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Abstract 12 

The consideration of multivariate models in the reliability analysis is quite essential from practical 13 

perspective. In principle, complete information regarding the joint probability distribution function should 14 

be known in prior to the analysis. However, in real practice, only the marginal distribution and covariance 15 

matrix are known in most cases. Such incomplete probabilistic information could lead to dubious results if 16 

dependences are not fully catered. Asymmetric dependence is one of these factors influencing the quality of 17 

reliability analysis. In this paper, the influences of asymmetric dependences to the reliability problem are 18 

investigated. The copula theory as well as the concept of asymmetric dependences is briefly introduced. The 19 

techniques of constructing asymmetric copulas are, thereafter, provided in details. Geotechnical problem is 20 

selected in this study as examples in the reliability analysis. Based on the given information, a group of 21 

symmetric and asymmetric copulas are selected to model the dependences between cohesion and friction 22 

angle, the parameters more commonly used to characterize soil strength. The reliability analysis of a 23 
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continuous spread footing and an infinite slope are then presented to demonstrate the influence of 24 

asymmetric dependences on reliability. The results showed that the failure probabilities of the investigated 25 

geotechnical problems are very sensitive to the adopted dependence structure, either symmetrically or 26 

asymmetrically. The commonly applied one parameter symmetric copulas, such as Archimedean copulas, 27 

may underestimate the failure probabilities. Furthermore, the asymmetric copulas are more powerful in 28 

characterizing the tail dependences structures of variables especially for asymmetric dependent variables. 29 

Keywords: reliability analysis, joint distribution, multivariate analysis, asymmetric copula, geotechnical 30 

engineering 31 

 32 

1. Introduction 33 

 34 
Reliability analysis is frequently associated with multivariate data analysis. To achieve an accurate estimation 35 

of the reliability problem, an adequate joint probabilistic distribution function of the variables is required. 36 

However, in most of the engineering practice, the full information, including the marginal distribution and 37 

dependences between the engineering parameters, cannot be determined. Usually, only the marginal 38 

distributions and covariance matrix are known. In this context, the modeling of the dependences among 39 

parameters plays an important role in the reliability analysis. Deficiencies in modeling their joint 40 

relationship may lead to large errors estimating the failure probability of reliability problems, hence leading 41 

to expensive losses (Phoon and Kulhawy, 1999, Beer et al., 2013). 42 

 The problem associated with dependences is particularly critical in geotechnical engineering as 43 

geotechnical parameters are frequently observed to be dependant in real practice. For instance, the shear 44 

strength parameters, cohesion and tangent of friction angle, are found to be negatively correlated in most 45 

cases (Pinheiro Branco et al., 2014). The soil test results like standard penetration test (SPT) and piezocone 46 

test (CPTU) are believed to be physically related (Robertson, 2009). The key problem in characterizing this 47 

relationship is how to define the word “dependence”. The typical word “dependence” in this context can be 48 

related to various kinds of meanings in real practice. Usually, the concept of correlation is utilized as the 49 



3 
 

most common idea in characterizing the dependences among soil parameters in practice. The simplicity of 50 

this concept has made its use widely spread in the engineering applications. For example, the Nataf 51 

distribution is widely employed in geotechnical engineering field for constructing the joint distributions of 52 

soil parameters based on their correlations (Li et al., 2015). However, this concept was also criticized for its 53 

limitation in measuring only the linear dependence and found to be inaccurate in describing soil parameters 54 

having complex dependences (Wang and Li, 2018). It was also noted the correlation based joint distribution 55 

produces only one of the various possible solutions of failure probabilities for the geotechnical problem and 56 

such a probability may be biased towards the unconservative side (Phoon and Ching, 2015). Nevertheless, 57 

many recent works were published devoting to the presentation of multivariate information (Ching & Phoon, 58 

2014; Zhang et al., 2018a).  59 

Compared to the traditional joint models, copula was found to be very popular and attracted 60 

significant attention of engineering researchers (Wu 2013, Tang et al., 2015). A prominent feature of copula 61 

model is its flexibility in modeling the dependence structure, which can be separated from the modeling of 62 

individual behavior. For geotechnical problems, this characteristic is highly desirable as most soil data 63 

exhibit nonlinear dependencies. It was found the use of copula could improve the quality of reliability 64 

analysis of an engineering problem (Li et al., 2012). However, there still exist various types of complex 65 

dependences which are not well characterized by a normal copula model. Among these, the asymmetric 66 

dependence is one of the most complicated dependences that need to be paid attention to. Asymmetric 67 

dependences are referring to the dependence structures having unequal upper-lower and lower-upper tail 68 

dependences. In reliability problems, the asymmetric dependences among variables can be frequently 69 

observed in various cases especially for geotechnical engineering. For example, the soil parameter 70 

undrained shear strength, preconsolidation stress and vertical effective stress are usually believed to be 71 

asymmetrically dependant with each other. The reason is that they are inherently dependent on the liquid 72 

limit and over consolidation ratio which are not a direct influencing factor that makes their dependences 73 

quite asymmetric. There are several other paired ground parameters which also possesses certain degree of 74 

asymmetric dependences, as is the case of void-ratio and unit weight, unit weight and dry unit weight, void 75 
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ratio and dilation angle, etc. One common reason of such asymmetric dependences among these soil 76 

parameters is due to the physical limitations. That is, the occurrence for some data combinations is 77 

physically not possible. All these combinations impact the reliability analysis although less importance than 78 

the strength parameters. Nevertheless, the influences of asymmetric dependences to the reliability of 79 

geotechnical problems have never been studied in detail. The impact of uncertainties in the asymmetric 80 

dependences for soil data to the overall geotechnical problem assessment has not yet been investigated. 81 

Therefore, this work aims to fill in this gap by presenting a real case study for asymmetric dependences, 82 

highlighting the influences of adopting different asymmetric copulas in the reliability analysis. Since 83 

geotechnical engineering has more practices related to the asymmetric dependence problems, in this study, 84 

we choose to utilize the geotechnical problems as example for the investigation. However, the results from 85 

this study will be interpreted based on general reliability engineering perceptions.  86 

This paper contains four sections. A general review of the copula theory and the concept of 87 

asymmetric dependences are discussed in Section 2. Section 3 then introduces the procedures of 88 

constructing asymmetric copula and its flexibility in characterizing the dependences. Two geotechnical 89 

examples are then analyzed through the use of asymmetric copulas in modeling the soil parameters. Section 90 

4 provides the detailed discussion on the analysis and results. A comparison is made in the investigation 91 

between the use of symmetric and asymmetric copulas. The conclusions drawn from this study are 92 

summarized in Section 5.    93 

 94 

2．Copula theory and the fact of asymmetric dependence 95 

 96 
As mentioned previously, copula models provide a very flexible way of modeling the multivariate 97 

dependences. Because of its high applicability, it has already been applied to a wide range of engineering 98 

applications including, for example, offshore engineering (see, Noh et al., 2009; Zhang et al., 2015; Wang 99 

et al., 2017), reliability engineering (Zhang and Lam, 2016; He et al. 2018), hydrology (Salvadori and De 100 

Michele, 2007) as well as economics (Fan and Patton, 2014; Zhang, 2018). The theoretical background has 101 
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already been established by the former researchers, see Appendix A. For the reference of already developed 102 

copula models, one can refer to Nelsen (2006) and Joe (2014). 103 

Nevertheless, the traditional copulas (e.g. Archimedean copulas) may have problems when they are 104 

used in engineering practices. Specifically, the traditional copulas can hardly capture the asymmetric 105 

dependences in the data sample. Unfortunately, these asymmetric dependences commonly exist in 106 

engineering practice, e.g. geotechnical designs. For example, the feasible domain of soil parameters is 107 

usually quite restricted because of the physical phenomenon. This is also a major reason causing asymmetric 108 

dependencies among most engineering variables. A typical example would be the soil cohesion strength and 109 

soil friction angle. It is impossible to have a large value of soil cohesion strength accompanied by a large 110 

value of friction angle because of the physical limit. Therefore, the observations of some variable 111 

combinations could not exist in real nature. This effect is illustrated through an example scatter plot in Fig. 112 

1. As seen in the figure, the lower-right region (marked with a cross) contains no data. The scatterings of 113 

the data can only be available in the left-upper region (marked with a tick). More typical examples can be 114 

seen from the scatter plot of soil data retrieved from the database provided in the webpage of the Technical 115 

Committee on Risk Assessment & Management (TC304) in Fig. 2. As illustrated in the plots, the scatterness of 116 

the chosen soil parameters undrained shear strength su, preconsolidation stress σ’p and vertical effective stress 117 

σ’v are not symmetric. In fact, they are inherently dependent on the liquid limit and over consolidation ratio 118 

which makes their dependences quite asymmetric. From these scatter plots, it can be seen obviously that no data 119 

is distributed in the upper-lower domain (as marked by the red star symbol). 120 
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 121 
Figure 1 Asymmetric domain caused by physical phenomenon. 122 
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Figure 2 Examples of soil data having asymmetric domain (data retrieved from Ching and Phoon, 126 

(2012), Ching et al. (2014) and D’Ignazio et al. (2016)) 127 

This implicit physical phenomenon could exert limit of occurrence for some data combinations, 128 

which reduces the feasible domain of the variables. Concerning these physical features in the multivariate 129 

data modeling, especially copula approach, is not straightforward and still needs further development. More 130 

advanced techniques are therefore needed on the improvement of traditional copula model to further 131 

enhance this approach. 132 

 133 

3．Asymmetric copulas 134 

 135 
To capture the asymmetric dependences in a copula function, the technique of constructing asymmetric 136 

copulas is introduced herein. For the measure of asymmetric dependence, one can refer to Appendix A. 137 

3.1 Formulations of asymmetric copulas 138 
 139 
To cater for the asymmetric dependences in a copula, the technique of asymmetrizing is needed. In other 140 

words, the construction of asymmetric copulas is based on a combination of initial existing copulas and the 141 

procedures of asymmetrizing. Various ways of constructing asymmetric copulas have been studied in the 142 

prior works (Grimaldi and Serinaldi, 2006; Mesiar and Najjari, 2014; Mazo et al., 2015). However, not all 143 

these former developed asymmetric copulas are useful in practice. Many of them need very sophisticated 144 

extra functions to characterize the asymmetric dependencies, which are quite cumbersome for the numerical 145 

η∞=0.02 
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computations. For example, the Archimax copula developed by Charpentier et al. (2014) is an asymmetric 146 

copula that requires the Pickhands dependence function for its construction. Therefore, from the practical 147 

point of view, the most commonly applied asymmetrizing technique is discussed herein. Meanwhile, this 148 

work is devoted to the construction of asymmetric copula families based on the traditional symmetric 149 

copulas, e.g. Archimedean copulas. Therefore, the asymmetric copulas with a very complicated 150 

mathematical formulation would not be the primary concern in this study. 151 

The most popular and simple way of constructing asymmetric copulas is by means of the Khoudraji 152 

transformations (Liebscher, 2008). Through such modification, the traditional Archimedean copulas can be 153 

asymmetrized. The general formula for constructing this kind of asymmetric copula is given as following 154 

( ) ( ) ( )( )1 1 1
1

,..., ,...,
m

K n i i in n
i

C u u C g u g u
=

= ∏ ,   (1) 155 

where CK is the constructed asymmetric copula based on Khoudraji transformation, 𝐶𝐶1, … , 𝐶𝐶𝑚𝑚 are the base 156 

copulas which are for n-dimensional variables,  𝑔𝑔𝑖𝑖𝑖𝑖: [0,1] → [0,1] for i=1,…,m, j=1,…,n are the individual 157 

functions which should be strictly increasing or identically equal to 1. The individual functions here play an 158 

important role in asymmetrizing the copulas. The formulation of the individual functions 𝑔𝑔𝑖𝑖𝑖𝑖need to follow 159 

very strict rules in order to guarantee the fundamental properties of copula. The following conditions must 160 

be satisfied: 161 

1. 𝑔𝑔𝑖𝑖𝑖𝑖(1) = 1 and 𝑔𝑔𝑖𝑖𝑖𝑖(0) = 0, 162 

2. 𝑔𝑔𝑖𝑖𝑖𝑖 is continuous on [0,1], 163 

3. If there are at least two functions 𝑔𝑔𝑖𝑖1𝑗𝑗 , 𝑔𝑔𝑖𝑖2𝑗𝑗 with 1 ≤ 𝑖𝑖1, 𝑖𝑖2 ≤ 𝑚𝑚 which are not identically equal to 1, 164 

then 𝑔𝑔𝑖𝑖𝑖𝑖(𝑥𝑥) > 𝑥𝑥 holds for 𝑥𝑥 ∈ (0,1), i=1,…,m. 165 

From the above formulation, it is easy to see the properties of constructed asymmetric copula are 166 

largely dependent on the individual functions. This asymmetrizing technique is also known as an extension 167 

of Khoudraji’s device (1995).On the other hand, it should also be realized various groups of parametric 168 
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copulas can be selected for the base copulas 𝐶𝐶1, … , 𝐶𝐶𝑚𝑚, e.g. Archimedean copulas. As for the individual 169 

functions 𝑔𝑔𝑖𝑖𝑖𝑖, many candidate functions which are suitable for the copula construction have been proposed 170 

by Liebscher (2008) - see Table 1. One should know, by adopting type I individual function in Table 1 and 171 

setting m, n=2, Eq. (1) becomes exactly the Khoudraji copula. Moreover, it is also possible to choose the 172 

number and type of individual copulas. Such flexibility has made this asymmetric copula able to be extended 173 

to more complex multivariate models. A general procedure of modeling the multivariate data by using 174 

asymmetric copulas is illustrated in a flow chart in Fig. 3.  175 

 176 

Figure 3 Flowchart of reliability analysis for asymmetrically dependant variables. 177 

 178 
Table 1 Examples of individual functions 179 
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( ) 2
2 exp( ln )j j jg u u uθ θ= − + +  

{ }1,...,j for j nθ ∈  1
2jθ ≥  

*Note: type III individual functions can only be used for the asymmetric copula having two individual copulas 180 
(e.g. m=2). 181 
 182 
 183 
3.1 Comparison between asymmetric copulas and traditional copulas 184 
 185 
To have a general sense of the asymmetric copulas, a comparison between the traditional copulas and 186 

asymmetric copulas is presented herein. The scatter plot for bivariate data having dependences following 187 

traditional copulas including Gaussian, Gumbel, Clayton and Frank is compared in Fig. 4. For demonstrating 188 

purpose, two asymmetric copulas, which are constructed by using two base copulas, Gumbel copula and 189 

Clayton, are also included in the comparison. The type I individual function in Table 1 is utilized in this 190 

asymmetric copula construction. The parameter values of the individual function are set at (θ11=0.3, θ12=0.6) 191 

and (θ11=0.6, θ12=0.3) for each of the asymmetric copulas. To make an acceptable comparison, the 192 

Spearman’s ρs of all the bivariate data simulated from these copulas is set to be 0.7. From the scatter plot 193 

results that each copula characterizes a specific type of dependences. Compared to the traditional copulas, 194 

the asymmetric phenomenon in the dependence of the bivariate data can be obviously observed in the 195 

asymmetric copula examples. In the traditional copula examples, although the dependences can be 196 

diversified (as shown in the scatterings concentrations), the data can only be distributed symmetrically with 197 

the diagonal line. In other words, the lower-upper tail dependence λ𝑙𝑙,𝑢𝑢  equals to the upper-lower tail 198 

dependence λ𝑢𝑢,𝑙𝑙  in the symmetric copula, whereas λ𝑙𝑙,𝑢𝑢≠λ𝑢𝑢,𝑙𝑙  in asymmetric copulas. Moreover, the 199 

asymmetric copula can simulate the bivariate data in different ways even for the same dependence measure. 200 

As can be seen in Fig. 4 (e) and (f), the scatterings in these two are quite different even if they possess the 201 

same value of Spearman’s ρs and even the same measure of asymmetry, e.g. η∞. In Fig. 4 (e), it has higher 202 

lower-upper tail dependences than upper-lower tail dependences, e.g. λ𝑙𝑙,𝑢𝑢>λ𝑢𝑢,𝑙𝑙. This is different from Fig. 203 
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4 (f) which has a higher upper-lower dependences, e.g. λ𝑙𝑙,𝑢𝑢<λ𝑢𝑢,𝑙𝑙.  204 

 205 

(a) Gaussian   (b) Gumbel   (c) Clayton 206 

 207 
  (d) Frank (e) Gumbel-Clayton (θ11=0.3, θ12=0.6) (f) Gumbel-Clayton (θ11=0.6, θ12=0.3) 208 

Figure 4 Scatter plot of 5000 simulated samples from selected bivariate copulas 209 

 210 

In fact, based on a given value of Spearman’s ρs, the asymmetric copulas can characterize various types of 211 

dependences. Likewise, even if the base copulas are known, the asymmetric copula can still produce various 212 

values of Spearman’s ρsby changing the parameter values in the individual functions. For example, by using the 213 

same base copulas, Gumbel, Clayton and Frank in Fig. 4, three asymmetric copulas can be formulated herein for 214 

a comparison. These are Gumbel-Clayton, Gumbel-Frank and Clayton-Frank asymmetric copulas and the type I 215 

individual function is used in the asymmetrizing. It should be expected that a change in θ11 and θ12will result in 216 

changes in the dependence measures in each of these asymmetric copulas. Figure 5 illustrates the value changes 217 

of Spearman’s ρs for the constructed asymmetric copulas when values of θ11 and θ12change from 0 to 1.It can be 218 

seen the value of Spearman’s ρscan change from the maximum 0.7 to the minimum 0 in all of the asymmetric 219 
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copulas. In fact, when θ11=θ12, the value of Spearman’s ρs is almost at the maximum, and when θ11=1 and θ12=0 220 

or θ11=0 and θ12=1, the dependences can almost be neglected. A high similarity between the values of θ11 and θ12 221 

would indicate a strong dependence while a small similarity implies independence. The values of θ11 and θ12 in 222 

the asymmetric copulas play a significant role in allocating the probability density concentrations in the copula 223 

domain. In other words, it can be realized the introduction of individual functions has added much more degrees 224 

of freedom in the dependence modeling of a copula function. 225 

The existence of such asymmetric dependencies in the multivariate modeling should be paid attention 226 

to. A reliable multivariate model should be accurate enough in characterizing all the statistical properties of 227 

the dataset. In constructing the asymmetric copula model, the adjusting factors (e.g. the four parameters) 228 

could be estimated in such a way that both the linear dependences and tail dependences are well fitted. In 229 

other words, besides the statistics of goodness-of-fit, the tail dependence coefficients also need to be 230 

considered in assessing the quality of a copula model. For example, the maximum likelihood method and 231 

inverse Kendall’s tau method could be applied to estimate the parameter. However, as discussed previously, 232 

when the information on the dependences of the data is only limited to correlations or covariance, plenty of 233 

copulas that possess such information can be employed. The use of one copula may not be able to depict the 234 

dependences very well. In reliability analysis of geotechnical problems, the influences of such subjective 235 

uncertainty in selecting either symmetric copulas or asymmetric copulas to the estimate of failure probability is 236 

still unknown. Since there exist such asymmetric dependences, the consideration of its influences to the reliability 237 

assessment should not be ignored. It is natural to question whether an asymmetric copula will produce significant 238 

different failure probabilities in the reliability problems when compared to a symmetric copula. Therefore, with 239 

this concern in mind, two examples are investigated in the next section.  240 

 241 

 242 
ρS 
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 243 
(a) Gumbel-Clayton Type I copula 244 

 245 
(b) Gumbel-Frank Type I copula 246 

 247 
(c) Clayton-Frank Type I copula 248 

Figure 5 Contour plot of the value of Spearman’s ρs by changing the values of θ11 and θ12 in example 249 
asymmetric copulas 250 
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into the use of characterizing the dependences among soil parameters. 255 

4.1 Example 1 - Continuous spread footing 256 
 257 
The first example corresponds to a common strip foundation on the granite residual soil. The characteristics of 258 

the problem are presented in Fig. 6. The foundation is located below the ground with a depth of D meters and the 259 

width of the foundation is B meters. This fill soil has a unit weight of 17.5 kN/m3 whereas the soil below the 260 

footing presents different mechanical and index properties. The loads were assumed to have a characteristic 261 

values of 450 kN/m, for the permanent load G, and 100 kN/m for the variable load Q. The foundation was 262 

designed in accordance to Eurocode 7 (EC 7) (Frank, 2004). 263 

 264 

Figure 6 Strip Foundation for the worked example 265 

The properties of the residual soil below the footing are the ones defined in the paper Zhang et al., 266 

(2018b). In this paper, the soil was extensively characterized and several distributions were fitted to the data, 267 

allowing the definition of the best distribution. The detailed information of measured data for the cohesion, c’p, 268 

the peak friction angle, φ’p. and the soil unit weight γ are presented in Table 2. By using the Akaike Information 269 

Criterion (AIC), the best marginal distributions are identified for each soil parameters as recorded in Table 270 

3. There is no evidence showing the unit weight has dependences on cohesion and friction angle as indicated in 271 

Table 4. Thus, only the dependence between cohesion, c’p and the peak friction angle φ’p. are considered in the 272 

soil data multivariate modeling. Based on the equations provided in Section A.2, the measure of asymmetry is 273 

estimated for (c’p, φ’p). The results are recorded in Table 5. The measure of asymmetry has non-zero value and 274 
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the upper-lower tail dependence coefficient is not the same as the lower-upper tail dependence coefficient. This 275 

indicates the bivariate data (c’p, φ’p) has asymmetries in its dependences.  276 

Table 2Measured soil cohesion, friction angle and unit weight (Zhang et al. 2018b) 277 
c'p (kPa) tan(φp') γ (kN/m3) c'p (kPa) tan(φp') γ (kN/m3) c'p (kPa) tan(φp') γ (kN/m3) 
11.68 0.85 19.19 53.75 0.37 19.23 1.22 1.01 18.96 
10.91 0.87 19.41 10.03 0.75 19.87 30.38 0.68 19.2 
12.04 0.86 19.44 10.95 0.76 19.07 0 1.19 19.02 
36.69 0.58 19.52 1.4 0.81 17.78 2.98 0.77 19.11 
0 1.19 18.29 51.12 0.25 18.35 5.23 0.85 18.78 
13.79 0.73 19.03 10.89 0.75 19.4 33.74 0.53 19.22 
13.84 0.82 20.27 1.96 1.02 19.4 18.65 0.56 18.86 
47.85 0.45 19.1 0 1.19 19.57 5.16 0.94 18.7 
5.62 1.05 17.23 34.14 0.6 19.43 8.6 0.86 18.14 
18.93 0.68 19.19 5 1.01 19.06 22.79 0.7 19.81 
14.61 0.76 17.72 16.23 0.69 18.5    

55 0.32 19.29 14.04 0.76 19.58    

6.44 1 19.27 48.22 0.38 18.02    
12.34 0.85 19.2 2.36 0.96 19.3    
5.56 0.91 18.87 0.17 1.02 17.46    

 278 
Table 3 Calculated AIC statistics for the marginal distribution model fitting 279 

 Weibull Normal Lognormal Logistic Extreme 
value 

Exponential Gamma 

𝑐𝑐´𝑝𝑝(kPa) 299.8 340.2 329.2 339.1 356.3 303.5 295.2* 
tan(φ𝑝𝑝´) -0.8646* 1.274 11.342 2.456 -0.3456 61.02 6.654 

γ(kN/m3) 51.36* 52.12 55.62 54.92 53.74 319.4 54.4 
*The lowest AIC indicates the best model. 280 
 281 
Table 4Dependences among soil parameters 282 

 (c’, tan(φp')) (c’,γ) (tan(φp'),γ) 
Correlation coefficient -0.91 0.11 -0.09 

 283 
Table 5 Measure of asymmetric dependences 284 

 Measure of asymmetry 
η∞ 

Lower-Upper Tail Dependence 
Coefficient at u=0.4 

Upper-Lower Tail Dependence 
Coefficient at u=0.4 

(c’, tan(φp')) 0.011 0.03 0.05 
 285 

Obviously, the sample size is a bit small for determining the exact joint distributions of the soil 286 

parameters. In any case, in geotechnical practices, either the information is scarce and no real statistics are 287 

possible, or simple statistics are applied. In such conditions, the full information of the residual soil properties is 288 

merely known. Therefore, the constructed multivariate models for these soil parameters need to take care of the 289 
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uncertainties resulted from data scarceness. In that sense, it should be realized various joint models can be 290 

possibly applied in fitting the multivariate soil data. Thus, the following analysis will consider the uncertainties 291 

associated with the model selections.  292 

Since no clear copulas have been specified for the dependences between cohesion and friction angle, several 293 

asymmetric copulas, as introduced in Section 3, are utilized here to model the soil data for the given correlation 294 

coefficient. To compare with the symmetric copula, the commonly adopted symmetric Archimedean copulas are 295 

also considered in this modeling of dependences. However, as there are many combination rulesin 296 

constructing the asymmetric copulas, it is impossible to investigate all types of asymmetric copulas. Thus, 297 

in order to make the problem simpler, this study will only utilizes the commonly adopted Archimedean 298 

copulas as the base copulas for the construction of asymmetric copulas. The most commonly applied 299 

Archimedean copulas that can characterize different tail dependences are used in this study, namely, Gumbel, 300 

Clayton and Frank copulas. Based on the construction rules, the asymmetric copulas are established based 301 

on these selected base copulas. Specifically, the following types of copulas are investigated and compared 302 

in modeling the cohesion and friction angle with the same given correlation coefficient: 303 

1. Gaussian copulas: The most widely applied Gaussian copula is applied herein. The Gaussian structure 304 

is considered to represent the dependences in the copula domain.  305 

2. Symmetric copulas: The classic symmetric one parameter Archimedean copulas are considered in the 306 

modeling. These are the most famous families, which features a wide range of tail dependences, namely 307 

Gumbel, Clayton and Frank copulas. 308 

3. Type I asymmetric copulas: We adopt the Khoudraji’s device for the construction of asymmetric copulas. 309 

Based on Eq. (1), we combine two base copulas from the selected Archimedean copulas. This produces 310 

three combinations namely, Gumbel-Clayton Type I, Gumbel-Frank Type I and Clayton-Frank Type I 311 

asymmetric copulas. For the individual functions, the Type I function listed in Table 1 is selected for 312 

the asymmetric copula construction.  313 

Meanwhile, it should be realized the Gumbel, Clayton and Frank copulas are usually used to 314 
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characterize positive dependences. For the current case, as cohesion and friction angle are negatively 315 

dependent, a direct use of these copulas to the data will have problems in parameter estimations. Therefore, 316 

for the ease of modeling, a simple modification in the data can be applied. Instead of directly modeling the 317 

original data, the copula models are utilized to model the (-𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)) instead of  (𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)). Since 318 

copula only cares about variables’ cumulative distribution function values, such change will have no 319 

influence on the quality of copula model. The marginal distribution models for the soil variables will remain 320 

unchanged.   321 

The results for the log-likelihood and AIC statistics for all the considered models fitting to (-𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝)), 322 

are presented in Table 6. The total log-likelihood refers to the summation of log-likelihood from both marginal 323 

distribution functions and copula function. As shown in the results, Gumbel-Clayton Type I has the lowest AIC 324 

compared to the rest models. However, the AIC values of all these candidate copula models are quite close. In 325 

fact, the goodness-of-fit test shows that all the candidate copula models could be used in the fitting to the bivariate 326 

data without rejections. Therefore, in the following, all these models will be used in the analysis and compared 327 

with each other. As there is no clear judgment in the model selections, we would like to accept them all. However, 328 

the analysis will be focusing on the differences in the reliability estimates which are resulted from using different 329 

copulas.  330 

Table 6 Comparison of copula parameter estimates and AIC statistics to the data of (𝑐𝑐´𝑝𝑝, tan(φ´𝑝𝑝))   331 
Copula type Total log-likelihood No. of parameters AIC 

Gaussian 35.53 5 -61.06 

Gumbel 37.81 5 -65.62 

Clayton 34.81 5 -59.62 

Frank 34.17 5 -58.34 

Gumbel-Clayton Type I 41.45 8 -66.9* 

Gumbel-Frank Type I 41.20 8 -66.4 

Frank-Clayton Type I 40.48 8 -64.96 

*Minimum AIC value indicates the best model. 332 

 333 

In our example, as the idea is to use the analytical expression for the load capacity of the foundation, 334 
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hence a unique value for the deterministic parameters (e.g. G, Q, D and γFill) is used in each calculation. The 335 

foundation will be designed according to the analytical formula given in EC 7. The bearing capacity of the 336 

foundation is defined as: 337 

𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑐𝑐′ ∙ 𝑁𝑁𝑐𝑐 + 𝑞𝑞′ ∙ 𝑁𝑁𝑞𝑞 + 1
2

× 𝛾𝛾∗ ∙ 𝐵𝐵′ ∙ 𝑁𝑁𝛾𝛾   (2) 338 

where the terms 𝑁𝑁𝑐𝑐,𝑁𝑁𝑞𝑞 and 𝑁𝑁𝛾𝛾 are the capacity factors, depending only on the friction angle of the ground 339 

and defined by the following expressions (Bond et al., 2016): 340 

𝑁𝑁𝑞𝑞 = 𝑒𝑒𝜋𝜋∙𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′ ∙ 𝑡𝑡𝑡𝑡𝑡𝑡2 �45° + 𝜙𝜙′

2
�   (3) 341 

𝑁𝑁𝑐𝑐 = �𝑁𝑁𝑞𝑞 − 1� ∙ 𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙′     (4) 342 

𝑁𝑁𝛾𝛾 = 𝑒𝑒
1
6∗�𝜋𝜋+3𝜋𝜋

2𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′� × (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′)2𝜋𝜋 5�    (5) 343 

The term 𝑞𝑞′ corresponds to the effective stress at the base of the foundation which, in the present case, is: 344 

𝑞𝑞′ = D × γ𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹      (6) 345 

D is the depth of the footing and 𝛾𝛾∗corresponds to average submerse unit weight of the ground below the 346 

foundation level and, in the present case, as the water level is not considered, is equal to the unit weight of 347 

the residual soil γ. 𝐵𝐵′is the effective width of the foundation being equal in the present case to 𝐵𝐵 as only 348 

vertical loads are acting on the foundation. In such conditions, the ultimate vertical load strength of the 349 

foundation is equal to: 350 

𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑞𝑞𝑢𝑢𝑢𝑢𝑢𝑢 × 𝐵𝐵     (7) 351 

And, according to EC7, the following inequality should be satisfied in order to verify the ultimate limit state 352 

for bearing resistance: 353 

𝑉𝑉𝑑𝑑 ≤ 𝑅𝑅𝑑𝑑     (8) 354 

where Vd is the vertical variable load and Rd is the bearing resistance. Applying the partial Factors of Safety 355 

proposed by the Eurocode 7, a value of safety factor 1.25 is assigned to the cohesion and 𝑡𝑡𝑡𝑡𝑡𝑡(φ′), and 1.3 356 

to the variable loads, and thus a dimension B=2.5 m satisfies the safety requirements proposed by Eurocode 357 

7.  358 
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The following step consisted in the evaluation of the Safety Margin, given the foundation geometry, namely 359 

B=2.5 m and D=1.0 m. For this purpose no partial Factors of Safety are applied and thus: 360 

𝐺𝐺 + 𝑄𝑄 ≤ 𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢     (9) 361 

where Q and G refer to the dead and live loads transferred to the shallow foundation. Thus the safety Margin 362 

(M) can be defined as: 363 

𝑀𝑀 = 𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢 − 𝐺𝐺 − 𝑄𝑄    (10) 364 

As for the residual soil studied here, Monte Carlo simulations with 10000 samples are used in the 365 

computation for representing their randomness. The associated copulas are utilized in the dependence 366 

modeling separately. The computed results for the failure probabilities and factor of safety is shown in Table 367 

7. It can be seen the failure probabilities differs quite a lot among the copulas. The highest failure probability 368 

is 2.03∙10-3 in Frank copula and the lowest failure probability is 2.00∙10-6 in Clayton copula. Although the 369 

computed failure probabilities differ a lot, the factor of safety does not show very large variations over 370 

different copulas. The main reason is because the failure probabilities are often related to distribution tails 371 

while the factor of safety is a measure of distance from the performance function mean to the safety margin. 372 

Therefore, even the value of factor of safety is very close, it could not simply imply a similar value in the 373 

failure probability. The dependences have great influences in the safety assessment. 374 

Table 7 Computed failure probabilities and safety factor for the initial value in footing example. 375 
 Gaussian Gumbel Clayton Frank Gumbel-

Clayton Type I 
Gumbel-
Frank Type I 

Clayton-
Frank Type I 

Failure 
probability 

4.19∙10-4 1.66∙10-3 2.00∙10-6 2.03∙10-3 3.70∙10-5 6.67∙10-4 3.58∙10-4 

Factor of 
safety 

8.9616 9.0208 8.9571 8.9725 9.0207 8.9400 8.9788 

 376 

To further explore the influence of asymmetric dependences on the reliability analysis, the following 377 

four factors are systematically studied: (1) the width B of the foundation; (2) the depth D of the foundation; 378 

(3) mean value of residual soil unit weight and (4) correlation coefficient between cohesion and friction 379 

angle. These investigated factors are in fact corresponding to engineering and research concerns. The width 380 

and depth of the spread footing are the primary concern from the design perspective. The mean value of the 381 

residual soil is associated with the uncertainties of geological materials and measurement. The study of the 382 
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correlation coefficient is referred to the consideration of influence of dependences. Thus, in this parametric 383 

study, the failure probabilities and the factor of safety are both computed in each cases when each factor is 384 

varied over a range of values.  385 

Figure 7(a) shows the computed failure probabilities for the spread footing when B changes from 1 m 386 

to 5 m. It is observed the symmetric copulas, Frank and Gumbel, produce the largest failure probabilities 387 

for all the considered B values and the Clayton copula produces the lowest failure probabilities. Among the 388 

asymmetric copulas, the Gumbel-Frank Type I copula produces the largest failure probabilities whereas 389 

Gumbel-Clayton Type I produces the lowest probabilities. The Gaussian copula produces a moderate value 390 

of failure probabilities which is in between the highest and lowest. These results imply that the differences 391 

in probabilities of failure produced by symmetric and asymmetric copulas are quite significant. The same 392 

conclusions can be drawn from Fig. 7(b), which shows the variations in failure probabilities regarding the 393 

change of D. The results are quite similar to the case in Fig. 7(a) despite the sensitivity of the failure 394 

probabilities. It is seen the failure probabilities changed from 0.0101 to 0.0016 when D changes from 0.5 m 395 

to 1.5 m by adopting the Gumbel copula. This is much larger compared to the change of B from 1 m to 5 m. 396 

For this particular case, it indicates the foundation depth D is more important than the width B in the 397 

reliability assessment.  398 
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(c) Mean of γ changes from 10 kN/m3 to 20 kN/m3          (d) Correlation changes from -0.5 to -0.9 402 

 403 

Figure 7 Probabilities of failure for the spread footing by using different copula models 404 

 405 
 Compared to the geometric factors, the influence of mean value of soil unit weight to the failure 406 

probabilities is even more critical. As shown in Fig. 7(c), the largest failure probability is 0.0105 and lowest 407 

failure probability is 6.00∙10-6 when mean of γ changes from 10 kN/m3 to 20 kN/m3. Obviously, the value 408 

of this soil parameter in real nature might not have such a wide variation. Here, the analysis of the parameter 409 

value is for the purpose of parametric understanding. The investigated range of parameter values is selected 410 

arbitrarily. The largest failure probabilities are produced from Gumbel and Frank copulas while the lowest 411 

failure probabilities are produced from Clayton copula. Again, the failure probabilities produced by 412 

asymmetric copulas are bounded by the symmetric copulas. The same observation can be obtained by 413 

looking at the influences of correlations between the soil parameters to the failure probabilities in Fig. 7(d). 414 

The failure probability increases as the correlation coefficient increases. The largest failure probability is 415 

produced from Gumbel copula while Clayton copula produced almost all the smallest failure probability. 416 

The performance of the asymmetric copulas is quite the same as the other cases in Fig. 7. 417 

In order to show the maximum possible dispersion in the failure probability of the problem when 418 

dependence structures varies within the set of both symmetric and asymmetric copulas, a global dispersion 419 

factor associates with the failure probability is utilized here (Tang et al., 2015). This is defined as following 420 

𝑟𝑟 = 𝑝𝑝𝑓𝑓,𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶)
𝑝𝑝𝑓𝑓,𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶)     (11) 421 
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where𝑝𝑝𝑓𝑓,𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶) = min�𝑝𝑝𝑓𝑓(𝐶𝐶), 𝐶𝐶 ∈ Θ� and 𝑝𝑝𝑓𝑓,𝑚𝑚𝑚𝑚𝑚𝑚(𝐶𝐶) = max�𝑝𝑝𝑓𝑓(𝐶𝐶), 𝐶𝐶 ∈ Θ� in which 𝑝𝑝𝑓𝑓(𝐶𝐶) is the failure 422 

probability of the spread footing associated with a specific copula C. The set of copulas Θ would include 423 

all the considered symmetric and asymmetric copulas, e.g. Θ =424 

{Gaussian, Gumbel, Clayton, Frank, Gumbel − Clayton Type I, Gumbel − Frank Type I, Clayton −425 

Frank Type I}. 426 
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(a) B changes from 1 m to 5 m    (b) D changes from 0.5 m to 1.5 m 428 
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(c) Mean of γ changes from 10 kN/m3 to 20 kN/m3          (d) Correlation changes from -0.5 to -0.9 430 

Figure 8 Dispersion factor of the probabilities of failure for the spread footing 431 

The results of the calculated dispersion factor are shown in Fig. 8. In order to make a fair comparison, the factor 432 

of safety is also calculated and set as the horizontal axis for all the soil parameters. For the geometric factors, 433 

the increase of B and D both lead to an increase of r although some fluctuations exist in the trend. The increase 434 

of the mean of soil unit weight lead to an obvious increase in the dispersion factor. However, the increase of 435 

correlation coefficient results in a decrease of r. All the results showed that the dispersion factor becomes quite 436 
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large when failure probability is small. The differences in the failure probabilities can be several orders of 437 

magnitudes. This generally implies the ignorance of the dependences would be quite problematic when 438 

estimating small failure probabilities. 439 

4.2 Example 2 - Infinite slope 440 
 441 
The second example considers the reliability analysis of an infinite slope with consideration of soil 442 

parameter uncertainties. This example corresponds to an infinite slope in a residual soil. The uncertainties 443 

regarding the soil properties including cohesion, friction angle and soil unit weight are again considered in 444 

this case study. The copula models as constructed in Section 4.1 are used again to characterize the cohesion 445 

and friction angle. The results of this example are used to compare with the above example in order to see 446 

whether the asymmetric dependences will still have large impact on the reliability results when performance 447 

function changes. The investigated slope is represented in Fig. 9, with the parameters of the residual soil 448 

also presented. In this example, the water content in the soil is not considered. 449 

 450 

Figure 9 Infinite slope on residual soil 451 

For infinite slopes the equilibrium can be established from a unitary width slice which can be shown in Fig.10: 452 

Bedrock
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 453 

Figure 10 Equilibrium for a unitary width slice 454 

For this soil slice, the equations can be established as follows 455 

𝑊𝑊′ = 𝛾𝛾 × 𝑑𝑑     (12) 456 

𝑁𝑁′ = 𝑊𝑊′ × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐    (13) 457 

𝑇𝑇′ = 𝑊𝑊′ × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠    (14) 458 

𝑇𝑇𝑟𝑟 = 𝑐𝑐′ × 1
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝑁𝑁′ × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡′   (15) 459 

whereγ is the soil unit weight, d is the depth of soil slice and β is the angle of the slope. Therefore, the 460 

reliability of the infinite slope can be evaluated by the safety margin given by 461 

𝑀𝑀 = 𝑇𝑇𝑟𝑟 − 𝑇𝑇′     (16) 462 

The associated performance function would be same as Eq. (10) while a value of M less than 0 is believed 463 

to be a failure in the infinite slope. 464 

The same calculation procedures are repeated for this infinite slope problem. As an initial case, the 465 

factors of the slope geometry are set at d=3.5 m and β=35°. The properties of the soil are considered the 466 

same as for the footing example. The calculated failure probabilities and factor of safety are recorded in 467 

Table 8. Compared to the spread footing, the differences in the failure probabilities using different copulas 468 

become smaller. The largest failure probability is 5.69∙10-3from the Gumbel copula and lowest failure 469 

probability is 2.13∙10-4from Clayton-Frank Type I copula. The computed safety factors are much smaller 470 

compared to that in the previous example.  471 
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Table 8 Computed failure probabilities and safety factor for the initial value in infinite slope example. 472 
 Gaussian Gumbel Clayton Frank Gumbel-

Clayton Type I 
Gumbel-
Frank Type I 

Clayton-
Frank Type I 

Failure 
probability 

1.93∙10-3 5.69∙10-3 3.63∙10-4 3.94∙10-3 3.56∙10-4 1.17∙10-3 2.13∙10-4 

Factor of 
safety 

1.5211 1.5210 1.5215 1.5207 1.5213 1.5212 1.5217 

 473 
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(a) d changes from 2.5 m to 4.5 m   (b) β changes from 30° to 40° 475 
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(c) Mean of γ changes from 10 kN/m3 to 20 kN/m3          (d) Correlation changes from -0.5 to -0.725 477 

Figure 11 Probabilities of failure for the infinite slope by using different copula models 478 

 479 

In this example, we consider the following parametric studies: (1) the depth d of the soil slice; (2) the 480 

angle β of the slope; (3) mean value of the slope soil unit weight and (4) correlation coefficient between cohesion 481 

and friction angle. Again, these investigated factors are related to the engineering concerns on the analysis of 482 

slope stability.  Following the same way of computations, the failure probabilities and safety factors for the slope 483 

are computed in each case when each factor is varied over a range of values. The results are plotted in Fig. 11. 484 

The influence of the dependences to the reliability analysis is also presented by the dispersion factors. By 485 
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using the same formula as the previous example, the dispersion factors for these four parameters are 486 

computed and plotted in Fig. 12. 487 
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(a) d changes from 2.5 m to 4.5 m   (b) β changes from 30° to 40° 489 
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(c) Mean of γ changes from 10 kN/m3 to 20 kN/m3          (d) Correlation changes from -0.5 to -0.725 491 

Figure 12 Dispersion factor of the probabilities of failure for the infinite slope 492 

It can be seen the computed failure probability differs considerably. The failure probability is very sensitive 493 

to the type of copulas. Meanwhile, all the dispersion factors increase with the decrease of failure probability 494 

which is quite similar as the footing example. It is observed the influence of dependences to the failure 495 

probability is also very significant in this example. The value of dispersion factor can go up to a magnitude 496 

of 104. It showed again that the failure probability is very sensitive to the dependences between the soil 497 

variables. 498 

4.3 Discussion of the Results 499 
 500 

Based on the above results, it can be concluded that the failure probability of spread footing and the 501 

failure probability of infinite slope associated with different dependences differ greatly, especially for 502 

estimating small failure probabilities. Asymmetric copulas in these cases also showed a big difference from 503 
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symmetric copulas. To provide a better explanation of the differences in failure probabilities, a comparison 504 

among the joint probability density function isolines of cohesion and friction angle is made for all the 505 

copulas. These contour lines and the limit states for the spread footing and infinite slope are both plotted in 506 

Fig. 13. The limit states for the considered problems as plotted here have adopted a deterministic value for 507 

the soil unit weight. A key different between the asymmetric copulas and symmetric copulas is the tail 508 

dependences. Compared to the symmetric copulas (Gaussian, Gumbel, Clayton and Frank), the asymmetric 509 

copulas have a small lower-lower tail dependences. This can be indicated by the contour lines where the 510 

symmetric copulas have a much wider area compared to asymmetric copulas. It is also observed from the 511 

contour plot that the lower-lower tail of asymmetric copulas is not symmetric. This also means the 512 

estimation of high quantile in a copula model might be different when using an asymmetric copula in the 513 

dependence modeling.  514 

The limit states of the considered geotechnical problems are almost lying in the lower-lower region. 515 

That is why the Gumbel copula always produces the largest failure probability as dependences in Gumbel 516 

copula are concentrated at the lower-lower region. For the rest copulas, the probability densities are not only 517 

concentrated at the lower-lower region, therefore, the failure probability is quite small. However, this 518 

phenomenon may not be true for other problems. For example, if the limit state is lying in the lower-upper 519 

region or upper-lower region, the asymmetric copulas may produce the maximum or minimum failure 520 

probabilities. The consideration of asymmetric dependences in the reliability is indeed a necessary factor. 521 

Meanwhile, it should be noticed the provided data sample in this study is quite limited. This is also the 522 

reason why the copula models cannot be easily identified. However, this is quite common in engineering 523 

applications as data scarceness problems can be frequently met in real practices. When copula function is 524 

not easily identified, the information of dependences will also be hardly captured. With only limited 525 

information about the relationship among the random variables, asymmetric copula may produce a result 526 

which can differ significantly from the symmetric copula. A further comparison is also provided for the 527 

investigated examples with consideration of different degrees of asymmetric dependences. Here, the 528 

adopted best asymmetric copula as highlighted in Table 6 is utilized, i.e. Gumbel-Clayton Type I. However, 529 
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the weighting parameters θ (as given in Table 1) in this copula are adjusted to obtain asymmetric copulas 530 

having different measure of asymmetry, i.e. η∞=0, η∞=0.001 and η∞=0.01. The reliability analysis is repeated 531 

for each of these asymmetric copulas. The results are recorded in Table 9. It can be seen in both examples 532 

as the degree of asymmetric dependences increases, the failure probability increases. This agrees well with 533 

the aforementioned finding that since the performance function is lying in lower-upper region, the 534 

asymmetric copulas may produce larger failure probabilities compared to symmetric ones. 535 

The investigation shows that the asymmetric copula approach provides another alternative way in the 536 

modelling and processing of dependent variables. This asymmetric copula approach has demonstrated to be 537 

able to produce different results in the reliability analysis compared to the symmetric copula approach. On 538 

the one hand, the room for indeterminacy in dependence models reduces the risks of too optimistic 539 

conclusions, which could be made from a traditional symmetric copula approach under rough assumptions. 540 

On the other hand, the characterization of asymmetric dependences provides a much more flexible way of 541 

modeling the real observations. In view of making critical engineering decisions, direct emphasis can be put 542 

on the extreme values in the estimated bounds for the failure probability. In this manner, global sensitivities 543 

such as failure probability with respect to dependence modeling can be revealed. Conversely, optimal design 544 

can be directly made based on specified constraints for the results such as allowable largest failure 545 

probability values. Such model can take into account various dependences including symmetric and 546 

asymmetric dependences associated with the geotechnical problem in a quantitative manner. 547 
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 548 
(a) Gaussian      (b) Gumbel 549 

 550 
(c) Clayton      (d) Frank 551 

 552 
(e) Gumbel-Clayton Type I    (f) Gumbel-Frank Type I 553 
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 554 
  (g) Clayton-Frank Type I 555 
 556 

Figure 13 Contour plots of different copulas and the limit states in two geotechnical examples (red 557 
dashed line represents the spread footing limit state with γ=18.9 kN/m3, green dotted line represents 558 

the infinite slope limit state with γ=18.9 kN/m3) 559 

Table 9 Comparison of failure probabilities for different degrees of asymmetric dependences. 560 
 η∞=0 η∞=0.001 η∞=0.01 
Example 1 2.23∙10-6 7.52∙10-6 1.95∙10-5 
Example 2 1.09∙10-5 5.87∙10-5 2.16∙10-4 

 561 

5．Conclusions 562 

In this paper, the influence of asymmetric dependences to the reliability analysis has been analyzed by 563 

means of the asymmetric copulas in a multivariate setting. The fundamental methodology including the 564 

asymmetrizing techniques in formulating an asymmetric copula is introduced in detail, which includes the 565 

theoretical concepts of measuring the asymmetric dependences and tail dependences for a copula model. 566 

Geotechnical engineering problem is utilized in this study for the investigation of the influences of 567 

asymmetric dependence to the reliability analysis. Based on selected Archimedean copulas, the asymmetric 568 

copulas were constructed and then compared with traditional symmetric copulas on the modeling of soil 569 

parameters for the reliability analysis of a spread footing and an infinite slope. The results showed the 570 

computed failure probabilities and factors of safety differ significantly among the selected copulas. 571 
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Although one expects different results to be produced by symmetric copulas and asymmetric copulas, the 572 

magnitude and significance of these differences have not been reported. It was shown the ignorance of the 573 

asymmetric dependence in the reliability analysis might create large errors in the results. It is of practical 574 

importance to select the most appropriate copula in characterizing the dependence structure of soil 575 

parameters. The ignorance of asymmetric dependences might largely reduce the accuracy in the reliability 576 

analysis or risk assessment when only limited information of variables is known. However, it should be 577 

pointed out the results obtained from the present study can only be interpreted for the investigated 578 

geotechnical examples. The parameter may exhibit different dependences in other situations when 579 

engineering problem changes. Moreover, it also should be realized the number of considered candidate 580 

asymmetric copulas is small. There are still many more asymmetric copulas that could be constructed from 581 

the procedures introduced in this paper. Thus, the results may also be distorted if other copulas are adopted. 582 

The conclusions drawn from the thesis should be seen in the light of these limitations. The influence of these 583 

limitations to the reliability results may need further investigations in the future. Future work seems 584 

necessary to investigate the ways of selecting base copulas and individual functions in the construction of 585 

asymmetric copulas. Also, applications of the obtained asymmetric copula to real engineering problems, as 586 

well as different performance functions, may prove to have relevant interest regarding Reliability Based 587 

Design. 588 

 589 

Appendix A Fundamental knowledge of copulas and dependence concepts 590 

In this section, the fundamental knowledge of copula as well as dependence/asymmetric dependence 591 

concepts are briefly introduced. 592 

A.1 Definition and basic properties 593 
 594 
In general, a copula is a model which couples a multivariate distribution to its one-dimensional marginal 595 

distributions. The fundamental definition of copula originates from the Sklar’s theorem (Sklar, 1959): 596 

Sklar’s Theorem: Let H be a joint distribution function for n random variables with marginal distributions 597 

H1 ,…, Hn.  A copula C is then defined as an n-dimensional joint distribution function such that for all x ∈598 
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Rn 599 

  ( ) ( ) ( )( )1 1 1, , , ,n n nH x x C H x H x=     (A.1) 600 

If H1, …,Hn are all continuous, then C should be unique. As seen in its formulation, the copula function does 601 

not need to cater about the marginal distribution of the random variables. This is because the integral 602 

transform which transforms random variables to their cumulative distribution function values ui=Hi(Xi) has 603 

turned all the random variables in a copula to be uniformly distributed variables within [0, 1]. Therefore, 604 

the domain and range of values for an n-dimensional copula function is 605 

 [ ] [ ]: 0,1 0,1nC → .      606 

The copula approach has the freedom of selecting any marginal distributions for the variables, which 607 

makes it much more flexible, compared to the traditional joint distribution models in characterizing 608 

individual variable’s behaviors. Many well-known developed copula functions and families have been 609 

applied in various fields; see e.g. (Hutchinson and Lai 1990; Trivedi & Zimmer, 2007).The most commonly 610 

applied copulas are the Archimedean copulas which can be expanded to a high multivariate model through 611 

straightforward transformations (Genest & Rivest, 1993). 612 

  613 
A.2 Dependence measures 614 
 615 
When addressing the significance of the copula approach in modeling multivariate data, the concepts of 616 

dependence should be explained in detail herein. In measuring the dependence of multivariate data, the 617 

Pearson’s correlation coefficient ρ is most commonly applied as it could depict the linear dependences 618 

among the data. Obviously, the concept is too simple and biased and, thus, many researchers tend to criticize 619 

it (Phoon & Ching, 2014). Generally, if the data shows a perfect linear relationship, e.g. ρ = 1, the 620 

dependency is well represented by the correlation coefficient. However, if the data is observed to be 621 

imperfect linearly dependent, e.g. -1<ρ<1, the value of the correlation coefficient could be questionable in 622 

measuring the dependence. Moreover, it is also known the linear correlation coefficient is very sensitive to 623 

the marginal distributions of the variables. As such, other concepts of dependencies have been brought into 624 

the use in measuring the dependences. The concepts such as Kendall’s τk and Spearman’s ρs are considered 625 
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as more robust dependence measures. Kendall’s τk is a measure of the concordance/discordance in the data 626 

sample, and Spearman’s ρs is a measure of the rank correlations (see Salvadori et al. 2007). Since these two 627 

measures are concordant measures of rankings among the variables, they are believed to be more robust 628 

when compared to Pearson’s correlation. 629 

 630 

A.3 Measure of asymmetry and tail dependency of a copula model 631 
 632 
Many definitions of symmetric dependence in a copula model are developed in the literature. Among these, 633 

the concept of “exchangeability” is commonly adopted as the fundamental measure of symmetry for the 634 

copula model. This can be defined as following. For a given copula 𝐶𝐶(𝑢𝑢1, … , 𝑢𝑢𝑛𝑛), if    635 

  636 

  ( )1 1,..., ,..., ,..., ( ,..., ,..., ,..., )i j n j i nC u u u u C u u u u= is true for any pair 𝑢𝑢𝑖𝑖, 𝑢𝑢𝑗𝑗 ∈ 𝐈𝐈, 637 

then it is believed the copula 𝐶𝐶(𝑢𝑢1, … , 𝑢𝑢𝑛𝑛) can be said to be symmetric (Genest and Nešlehová, 2013). 638 

Therefore, if the above condition is not met, the copula is considered as asymmetric. Based on this concept, 639 

the measure of asymmetry in a copula model can be estimated as following (Klement and Mesiar, 2006)  640 

( ) ( ) ( ){ }1/1 1

1 2 2 1 1 20 0
, ,

p
p

p C C u u C u u du duη = −∫ ∫    (A.2) 641 

where p is a factor which can be set at any value greater than or equal to 1. For the convenience, usually the 642 

value of p is set to be infinity in the measure of asymmetry. This leads to a simplified formula as 643 

( )
( ) [ ]

( ) ( )
2

1 2

1 2 2 1
, 0,1
sup , ,

u u
C C u u C u uη∞

∈

= −     (A.3) 644 

A large value of this measure implies a strong asymmetric dependence in copula.  645 

Other than the measure of asymmetry, the tail dependences could also be used to detect the 646 

asymmetric characteristics. Fundamentally, the tail dependence coefficients include four types, namely, 647 

lower-lower, lower-upper, upper-lower, upper-upper tail dependence coefficients. In the case of bivariate 648 

copula 𝐶𝐶(𝑢𝑢1, 𝑢𝑢2), the calculation of these tail dependence coefficients is given by(Nelsen 2006) 649 
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( ) ( ) ( )( ) ( ), 1 1
1|2 1 1 2 20 0

,
lim | liml l

u u

C u u
C P x H u x H u

u
λ − −

→ + → +
= ≤ ≤ =    (A.4) 650 

( ) ( ) ( )( ) ( ), 1 1
1|2 1 1 2 20 0

,1
lim 1 | 1 liml u

u u

C u u
C P x H u x H u

u
λ − −

→ + → +

−
= ≥ − ≤ = −   (A.5) 651 

( ) ( ) ( )( ) ( ), 1 1
1|2 1 1 2 20 0

1 ,
lim | 1 1 limu l

u u

C u u
C P x H u x H u

u
λ − −

→ + → +

−
= ≤ ≥ − = −   (A.6) 652 

( ) ( ) ( )( ) ( ), 1 1
1|2 1 1 2 20 0

1 1 ,1
lim 1 | 1 2 limu u

u u

C u u
C P x H u x H u

u
λ − −

→ + → +

− − −
= ≥ − ≥ − = −  (A.7) 653 

where𝐻𝐻1−1(. ) and 𝐻𝐻2−1(. ) are the inverse cumulative distribution functions for x1 and x2. Obviously, from 654 

Eqs. (A.4)-(A.7) we can see these calculations provide measures of the tail dependence for the two variables 655 

in four different extremes. 656 

Tail dependencies can provide useful information regarding the asymmetric dependences from the 657 

intrinsic information. The comparison of lower-upper and upper-lower tail coefficients can be utilized as a 658 

reference in assessing the asymmetry of a copula. For example, in a symmetric copula, the copula function 659 

values 𝐶𝐶(𝑢𝑢, 1 − 𝑢𝑢) in Eq. (A.5) and 𝐶𝐶(1 − 𝑢𝑢, 𝑢𝑢) in Eq. (A.6) should be the same according to the property 660 

of exchangeability. In other words, the traditional symmetric copula models can allow differences between 661 

tail coefficients in the lower-lower and upper-upper domain (as shaded by the yellow color in Fig. A.1), but 662 

could not allow any differences between tail coefficients in the lower-upper and upper-lower domain (as 663 

shaded by the red color in Fig. A.1). For instance, if the lower-upper and upper-lower tail dependence 664 

coefficients of a bivariate copula are different (e.g. 𝜆𝜆1|2
𝑢𝑢,𝑙𝑙 ≠𝜆𝜆1|2

𝑙𝑙,𝑢𝑢  ), that copula would be considered as an 665 

asymmetric one. 666 
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 667 

Figure A.1 Tail dependences in the copula domain 668 
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