4 research outputs found

    ZCS redux

    Get PDF
    Learning classifier systems traditionally use genetic algorithms to facilitate rule discovery, where rule fitness is payoff based. Current research has shifted to the use of accuracy-based fitness. This paper re-examines the use of a particular payoff-based learning classifier system - ZCS. By using simple difference equation models of ZCS, we show that this system is capable of optimal performance subject to appropriate parameter settings. This is demonstrated for both single- and multistep tasks. Optimal performance of ZCS in well-known, multistep maze tasks is then presented to support the findings from the models

    Symbiogenesis in learning classifier systems

    Get PDF
    Abstract Symbiosis is the phenomenon in which organisms of different species live together in close association, resulting in a raised level of fitness for one or more of the organisms. Symbiogenesis is the name given to the process by which symbiotic partners combine and unify, that is, become genetically linked, giving rise to new morphologies and physiologies evolutionarily more advanced than their constituents. The importance of this process in the evolution of complexity is now well established. Learning classifier systems are a machine learning technique that uses both evolutionary computing techniques and reinforcement learning to develop a population of cooperative rules to solve a given task. In this article we examine the use of symbiogenesis within the classifier system rule base to improve their performance. Results show that incorporating simple rule linkage does not give any benefits. The concept of (temporal) encapsulation is then added to the symbiotic rules and shown to improve performance in ambiguous/non-Markov environments

    XCS Performance and Population STRUCTURE IN MULTI-STEP ENVIRONMENTS

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN039134 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore