_link_VecEv{j,i}(i1,even_Num(j1))= 

Trans_Population_VecEv{j,i}(Row_Index(i1),j1); 
if Trans_Pop_link_VecEv{j,i}(i1,odd_Num(j1))~=0 && 

Trans_Pop_link_VecEv{j,i}(i1,even_Num(j1))~=0 

Fina_Trans_Pop_link_VecEv{j,i}(i1,odd_Num(j1))= 
Trans_Pop_link_VecEv{j,i}(i1,odd_Num(j1)); 

Fina_Trans_Pop_link_VecEv{j,i}(i1,even_Num(j1))= 
Trans_Pop_link_VecEv{j,i}(i1,even_Num(j1)); 

end 
end 

        end    
    end 
end 

%Previous_Genran{1,1} 
%NewGeneration=Previous_Genran; 
%%  Fina_Trans_Pop_link_fist{j,i} convert to spares matrix 
Vercat_Fina_Trans_Pop_link_VecEv={}; 
One_zero_Tran_Pop_VecEv={}; 
size_Fina_Trans_Pop_link_VecEv = size(Fina_Trans_Pop_link_VecEv); 
size_Vercat_Fina_Trans_VecEv={}; 
Numof_links_individ_VecEv=[]; 
Weight_Indivi_VecEv={}; 
Weightof_links_individ_VecEv=[]; 

for i=1:size_Fina_Trans_Pop_link_VecEv(1,1) 
      Vercat_Fina_Trans_Pop_link_VecEv{i,1}= 
vertcat(Fina_Trans_Pop_link_VecEv{i,:}); 

size_Vercat_Fina_Trans_VecEv{i,1}=size(Vercat_Fina_Trans_Pop_link_Ve
cEv{i,1}); 
      for i1 =1:NumNodes 

for j1 =1:NumNodes 
One_zero_Tran_Pop_VecEv{i,1}(i1,j1)=0; 

end 
      end 
      for i2 =1:size_Vercat_Fina_Trans_VecEv{i,1}(1,1) 

for j2 =1:length(odd_Num) 
if 

Vercat_Fina_Trans_Pop_link_VecEv{i,1}(i2,odd_Num(j2))~=0 && 
Vercat_Fina_Trans_Pop_link_VecEv{i,1}(i2,even_Num(j2))~=0  

One_zero_Tran_Pop_VecEv{i,1}(Vercat_Fina_Trans_Pop_link_VecEv{i,1}(i
2,odd_Num(j2)),... 

Vercat_Fina_Trans_Pop_link_VecEv{i,1}(i2,even_Num(j2)))=1; 
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end 
       end 

      end 

Numof_links_individ_VecEv(i,1)=sum(sum(One_zero_Tran_Pop_VecEv{i,1})
); 

    for i1 =1:NumNodes 
        for j1 =1:NumNodes 

if One_zero_Tran_Pop_VecEv{i,1}(i1,j1)==1 && 
Weight_Mtx(i1,j1)~=0 

Weight_Indivi_VecEv{i,1}(i1,j1)=Weight_Mtx(i1,j1); 
end 

        end 
    end 

Weightof_links_individ_VecEv(i,1)=sum(sum(Weight_Indivi_VecEv{i,1}))
; 
end 

min_Numof_links_indi_VecEv=min(Numof_links_individ_VecEv); 
min_Weightof_links_ind_VecEv=min(Weightof_links_individ_VecEv); 

One_Zero_Coding_Colm_VecEv={}; 
for i=1:size_Fina_Trans_Pop_link_VecEv(1,1) 
   for i1 =1:NumNodes 
      for j1 =1:NumNodes 

One_Zero_Coding_Colm_VecEv{i,1}(i1,j1)=0; 
      end 
   end 
for j2=1:length(All_Coding_Node) 
     One_Zero_Coding_Colm_VecEv{i,1}(:,All_Coding_Node(j2))= 
One_zero_Tran_Pop_VecEv{i,1}(:,All_Coding_Node(j2)); 
end    
end 
%One_Zero_Coding_Colm_fist{1,1} 
%%  
size_Rowx_VecEv ={}; 
size_Rowy_VecEv ={}; 
find_size_Rowx_VecEv={}; 
Num_Inlink_Coin_pt_VecEv={}; 
Codin_Pt_VecEv={}; 
Num_Inlink_each_Indi_VecEv={}; 
Test_One_zero_size_Rowx_VecEv={}; 
Average_inlinks_per_CodingPt_VecEv=[]; 
plot_X_VecEv=[]; 
plot_Y_VecEv=[]; 

%Pareto Fronts 
% Object 1 
ParetoFront_CodinPts_VecEv=2; 
% Object 2 
ParetoFront_Numof_links_indi_VecEv=min_Numof_links_indi_VecEv; 
%Object 3 
ParetoFront_Weightof_links_ind_VecEv=min_Weightof_links_ind_VecEv; 
%ParetoFront_OneCP_perSink; 

for i=1:size_Fina_Trans_Pop_link_VecEv(1,1) 
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    for j=1:NumNodes 

[Rowx_VecEv,Colmx_VecEv]=find(One_Zero_Coding_Colm_VecEv{i,1}(:,j)); 
       size_Rowx_VecEv{i,1}(j,[1 2])=size(Rowx_VecEv); 
       if size_Rowx_VecEv{i,1}(j,1)<2 

size_Rowx_VecEv{i,1}(j,1)=0; 
       end 
       %All inlinks at all coding points in each individual 

%Num_Inlink_each_Indi_VecEv{i,1}=sum(size_Rowx_VecEv{i,1}(:,1)); 
       % coding points index 
       Codin_Pt_VecEv{i,1}=find(size_Rowx_VecEv{i,1}(:,1)); 

Test_One_zero_size_Rowx_VecEv{i,1}(1,j)=size_Rowx_VecEv{i,1}(j,1); 
       if Test_One_zero_size_Rowx_VecEv{i,1}(1,j)~=0 

Test_One_zero_size_Rowx_VecEv{i,1}(1,j)=1; 
       end 

Num_Inlink_Coin_pt_VecEv{i,1}(1,1)=sum(size_Rowx_VecEv{i,1}(:,1)); 
       [Rowy_VecEv,Colmy_VecEv]=find(size_Rowx_VecEv{i,1}(:,1)); 
       size_Rowy_VecEv{i,1}(1,[1 2])=size(Rowy_VecEv); 
    end 
    % Average inlinks per coding points for each individual 

%Average_inlinks_per_CodingPt_VecEv(i,1)=Num_Inlink_each_Indi_VecEv{
i,1}(1,1)/size_Rowy_VecEv{i,1}(1,1); 

    plot_X_VecEv(i,1)=size_Rowy_VecEv{i,1}(1,1); % Objective -1, 
Number of coding point 

    plot_Y_VecEv(i,1)=Numof_links_individ_VecEv(i,1); 

    % good individual - objective 1 
    if (size_Rowy_VecEv{i,1}(1,1)-ParetoFront_CodinPts_VecEv)>=0 && 
(size_Rowy_VecEv{i,1}(1,1)-ParetoFront_CodinPts_VecEv)<=2 
        plot_X_VecEv(i,1)=size_Rowy_VecEv{i,1}(1,1); 
    else 
        plot_X_VecEv(i,1)=0; 
    end 

    % Good Individual - objective 2 
    if (Numof_links_individ_VecEv(i,1)-
ParetoFront_Numof_links_indi_VecEv)>=0 &&... 

(Numof_links_individ_VecEv(i,1)-
ParetoFront_Numof_links_indi_VecEv)<=2 
        plot_Y_VecEv(i,1)=Numof_links_individ_VecEv(i,1); 
    else 
        plot_Y_VecEv(i,1)=0; 
    end 

    % Good Individual - objective 3 
    if (Weightof_links_individ_VecEv(i,1)-
ParetoFront_Weightof_links_ind_VecEv)>=0 &&... 

(Weightof_links_individ_VecEv(i,1)-
ParetoFront_Weightof_links_ind_VecEv)<=2 

192 



Appendix B  ...

        plot_Z_VecEv(i,1)=Weightof_links_individ_VecEv(i,1); 
    else 
        plot_Z_VecEv(i,1)=0; 
    end 

end 

%% Feasibility test "All sinks have been connected through at least 
one 
% coding node" 
% convert "VerCat_Gen1_Gen2" into One_Zero_Test cell 
%size_Rowy{50,1} 
size_Codin_Pt_VecEv=size(Codin_Pt_VecEv); 
Test_size_Codin_Pt_VecEv={}; 
Test_One_zero_Codin_Pt_VecEv={}; 
for i=1:size_Codin_Pt_VecEv(1,1) 
    for j=1:NumNodes 
        Test_One_zero_Codin_Pt_VecEv{i,1}(1,j)=0; 
    end 
   Test_size_Codin_Pt_VecEv{i,1}(1,[1 2])=size(Codin_Pt_VecEv{i,1}); 
   for i1=1:Test_size_Codin_Pt_VecEv{i,1}(1,1) 

Test_One_zero_Codin_Pt_VecEv{i,1}(1,Codin_Pt_VecEv{i,1}(i1,1))=1; 

   end  
end 
%Vercat_Fina_Trans_Pop_link{1,1} 
%Test_One_zero_Codin_Pt{[1 2],1} 

size_Previous_Genran_VecEv=size(Previous_Genran_VecEv); 
size_Cell_Previous_Genran_VecEv=size(Previous_Genran_VecEv{1,1}); 
Test_MatrPrevious_Genran_VecEv=[]; 
%VerCat_Gen1_Gen2{1,2} 
TestPrevious_Genran_VecEv={}; 
 TestPrevious_Cells_VecEv={}; 
 conca_TestPrevious_Cells_VecEv={}; 
 count_conca_Test_VecEv=[]; 
 count_Test_One_zero_Codin_VecEv=[]; 
Coding_Resou_Shar_ratio_VecEv=[]; 

for i=1:size_Previous_Genran_VecEv(1,1) 
    for j=1:size_Previous_Genran_VecEv(1,2) 
        for i1=1:size_Cell_Previous_Genran_VecEv(1,1) 

for j1=1:size_Cell_Previous_Genran_VecEv(1,2) 
TestPrevious_Cells_VecEv{i,j}(1,j1)=0; 

if Previous_Genran_VecEv{i,j}(i1,j1)~=0 

TestPrevious_Genran_VecEv{i,j}(i1,Previous_Genran_VecEv{i,j}(i1,j1))
=1; 

end 

TestPrevious_Genran_VecEv{i,j}(4,j1)=Test_One_zero_Codin_Pt_VecEv{i,
1}(1,j1); 

if TestPrevious_Genran_VecEv{i,j}(1,j1)==1 && 
TestPrevious_Genran_VecEv{i,j}(4,j1)==1||... 

TestPrevious_Genran_VecEv{i,j}(2,j1)==1 && 
TestPrevious_Genran_VecEv{i,j}(4,j1)==1||... 
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TestPrevious_Genran_VecEv{i,j}(3,j1)==1 && 
TestPrevious_Genran_VecEv{i,j}(4,j1)==1 

TestPrevious_Cells_VecEv{i,j}(1,j1)=1; 

end 
%TestPrevious_Cells{i,j}(1,j1) = 

TestPrevious_Genran{i,j}(5,j1); 

conca_TestPrevious_Cells_VecEv{i,1}(j,j1)=TestPrevious_Cells_VecEv{i
,j}(1,1); 

count_conca_Test_VecEv(i,1)=nnz(conca_TestPrevious_Cells_VecEv{i,1})
; 

count_Test_One_zero_Codin_VecEv(i,1)=nnz(Test_One_zero_Codin_Pt_VecE
v{i,1}; 

end 
        end  
    end  
end 

for i=1:length(plot_Y_VecEv) 
    if plot_X_VecEv(i,1)~=0  
    subplot(3,2,1);plot(i,plot_X_VecEv(i),'ro');  
    end 

    if plot_Y_VecEv(i,1)~=0  
    subplot(3,2,2);plot(i,plot_Y_VecEv(i,1),'g*');  
    end 

    if plot_Z_VecEv(i,1)~=0 
    subplot(3,2,3);plot(i,plot_Z_VecEv(i,1),'b+');  
    end 

    if plot_X_VecEv(i,1)~=0  && plot_Y_VecEv(i,1)~=0 && 
plot_Z_VecEv(i,1)~=0 

subplot(3,2,4);plot3(plot_X_VecEv(i,1),plot_Y_VecEv(i,1),plot_Z_VecE
v(i,1),'ko');   
    end 
    clear on 
    grid on 
    box on 
    hold on 

end 

% Select subpopulation based on Objective 1 
subpop_X=[]; 
subpop_Y=[]; 
subpop_Z=[]; 
Good_IndivXYZ=[]; 
for i=1:length(plot_Y_VecEv) 
    if plot_X_VecEv(i,1)~=0 
      subpop_X(i,1)=1; 
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    else 
      subpop_X(i,1)=0;   
    end 
    if plot_Y_VecEv(i,1)~=0 
      subpop_Y(i,1)=1; 
    else 
        subpop_Y(i,1)=0; 
    end 
    if plot_Z_VecEv(i,1)~=0 
      subpop_Z(i,1)=1; 
    else 
        subpop_Z(i,1)=0; 
    end 
    if plot_X_VecEv(i,1)~=0  && plot_Y_VecEv(i,1)~=0 
&&plot_Z_VecEv(i,1)~=0 
        Good_IndivXYZ(i,1)=1; 
    else 
        Good_IndivXYZ(i,1)=0; 
    end 

end 

fin_Good_IndivXYZ=find(Good_IndivXYZ); 
siz_fin_Good_IndivXYZ=size(fin_Good_IndivXYZ); 
if siz_fin_Good_IndivXYZ(1,1)>=4 
    fprintf('Number of feasible individual 
is',siz_fin_Good_IndivXYZ(1,1)); 
end 

find_subpop_X=find(subpop_X); 
siz_fin_subpop_X=size(find_subpop_X); 

find_subpop_Y=find(subpop_Y); 
siz_fin_subpop_Y=size(find_subpop_Y); 

find_subpop_Z=find(subpop_Z); 
siz_fin_subpop_Z=size(find_subpop_Z); 
%Horizontal Concatination 
Vertic_Cat=vertcat(find_subpop_X,find_subpop_Y,find_subpop_Z); 
leng_Vertic_Cat=length(Vertic_Cat); 
Trans_Vertic_Cat=[Vertic_Cat]'; 
Ran_leng_Vertic_Cat=randperm(leng_Vertic_Cat); 

for i=1:leng_Vertic_Cat 
    Rand_Vertic_Cat(i,1)=Vertic_Cat(Ran_leng_Vertic_Cat(i),1); 
end 

siz_Previous_Genran_VecEv = size(Previous_Genran_VecEv); 
if leng_Vertic_Cat<siz_Previous_Genran_VecEv(1,1) 
    dif_leng_Vertic=siz_Previous_Genran_VecEv(1,1)- leng_Vertic_Cat; 
    for i1=1:dif_leng_Vertic 
       Rand_Vertic_Cat(i1+leng_Vertic_Cat,1)=Rand_Vertic_Cat(i1,1); 
    end 
end 

for i = 1:siz_Previous_Genran_VecEv(1,1) 
    for j = 1:siz_Previous_Genran_VecEv(1,2) 
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NewGeneration_VecEv{i,j}=Previous_Genran_VecEv{Rand_Vertic_Cat(i,1),
j}; 

    end 
end 
NewGeneration_VecEv; 
toc %Measure performance using stopwatch timer 
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Evolutionary Minimization of Network Coding Resources 

Lalith P. Karunarathne, Mark S. Leeson* and Evor L. HinesThe authors are with 
the School of Engineering, University of Warwick, Coventry, CV4 7AL, UK (e-mail: 
{l.p.karunarathne, Mark.Leeson, E.L.Hines}@warwick.ac.uk). 

* Corresponding Author

Abstract — A method to identify feasible minimal network coding configurations 
between a source and a set of receivers without altering or modifying the established 
network infrastructure is proposed. The approach minimizes the resources used for 
multicast coding while achieving the desired throughput in the multicast scenario. 
Since the problem of identifying minimal configurations of a graph is known to be 
NP-hard, our method first identifies candidate minimal configurations and then 
searches for the optimal ones using a Genetic algorithm (GA). As the optimization 
process considers the number of coding nodes, the mean number of coding node 
input links and the sharing of resources by sinks, the problem is thus a multi-
objective problem. Two multi-objective algorithms, MOGA and VEGA, are chosen 
to solve the problem because they are simple enough not to place heavy demands on 
source nodes when the minimal configuration is sought. The optimisation process is 
investigated by the simulation of a range of randomly generated networks of varying 
sizes. Performance differences between the multiple-objective GAs are observed 
which seem to arise from the difference in their methods of searching. Nevertheless, 
both methods perform well in terms of identifying feasible minimal configurations 
with optimised coding resources. The performance is assessed by comparing the 
optimised solutions with randomly chosen starting configurations. There are always 
reductions in the number of coding nodes used, typically of 50% and resource 
sharing is multiplied by several times. Typical mean in-link savings are 10% but may 
range from zero to close to 30%.  We thus show that relatively simple multiple-
objective GAs can deliver optimised minimal coding configurations for the network 
coding multicast problem. Moreover, the approach here offers an improvement over 
solutions in the literature since our method remains feasible for relatively large 
networks and its implementation at the source simplifies the functions that must be 
employed at intermediate nodes.  

 Index Terms— Coding resources, genetic algorithms, multicast, network coding, 
multi-objective optimization. 
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1. Introduction
Network multicast refers to the simultaneous transmission of the same 

information to multiple receivers in a network. Multicast transmission has 
historically been a demanding task that consumed considerable network resources 
such as channel bandwidth and network power. To minimize network resource 
usage, network coding (NC) [1] allows nodes to combine two or more independent 
bit streams via binary addition as well performing their traditional functions of 
packet routing and duplication. In the multicast NC problem, a source, S, needs to 
deliver h packets to N sinks over an underlying communication network G. Recently, 
considerable efforts have been made to minimize the coding resources in the 
multicast scenario [1], [2] and in this paper, a feasible engineering solution is 
proposed for this challenge. To illustrate the issues, the network shown in Figure 1 is 
considered with respect to a particular example scenario. Source S wishes to transmit 
a number of data packets, say 3, from s1, s2 and s3, simultaneously to sinks t1, t2 t3. S 
intends to identify a minimal configuration between itself and the sinks for its 
multicast traffic delivery.  

In their seminal research, Ahlswede et al. [3] illustrated that if NC is permitted at 
the nodes of a network the communication rate can be improved over that obtainable 
by routing alone. Li et al. [4] showed that linear coding (in which each packet sent 
over the network is a linear combination of the original packets) is sufficient for 
multicast network coding problems. Koetter and Médard [5] introduced an algebraic 
framework for the study of network coding and gave a condition for valid codes. 
This framework was used by Ho et al. [6] to show that linear network codes can be 
efficiently constructed by employing a randomized algorithm. Jaggi et al. [7] 
proposed a deterministic polynomial-time algorithm to find feasible network codes 
for multicast networks. 

S1

4 5 6

7
8

9

t1 t3

10

t2

S2 S3

S

Figure 8: Example network used to illustrate the proposed method 
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The identification of the minimal configuration with a minimum number of 
coding points is NP-hard [1]. Here, our solution based on a Genetic Algorithm (GA) 
deals with this by developing candidate solution paths and identifying the best one 
rather that tackling the NP-hard problem. The remainder of the paper is organized as 
follows. Section 2 presents the problem formulation and Section 3 considers related 
work. The fourth and fifth sections introduce the proposed solution method and its 
simulation. Section 6 presents the results obtained followed by conclusions in 
Section 7. 

2. Problem formulation
We consider a communications network represented by a directed acyclic graph 
( ) ,  G V E=  with unit capacity edges and in which the value of the min-cut between 

the source node and each of the receivers is h. There is a set of h unit rate 
information sources 1 2{ , ...... }hS S S and a set of N receivers 1 2{ , ...... }Nt t t . We assume 
each receiver has at least one set of h linear disjoint paths (h-LDPs). We denote by 

( ), , 1 ,1 ,i jS t i h j N≤ ≤ ≤ ≤ a set of h-LDPs from the source to the receiver node j

and the choice of paths is not necessarily unique. Our objective of interest is the 
minimal configuration 'G G∈ with optimum coding resources, consisting of less 
than hN paths. We assume that source , 1iS i h≤ ≤  simultaneously emits , 1i i hσ ≤ ≤

which is an element of some finite field qF . In linear NC, each node of G′ receives an 

element of qF from each input edge, and then forwards a linear combination of its 

inputs to each output edge. 

Detailed discussion concerning the linear NC resources required for multicasting 
is contained in [1]. Therein, the major complexity components are described as Set-
up complexity and Operational complexity. The former denotes the complexity of 
designing the network coding scheme, which includes selecting the paths through the 
information flows and determining the operations that the nodes of the network 
perform. The latter encompasses the running cost of using NC, that is the amount of 
computational and network resources required per information unit successfully 
delivered. Moreover, this complexity is strongly correlated with the NC scheme 
employed. To recover the source elements σi which have been linearly combined 
over qF by the coding nodes, each receiver needs to solve a system of h2 linear 

equations, requiring 3O( )h  operations over qF  if Gaussian elimination is used. The 

linear combination of h information streams requires 2O( )h  finite field operations. 
The complexity is further affected by the size of the finite field over which we 
operate. The cost of finite field arithmetic grows with the field size. For example, 
typical algorithms for multiplication or inversions over a field of size 2nq =  require 
O(n2) binary operations [1]. Also the field size affects the required storage 
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capabilities at intermediate network nodes. Moreover the complexity is affected by 
the number of network coding points, which are generally more expensive due to the 
need to equip them with encoding capabilities. In addition, coding points incur delay 
and increase the overall complexity of the network [8]. The computational 
complexity at each coding point of G′  is considerably increased by the number of in-
links per coding point which exhausts the coding resources via increasing the 
operational complexity of the network [1]. Therefore we are interested in optimizing 
the number of coding points and the number of in-links per coding point while 
identifying the minimal configuration G′ . 

3. Related work
This problem is somewhat similar to that of the “Travelling Salesman” [9] and in 

both cases GAs may be employed to search for the suitable geometrical properties 
(e.g. shortest paths, minimal configuration). Determining a minimal set of nodes 
where coding is required is known to be difficult [2]. The problem of deciding 
whether a given multicast rate is achievable without coding, i.e., whether the 
minimum number of required coding nodes is zero or not, reduces to a multiple 
Steiner subgraph problem, which is NP-hard [10]. Hence, the optimization problem 
to find the minimal number of required coding nodes is NP-hard. Even 
approximating the minimal number of coding nodes within any multiplicative factor 
or within an additive factor of |V |1-ξ is NP-hard [11].  

As a first attempt at an evolutionary approach to the NC problem, Kim et al. [2] 
considered coding resource minimization while achieving the desired throughput in a 
multicast scenario by inspection of the outgoing links of all of the nodes. In this NP-
hard problem they employed the structure of the standard GA, which was introduced 
by Holland [12], operating on a set of candidate solutions which it improved 
sequentially via mechanisms inspired by biological evolution (recombination and 
mutation of genes plus survival of the fittest). The algorithm proposed in [2] reduces 
the number of coding links/nodes relative to prior approaches in [1] and [8] and 
applies to a variety of generalized scenarios. 

Here, our solution overcomes two major drawbacks of the approach in [2]. Firstly, 
a node where coding is required cannot be decided independently, which implies that 
whether coding is required at a node depends on whether coding is performed at 
other nodes; the verification procedure cannot thus be applied separately to each 
node. Hence, when the number of involved nodes is augmented, the complexity 
grows rapidly. Secondly, the GA operations are must run in each node on an 
individual basis meaning that costly functional integration (hardware and software 
upgrade) is essential at each node. These operations increase transmission 
complexity and exhaust network node resources. 
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4. Proposed Solution with Evolutionary Approach
Here, the proposed solution runs at the source where the processing and 

memory capacity are sufficient to execute these algorithms. All intermediate nodes 
are only required to perform their core operations (forwarding, duplicating and 
coding).  Figure 2 shows a block diagram of the optimization process which 
comprises two fundamental elements: the preliminary process (which creates a 
search space) and the multi-objective GA process (which creates and identifies 
feasible minimal configurations), which will now be considered in turn.   

Preliminary 
Process Search Space Multi – Objective 

GA Process

Feasible 
Minimal 

Configurations

Figure 9: Block diagram of the operation of the proposed solution 

4.1. Preliminary process 
The preliminary process provides unevaluated individuals to the search space and 

then the two generic algorithms (path augmention and linear disjoint path) contribute 
to create the search space.  

4.1.1. Path augmentation algorithm 
This implementation is new but derives from the Breadth First Search (BFS) 

algorithm [13]. The algorithm identifies all available paths from each sub source 
({ },1 )iS i h≤ ≤ to each receiver ({ },1 )jt j N≤ ≤ . Figure 3(a) shows all available paths 

identified for receiver {t1}. The algorithm’s time complexity can be calculated as
( )2VhO , where |V| is number of nodes in G(V,E).
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(a) (b) (c)

Figure 10: (a) All available paths from each sub source {S1, S2, S3} to receiver {t1}; (b) and (c) 

Two different sets of linear disjoint paths for receiver {t1}. 

4.1.2. Linear disjoint path algorithm 
The set of h paths between the source and receiver is defined as a set of linear 

disjoint paths when none of the paths overlap. The algorithm hierarchically examines 
all available paths from each sub source ({ },1 )iS i h≤ ≤ to each receiver

({ },1 )jt j N≤ ≤ to form different sets of h-linear disjoint paths (LDPs). Figures 3(b) 
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and 3(c) show two different sets of LDPs identified for receiver {t1}. The two paths 
are compared to form a set of LDPs with time complexity ( )VO 2 . Here the set of

LDPs is classified based on sink IDs with the denomination q
t j

Gn  where (1 )j N≤ ≤

for the qth path to the sink. For example, sink {t1} has three sets of 3-linear disjoint 
paths: 1

1t
Gn , 2

1t
Gn and 2

1t
Gn . 

This algorithm contributes to the satisfaction of the multicast demand (min-cut 

max-flow) theorem and the formation of the minimal configuration. It is an 

enhancement to the approach in [1] for identifying the minimal configuration which 

considered edge disjoint paths only. Here, the LDP algorithm allows us to overcome 

this restriction so that overlapped paths are also accepted to form the minimal 

configuration. For example, in the minimal configuration of Figure 4 there are two 

different data streams {S3}and {S2}at link (8,10). 

4.2. Search space 
A random shuffle process picks q

t j
Gn from each sink column , (1 )jt j N≤ ≤  and 

creates a row. A row is defined as an individual and its elements q
t j

Gn are defined as 

genes. The random shuffle process is terminated when the search space size (Z) 
reaches a pre-defined number. This is a significant stage of the proposed solution 
because it is the commencement of the mapping of NC problem into a GA 
framework.  
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Figure 11: The random shuffle process creates an unevaluated individual to form the search 
space 

The minimal configuration is created by the sets of LDPs. During this creation 
either the same or different data streams overlap at some links. A tail node of an 
overlapped link becomes a coding node and other intermediate nodes become 
forwarding nodes. The vital point is that data streams are either coded or not, all 
sinks are able to simultaneously receive multicast data via LDPs.  Moreover the 
source can assign linearly independent coding vectors for coding nodes, therefore all 
sink are able to form full rank decoding matrixes. Thus the minimal configuration is 
either feasible or not, it is not necessary to evaluate for a full rank state in contrast to 
the approach in [2], which can unmanageable as a result of the evaluation.  
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4.3. Brief introduction to GAs 
The operation of GAs is on a set of candidate solutions, referred to as a 

population. Each solution is typically represented by bit strings, trees, graphs or any 
data structure adjusted to the problem being solved and known as a chromosome. 
Each of these is assigned a fitness value that measures how well it solves the problem 
at hand, compared with other chromosomes in the population. Typically, a new 
population is generated from the current one using three genetic operators: selection, 
crossover and mutation. Chromosomes for the new population are selected randomly 
(with replacement) in such a way that fitter ones are selected with higher probability. 
For crossover, the surviving chromosomes are randomly paired, and an exchange of 
bit string subsets takes place in each pair to create two offspring. Chromosomes are 
then subject to mutation, which refers to random flips of the bits applied individually 
to each of the new chromosomes. The process of evaluation, selection, crossover and 
mutation forms one generation in the execution of a GA. The above process is 
iterated with the newly generated population successively replacing the current one. 
The GA terminates when a certain stopping criterion is reached, e.g., after a 
predefined number of generations. GAs have been applied to a large number of 
scientific and engineering problems, including many combinatorial optimization 
problems in networks [14]-[16]. 

4.4. Potential of GAs to solve this problem 
There are several aspects of this problem suggesting that GA-based methods may 

be promising candidates. Such approaches have worked well if the space to be 
searched is large but not known to be perfectly smooth or unimodal. Moreover, they 
will operate even if the space is not well understood [17], which makes traditional 
optimization methods difficult to apply. Here, the search space of our problem is not 
smooth or unimodal (two objective constraints are unknown) with respect to the 
number of sets of linear disjoint paths because each sink has different combination 
sets of the linear disjoint paths. The search space in this work consists of a large 
number of feasible or infeasible individuals which are created by the different 
combination sets of linear disjoint paths. An NP-hard problem results in which the 
individuals are not well understood. It should also be noted that, while it is hard to 
characterize the structure of the search space, once provided with a solution we can 
verify its feasibility (count the number of coding nodes, an average number of in-
links per coding point and average resources shared per coding node) in polynomial 
time. Thus, if the use of genetic operations can suitably limit the size of the space to 
be actually searched a solution may be obtained relatively efficiently using the 
established procedures of GAs [17]. 

4.5. Multi-objective GAs 
Multi-objective formulations are realistic models for many complex engineering 

optimisation problems such as minimising cost, maximising performance, 
maximising reliability and so on. The multiple objectives are generally conflicting, 

204 



Appendix C  ... 

preventing simultaneous optimisation of each one.  For example, in Section 4.10, the 
first objective to minimise the number of coding points may result in a conflict with 
the third objective in that one or more sinks may lose their coding resource sharing. 
The GA is a popular meta-heuristic approach that is particularly well suited for this 
class of problem. Therefore traditional GAs are customised to accommodate multi-
objective problems by using specialised fitness functions. Konak et al. [18] present a 
comprehensive overview of multiple-objective optimization methods using GAs. 
Here we are interested in schemes with relatively simple implementations because 
the search space and fitness evaluation method of the proposed solution are complex. 
Moreover, the proposed solution is implemented at the source node and complex 
search methods would place unfeasible demands on source nodes. Thus, based on 
[18] we select two multi-objective methods: Multi-objective GA (MOGA) and 
Vector-evaluated GA (VEGA) and investigate how these methods perform on the 
problem formulated above.  

4.5.1. Multi-objective GA (MOGA) 
The well established single-objective GA described in Section 4.3 above is 

modified to find a set of multiple non-dominated solutions in a single run. The 
potential of the GA to simultaneously search different regions of a solution space 
means that a MOGA is a promising candidate to find a diverse set of solutions for 
difficult problems such as those that are non-convex. The crossover operator of the 
GA may exploit structures of good solutions with respect to different objectives to 
create new non-dominated solutions in unexplored parts of a Pareto front. Therefore 
GAs have been the most popular heuristic approach to multi-objective design and 
optimization problems. 

4.5.2. Vector-Evaluated Genetic Algorithm (VEGA) 
In this method, the selection operator of GA is modified so that at each generation 

a number of sub-populations is generated by performing proportional selection 
according to each objective function in turn. Thus, for a population size K and 
number of objectives q, each sub-population’s size is K/q. These sub-populations are 
then shuffled together to obtain a new population of size K; each new generation is 
created by the usual GA operations of crossover and mutation.  

4.5.3. GA operations and individual evaluation 
An initial population (P1) is obtained by randomly picking the individuals in the 

search space at t = 1. The GA operations form a new generation (P2) from P1 
(generally 1+→ tt PP ). The population size (K) is constantly maintained at the size of 
P1 throughout the GA. P1 is evaluated as described in Section 4.10 and the highest 
fitness individuals are recombined by crossover to form an offspring population (Qt).  
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4.6. Crossover 
The number of genes in each individual depends on the number of sinks (N) 

which requested multicast data from the source. In this work, single point crossover 
is employed with a crossover point [ ]cprN ×=β , where [ ]u  represents the nearest

integer to u. A value of 0.7 for cpr was found to give good results after 
experimentation. Figure 5 shows the crossover operation with [ ] 27.03 =×=β  with
the illustrative assumption that the Pareto optimal solution (described in Section 
4.10) is f(2,2,3). The parents are selected based on their fitness and both are close to 
the Pareto optimum in Figure 7(a). The recombination forms the offspring in Figure 
7(b), which exhibit higher fitness values and are thus are added to the offspring 
population Qt. In this implementation, each generation results in the recombination 
of sets of parents to form sets of offspring. By iteratively applying the crossover 
operator, genes of “good” individuals are expected to appear more frequently in the 
population, eventually leading to convergence to an overall “good” solution.  
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Figure 12: Crossover operation showing (a) the parents and (b) the offspring 

4.7. Mutation 
The mutation operator introduces random changes into the characteristics of 

chromosomes. It is generally applied at the gene level. In typical GA 
implementations, the mutation rate (probability of changing the properties of a gene) 
is very small and depends on the length of the chromosome. Therefore, the new 
chromosome produced by mutation should not be that different from the original one. 
Mutation plays a critical role in GA. The crossover operator leads to population 
convergence by making the chromosomes in the population comparable. Mutation 
reintroduces genetic diversity back into the population and assists the search escape 
from local optima. In this implementation, the length of chromosome depends on a 
number of sinks. If a gene is randomly substituted by mutation, the original 
chromosome diverges significantly because the mutation rate (1/N) is extremely 
high. This issue is eliminated by substituting a single path in a randomly selected 
gene and inserting a random path without perturbing a linear disjoint feature of the 
gene, producing factor of h a reduction in the mutation rate.  
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Figure 13: Mutation operation 

Figure 6 shows the mutation operation on one of the offspring in Figure 5(b). 
Gene 2 is randomly selected and its path 1 2, 4,7,10,S t is randomly substituted by 

another path whilst keeping the linear disjoint feature of the gene. 

4.8. Selection 

A selector operator plays a vital role in this work because it may pull the search to 
a narrow area of search space. The selector operator is connected with the individual 
evaluation, (Section 4.10). The selector operator selects K of the offspring in the 
offspring population Qt based on their fitness and they are copied into the generation 
Pt+1, where K is the population size.  

The selector operator performs differently in MOGA and VEGA. The GA 
operators of crossover and mutation work on a mating pool to form the offspring 
population Qt. The selector operator creates two different mating pools for MOGA 
and VEGA. The generation Pt are assigned their fitness using the objective functions 
and they are evaluated using the Pareto optimal 1

OP
tF +

. The selector operator in MOGA 
concerns closer individuals to the Pareto optimal 1

OP
tF +

 and the MOGA mating pool is 
filled by them. For example, the individuals I1 and I2 and are in Figure 7 (b). But the 
selector operator in VEGA concerns closer individuals to each objective of the 
Pareto optimal 1

OP
tF +

 and the VEGA mating pool is filled by them. For example, the 
individuals from I1, I2, I4 and I5 are closer to 1 ( )OP

tf X+
, the individuals I1, I2, I4 and I5 

are closer to 1 ( )OP
tf Y+

 and individuals I1, I2 and I6 are closer to 1 ( )OP
tf Z+

, and the VEGA 
mating pool is filled by them. Moreover the offspring population Qt are evaluated 
using the Pareto optimal 1

OP
tF +

 and the selector operator performs on Qt as same as the 
selector operator on MOGA. 

4.9. Termination criterion 
If the source is able to identify w feasible multicast structures (individuals) then 

the search is terminated and the current population returned or else the process 
repeats from crossover and t becomes t+1. Moreover if the termination condition is 
not met during g generations, the entire population is removed and the process 
randomly re-initiated. 
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4.10. Evaluation of individuals 
The fitness evolution process proposed concentrates on optimising the network 

coding resources in the multicast scenario by identifying the minimal configurations 
between sources and sinks, and contributes to coding resource optimisation in them. 
Three objective functions are employed to assign fitness values to individuals in the 
initial population or the mating pool:  

1. Optimise the number of coding nodes in individuals - ( )I if X ; 

2. Achieve a desired throughput rate (constraining a number of in-links at each

coding point) - ( )I jf Y ; 

3. Optimally share coding resources in individuals - ( )I kf Z . 

The first two objectives optimise the network coding resources; the first and third 
optimise network resources. An optimum number of coding nodes are in multicast 
routes of the minimal configuration when it consumes the optimum coding resources 
when selected by the source for its multicast transmission. The use of coding nodes 
in multicast transmission automatically implies that a number of channels 
simultaneously convey more than one packet, contributing to efficient channel 
capacity use and network resource savings. The second objective allows the source to 
maintain a desired throughput rate during its multicast transmission. This can be 
achieved by constraining the number of input links at each coding point. Moreover it 
allows the saving of coding resources (storage capacity and computation) at the 
coding nodes. The third objective allows the sharing of the optimum coding 
resources with all sinks and may be enacted by considering the average coding 
resources sharing per coding node, defined as the sum of the number of receivers 
connected to each coding node divided by the number of coding nodes. In addition, it 
also improves the usage of the coding resources that are discovered via the first two 
objectives.  

The problem is thus one of multi-objective optimisation and such cases generally 
exhibit conflicting objectives, preventing the simultaneous optimisation of each. In 
this case, the first and third objectives are in direct conflict since when the number of 
coding points is optimised, they are unlikely to be evenly spread. Here, the standard 
GA is customised to accommodate multi-objective problems by using specialised 
fitness functions and introducing methods to promote solution diversity. The 
approach is to determine an entire Pareto optimal solution set rather than a single 
fitness calculation in traditional GA. It is a most suitable solution because neither the 
first nor third objectives have pre-identified constraints. Therefore, the Pareto 
optimal solution is updated at each generation by comparing it with the one obtained 
in the previous generation.  
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It is assumed that the source intends to identify the w minimal configurations for 
termination. Minimal configuration I may be viewed as a point in the solution space
{ ( ), ( ), ( )}I i I j I kf X f Y f Z . The points (XOP, YOP, ZOP) are objective constraints and 

the feasible set of them forms a Pareto optimal front. Figure 7(a) shows the objective 
constraints and Figure 7(b) shows a surface that is Pareto optimal on ZOP. The Pareto 
optimal surface is updated at each generation with the first arising from the randomly 
selected initial population. The value of YOP is maintained to be ≥2 but XOP and ZOP 
are updated at each generation with the minimum value being preferred for XOP and 
the maximum value for ZOP.    For example, Figure 7(b) shows Pareto optimal (OPt-

1, OPt and OPt+1) for generation- ( 1), , ( 1)t t t− + consecutively and they are updated at 
each generation. Pareto optimal set (OPt-1) is: ( )111 ,, −−− t

PO
t

PO
t
PO ZYX and set OPt is:

( )t
PO

t
PO

t
PO ZYX ,, . The comparison of (OPt-1) and OPt is: 

[ ] [ ] [ ]( )1
111 ,, ZZZYYXX t

PO
t
PO

t
PO

t
PO

t
PO

t
PO ==>> −−−  Therefore the Pareto optimal (OPt) is 

moved to the position (OPt+1) on surface Z1. 

The mutual comparison between individuals is extremely challenging in 
multi-objective optimisation and the proposed method can avoid the difficulty of 
comparison. At each selection operation, the individuals are assigned their fitness 
{ ( ), ( ), ( )}I i I j I kf X f Y f Z using objective functions. Then each individual is compared 

with the Pareto optimal (XPO, YPO, ZPO), using
[( ) 0, ( ) 0, ( ) 0]C i OP j OP k OPf X X Y Y Z Z− ≥ − ≥ − ≥ . If any individual is far away from 

Pareto optimal, it can be defined as a weakly fit or infeasible individual. With 
reference to Figure 7(b), the individual I3 on surface Z1 is in this position but 
individual I1 is a fitter individual that should be selected in preference.  
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Figure 14: Pareto optimisation process for the problem considered (a) objective constraints; (b) 

Pareto optimal front. 

As shown in Figures 4 and 5, individuals are in a path-based format which is 
hard to analyse at the fitness assignment process stage. Therefore each individual is 
converted to a sparse matrix as shown in Figure 8, where {7, 8 and 10} can be 
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identified as coding nodes because {7} is connected to {4} and {5}, which are in 
turn connected to sources {S1} and {S2}. Moreover {8} is connected to {S2} and 
{S3} via {5} and {6}. Node {10} is connected to coding nodes {7} and {8}. Then 
objective function ( )I if X  can thus be calculated as 3. The ‘1’ entries of all coding 
nodes are counted via their respective rows and in Figure 8(b) there are six ‘1’ entries 
in total, or an average of two per coding point (i.e. ( ) 2=jI Yf ).  

The objective function ( )I kf Z  calculation process is to count when a sink 
column contains a ‘1’ entry in a row representing a coding node. This means that the 
coding node contributes to the path to the sink in question. For example, in Figure 
8(b) sink {t1} has an entry ‘1’ at row 7 meaning that the coding node 7 contributes to 
the route to {t1}. However, when the first coding node identified is connected to a 
second coding node then this also adds to the number of nodes shared by the route. 
For example, in Figure 8(b) coding node 10 contributes to paths to {t1, t2, t3} in its 
own right but because it is connected to coding nodes 7 and 8, these also contribute 
to routing to {t1, t2, t3}. In total, the example has one contribution from {7} directly, 
three from {10} directly, and three each from {7} and {8} indirectly. Since there are 
three sinks, objective function ( )I kf Z  can be calculated for Figure 8(b) as 
(1+3+3+3)/3 = 10/3 and the overall individual’s fitness is f(3,2,10/3). 
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Figure 15: (a) An individual in a path format; (b) A related sparse matrix 

5. Simulation
The methods described were tested using a software environment developed in 

MATLAB R2009a and the computer system was: Windows VistaTM Home Basic 
with service pack 2 (32 bit) running on an Acer Aspire 5735, Intel® Pentium® Dual 
CPU T3400 2.16GHz processor with 3GB RAM. Fifty different randomly generated 
topologies were used in the simulations. Each of these consisted of a single source 
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with 3 data streams, and a different number of nodes, links and sinks. Table 1 
provides the topological parameters which were used to create random networks. The 
tests proceeded as four projects, each of which consisted of a different number of 
runs. In each run, an equal size topology was employed but it was randomly 
generated upon commencement.  

Table 3: Topological details and Parameter sets for Projects 1 – 4 

Project Runs 

Topological Details Parameter set
{ , , , }z cp pr pr wµNodes Links Sinks 

1 1-10 27 57 07 {100, 0.7, 0.05, 4} 

2 11-20 30 68 07 {100, 0.7, 0.05, 4} 

3 21-35 35 92 12 {100, 0.7, 0.03, 4} 

4 35-50 40    113 17 {100, 0.7, 0.02, 4} 

The parameters for the GA processes were: population size ( )zp , crossover 

probability ( )cpr , mutation probability ( )prµ and termination criterion (w). They are 

represented as a parameter set{ , , , }z cp pr pr wµ . The mutation probability was 

decreased with an increasing a number of sinks. Each simulation continued until 
either termination or a pre-defined generation number (g – here taken as 10 for all 
projects) had passed, in which case the GA is with a new initial population and 
marked as a failed search.  

6. Results
These simulations do not attempt to deliver the actual multicast traffic levels 

rather identifying the minimal source to sink configurations, which is NP-hard. The 
performance of the proposed solution is considered in two parts, the preliminary 
process and the evolutionary process. 

Figure 9 shows the performance of the two preliminary algorithms as a function 
of increasing scale (project) for the simulations in the all projects. The path 
augmentation is largely independent of network size in contrast to the linear disjoint 
path algorithm which has a more difficult task to perform as the network gets larger. 
Moreover, there also an inefficiency entering the discovery of disjoint paths because 
the algorithm obtains all available sets of linear disjoint paths but not all of these are 
needed in the discovery of the feasible minimal configuration.  
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Figure 16: The performance of the two preliminary algorithms. 

With respect to the evolutionary process, the search performance of the two multi-
objective GA techniques MOGA and VEGA differed as the network size varied. 
Figure 10 shows the CPU time for MOGA and VEGA at each run of projects 1 to 4. 
In each run, an initial population was randomly selected and then used by both 
algorithms. An extremely high searching time (here 1000 seconds of CPU time) was 
taken as an indication of search failure as indicated in Figure 10. There is one subtle 
point to note in that the figure indicates that the two algorithms failed in runs 19, 22, 
24, 32, 38, 39 and 41. However, on examination of their randomly generated 
topologies it was apparent that insufficient coding nodes had arisen from the 
stochastic nature of the generation process for the algorithm to ever find a solution. 
These runs were thus impossible from the outset and so were not taken into account 
when the simulation results were analysed.  

Runs 1 to 10 were small scale networks and Figure 10 shows that VEGA was able 
to find feasible solutions for all runs in less than 100 seconds. MOGA succeeded in 
runs 1, 4, 5 and 7 with CPU times slightly below 200 seconds. The next set of ten 
runs considered slightly larger networks than the first ten. VEGA showed a slight 
degradation in its performance for these runs, with 7 out of 9 runs able to find a 
feasible solution in less than 200 seconds. MOGA showed a slight improvement in 
that it was able to return 5 out of 9 successful runs in less than 200 seconds. Runs 21-
35 increased the network size further over runs 11-20 and VEGA’s performance 
deteriorated further since it delivered only 4 out of 12 successful runs which took 
less than 200 seconds to complete. In contrast, MOGA showed a remarkable 
improvement, with 7 out of 12 runs succeeding in less than 200 seconds. Finally, 
runs 36-50 again used a network size that was larger than in runs 21-35. These tests 
took both algorithms closer to the limits of their operation with VEGA delivering just 
2 successes out of 12 runs in less than 200 seconds and MOGA’s corresponding 
success being reduced to 6 out of 12 runs.    
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Project 1 Project 2 Project 3 

Figure 17: The performance evaluation of GA process base on CPU time 

The searching potential of MOGA or VEGA depends not only on their 
performance but also on the availability of minimal configurations and coding nodes 
in the randomly generated networks (as was dramatically apparent in the apparent 
failures discussed above). The impact of this factor is shown in Figure 11, where the 
percentage success rates for MOGA and VEGA in the four projects are illustrated. In 
the first two, smaller, projects VEGA outperforms MOGA but this trend reverses as 
the network size grows in the second two projects. This is most likely explained by 
the fact that VEGA is a simple scheme and MOGA makes use of fitness sharing 
which promotes the exploration of new areas of the Pareto front by artificially 
reducing fitness of solutions in regions containing many solutions [18]. When the 
network is small, the number of solutions is reduced meaning that there is little to be 
contributed by the fitness sharing process. However, the increase in possible 
solutions with network size gives MOGA an advantage through its enhanced 
searching capabilities. The increasing number of nodes relative to sinks (and hence 
the increasing average node degree) coupled with the greater number of sinks as the 
projects progress greatly increases the routing possibilities permitting MOGA to gain 
an advantage from its greater sophistication.  
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Figure 18: The performance evaluation of GA process based on searching potential 

Table 2 shows fitness of most feasible individual (minimal configuration) 
identified at the end of randomly selected runs, fitness of most infeasible individual 
in an initial population of its run and their comparisons. Their comparisons prove 
how most feasible individual is advance than most infeasible individual in terms of 
network coding resources usage, if the source selects the most feasible minimal 
configuration for its multicast transmission. The savings in the number of coding 
nodes (Xi) and the mean number of in-links (Yj) are given as percentages relative to 
the starting point. The resource sharing (Zk ) improvement is left as a ratio because 
all percentages would be extremely high and it is thus more useful to look at how the 
sharing has multiplied during the optimisation. 

Table 4: A most feasible individual (minimal configuration) of each run compares with a most 
infeasible individual of its initial population based on their fitness. Randomly 

selected runs of each project are shown in the table.  

Project Rand
omly 
selec
ted 
run 

MOGA/ 

VEGA 

Fitness of most feasible 
individual identified at 
the end of run fIF

Fitness of most 
infeasible individual in 
initial population of run 

iIF

Comparison  

fIF and iIF

( )fI if X ( )fI jf Y ( )fI kf Z ( )iI if X ( )iI jf Y  ( )iI kf Z  Coding 
node 
saving 

In-link 
saving 

Resource 
sharing 
ratio 

1 4 MOGA 2 2 6.5 5 2.4 1.4 60% 16.67% 4.64 

VEGA 2 2 6 5 2.4 1.4 60% 16.67% 4.28 

9 VEGA 2 2.5 7 6 2.67 0.83 66.67% 6.37% 8.43 

6 VEGA 3 2.33 5.33 5 2.8 1.2 40% 16.78% 4.44 
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7 MOGA 2 2.5 6.5 6 2.83 1.66 66.67% 11.67% 3.91 

VEGA 2 2 6 6 2.83 1.66 66.67% 29.32% 3.61 

2 13 MOGA 2 2 6 6 2.5 1.16 66.66% 20% 5.17 

VEGA 2 2.5 6.5 6 2.5 1.16 66.66% 0% 5.60 

17 MOGA 2 2.5 5.5 5 2.8 0.8 60% 10.71% 6.87 

3 23 VEGA 3 2.33 7.66 7 2.85 1.14 57.14% 18.24% 6.72 

26 MOGA 3 2.67 6.67 6 2.83 1 50% 5.65% 6.67 

VEGA 4 2 7.25 6 2.83 1 33.33% 29.32% 7.25 

4 42 MOGA 3 2.33 13.3 8 2.75 1.25 62.5% 15.27% 10.66 

VEGA 3 2.67 15.3 8 2.75 1.25 62.5% 2.91% 12.18 

40 VEGA 4 2.25 9.75 7 2.85 1.43 42.85% 21.05% 6.82 

46 MOGA 3 2 14.6 9 2.78 0.66 66.67% 28.06% 22.23 

From Table 2, it may be observed that there are always savings in the number of 
coding nodes and these are generally 50% or more. Resource sharing is several times 
higher and may be improved by an order of magnitude. Mean in-link savings are 
more variable approaching nearly 30% at best but sometimes being at or near zero.   

7. Conclusions
There are many situations where multicast is required and it has historically 

presented a demanding challenge in terms of network resources such as channel 
bandwidth and network power. The introduction of network coding offers the 
prospect of substantial reductions in resource requirements. The solution presented in 
this work comprises a preliminary process and a GA optimisation stage. The former 
deals with the aspects of path augmentation and linear disjoint path determination 
and produces a set of possible minimal configurations with optimised coding 
resources to deliver multicast traffic from the source to multiple sinks. These consist 
of three features (objectives) that contribute to optimise the network coding resources 
during multicast transmission. Searching for the optimum choices of minimal 
configurations is NP-hard so heuristic methods are needed. The search space and 
fitness evaluation processes are extremely complex in this problem placing 
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restrictions on the complexity of the optimisation algorithms that may run within the 
network. Therefore, two of the classic multi-objective GAs, namely MOGA and 
VEGA, were chosen because their searching and implementation complexities are 
relatively low. The solution philosophy was to identify minimal configurations and 
chose the best from these thus sidestepping the difficult task of a full search of the 
complete solution space.    

The performance of the algorithms proposed was investigated by simulating a 
range of networks of varying sizes. Specifically, for the preliminary processes path 
augmentation was undemanding in terms of CPU time and its operation was largely 
independent of network size. In contrast, the linear disjoint path algorithm placed 
greater demands on the CPU as the network size increased, reflecting that its task is 
more difficult as the network gets larger. Regarding the evolutionary optimisation, 
VEGA (the simpler of the two algorithms) exhibited better performance both in 
terms of CPU time and searching potential than MOGA for small networks but this 
position reversed as the network size grew. We believe this to be a result of the 
fitness sharing scheme present in MOGA that would not be of great utility for 
smaller search spaces. Nevertheless, both techniques exhibited good potential for 
identifying feasible minimal configurations with optimised coding resources. In most 
cases, there were considerable improvements in fitness by optimisation in 
comparison with randomly chosen starting configurations. All optimised cases 
delivered savings in the number of coding nodes, typically 50% and resource sharing 
was multiplied by several times in addition. Mean in-link savings of typically 10% 
usually resulted but the benefits ranged from zero to almost 30%.      

Nevertheless, we have shown that relatively simple multiple-objective GAs can 
deliver optimised minimal coding configurations for the network coding multicast 
problem. Moreover, the approach here offers an improvement over solutions in the 
literature since our method remains feasible for relatively large networks and its 
implementation at the source simplifies the functions that must be employed at 
intermediate nodes. The approach taken has shown itself to be of great utility in 
minimizing complexity and resource demands, laying the foundations for efficient 
multicast network schemes for future traffic delivery. 
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