3 research outputs found

    Reliability Analysis of High Rise Building Considering Wind Load Uncertainty

    Get PDF
    In engineering structures, the safety problems are always depending on the respond of structures to different types of load. The safety assessment of a high rise building is highly depending on the analysis of environmental load. Many codes and practices have proposed many requirements for engineers in the design works. These include safety factors, limitations on damage, maximum deflections and so on. When violations in these requirements occur, the structure is believed to be dangerous. But once the problem becomes complicated such as multiple unknown loads in one building, it requires reliability analysis in the design. It must take care of all the assumptions and uncertainties in the structural design. In probabilistic assessment, any input variable is considered as an uncertainty. However, the traditional way to deal with these problems may have problems when uncertainties are large. Many probabilistic safety measures need to be reconsidered in engineering work. This paper, we will provide reliability analysis on a high rise building with consideration of wind load. All the most commonly applied reliability methods are been utilized in this analysis and compared base on the performance. The statistical influences including correlation and distribution type are also discussed in the same reliability problem

    Modeling asymmetric dependences among multivariate soil data for the geotechnical analysis - The asymmetric copula approach

    Get PDF
    Multivariate information of soil parameters is quite important for the design and risk assessment of geotechnical engineering problems. It is necessary to have an accurate and realistic statistical multivariate model for representing the soil properties and thus evaluating the soil conditions. Thus, advanced multivariate modeling of soil parameters could help to improve the geotechnical engineering practice. In this paper, the asymmetric copulas are introduced to model the geotechnical soil data. Compared to extensive previous research on the use of symmetric copulas on the modeling of engineering data, this study is focusing on capturing asymmetric dependencies among the natural soil parameters, which are critical for engineering design. A copula-based multivariate probabilistic model is built based on a set of collected samples from a granite residual soil from Portugal. Several asymmetric copula functions, capable of capturing nonlinear asymmetric dependence structures, are tested and analyzed. The fundamental information on tail dependencies and measures of asymmetric dependencies are also exploited. To demonstrate the advantages of asymmetric copulas, its concept is compared with the traditional copula approaches for modeling site soil data. The performance of these asymmetric copulas is discussed and compared based on data fitting and extreme value characterizations
    corecore