161 research outputs found

    A survey on mitigation methods to Black hole Attack on AODV routing protocol

    Get PDF
    AODV is a routing protocol that is designed for MANETs and it is using the on-demand routing method to establish the routes between nodes. The main benefit of this protocol is establishment of desired routes to destination when the source node requires and it keeps the routes as long as they are needed. The black hole attack is a common attack that can be accrued in AODV protocols. In this kind of attack, the attacker uses of one or more malicious nodes which advertise themselves in the network by setting a zero metric to all the destinations that causes all the nodes toward the data packets to these malicious nodes. The AODV is vulnerable against black hole attacks due to having network centric property, where all the nodes have to share their routing tables for each other. In this paper, we present the survey of existing mitigation methods that have been proposed to secure AODV. Keywords: Mobile Ad hoc Network (MANET); Black hole attack; Cooperative Black hole attack; Ad-hoc On-demand Distance Vector (AODV)

    Comprehensive review of collaborative network attacks in MANET

    Get PDF

    Utilizing the protected learning calculation method to forestall the Black Hole Attacks in Mobile ad-hoc networks

    Get PDF
    Mobile Ad-hoc Networks (MANETs) are a gathering of portable hosts which speak with each other with no focal system power or altered foundation. Because of its attributes like portability furthermore, heterogeneity ad-hoc networks are more defenseless to assaults. Black hole is an assault where every one of the bundles sent to assailant hub, by neighboring hubs, are dropped purposefully. In this thesis, we propose a secure learning calculation method which intends to identify and securing the black hole by considering the bundle drop reasons in needless mode. Presented AODV direction convention is adjusted to distinguish and securing the black hole assault. The investigation results demonstrate that our proposed calculation secure the AODV against black hole assault in MANETs

    Manifestation and mitigation of node misbehaviour in adhoc networks

    Get PDF
    Mobile adhoc network is signified as a boon for advance and future wireless communication system. Owing to its self-establishing network features and decentralization, the system can actually establish a wireless communication with vast range of connectivity with the other nodes. However, the system of MANET is also beheld with various technical impediments owing to its inherent dynamic topologies. Although there are abundant volume of research work, but very few have been able to effectively address the node misbehavior problems in MANET. The paper initially tries to draw a line between different types of nodes in MANETs based on their behavior characteristics, then reviews some of the significant contribution of the prior researches for addressing node misbehavior issues. A major emphasis is laid on is the researches which use game theory as a tool to study and address the misbehavior problems. The manuscript is developed considering some of the latest and standard evidences of past 5 years and finally discusses the open issues related to the problems

    Intelligent detection of black hole attacks for secure communication in autonomous and connected vehicles

    Get PDF
    Detection of Black Hole attacks is one of the most challenging and critical routing security issues in vehicular ad hoc networks (VANETs) and autonomous and connected vehicles (ACVs). Malicious vehicles or nodes may exist in the cyber-physical path on which the data and control packets have to be routed converting a secure and reliable route into a compromised one. However, instead of passing packets to a neighbouring node, malicious nodes bypass them and drop any data packets that could contain emergency alarms. We introduce an intelligent black hole attack detection scheme (IDBA) tailored to ACV. We consider four key parameters in the design of the scheme, namely, Hop Count, Destination Sequence Number, Packet Delivery Ratio (PDR), and End-to-End delay (E2E). We tested the performance of our IDBA against AODV with Black Hole (BAODV), Intrusion Detection System (IdsAODV), and EAODV algorithms. Extensive simulation results show that our IDBA outperforms existing approaches in terms of PDR, E2E, Routing Overhead, Packet Loss Rate, and Throughput

    Cooperative Self-Scheduling Secure Routing Protocol for Efficient Communication in MANET

    Get PDF
    In wireless transmission, a Mobile Ad-hoc Network (MANET) contains many mobile nodes that can communicate without needing base stations. Due to the highly dynamic nature of wireless, MANETs face several issues, like malicious nodes making packet loss, high energy consumption, and security. Key challenges include efficient clustering and routing with optimal energy efficiency for Quality of Service (QoS) performance. To combat these issues, this novel presents Cooperative Self-Scheduling Secure Routing Protocol (CoS3RP) for efficient scheduling for proficient packet transmission in MANET. Initially, we used Elite Sparrow Search Algorithm (ESSA) for identifies the Cluster Head (CH) and form clusters. The Multipath Optimal Distance Selection (MODS) technique is used to find the multiple routes for data transmission. Afterward, the proposed CoS3RP transmits the packets based on each node authentication. The proposed method for evaluating and selecting efficient routing and data transfer paths is implemented using the Network simulator (NS2) tool, and the results are compared with other methods. Furthermore, the proposed well performs in routing performance, security, latency and throughput

    A Prey-Predator Defence Mechanism For Ad Hoc On-Demand Distance Vector Routing Protocol

    Get PDF
    This study proposes a nature-based system survivability model. The model was simulated, and its performance was evaluated for the mobile ad hoc wireless networks. The survivability model was used to enable mobile wireless distributed systems to keep on delivering packets during their stated missions in a timely manner in the presence of attacks. A prey-predator communal defence algorithm was developed and fused with the Ad hoc On-demand Distance Vector (AODV) protocol. The mathematical equations for the proposed model were formulated using the Lotka-Volterra theory of ecology. The model deployed a security mechanism for intrusion detection in three vulnerable sections of the AODV protocol. The model simulation was performed using MATLAB for the mathematical model evaluation and using OMNET++ for protocol performance testing. The MATLAB simulation results, which used empirical and field data, have established that the adapted Lotka-Volterra-based equations adequately represent network defense using the communal algorithm. Using the number of active nodes as a measure of throughput after attack (with a maximum throughput of 250 units), the proposed model had a throughput of 230 units while under attack and the intrusion was nullified within 2 seconds. The OMNET++ results for protocol simulation that use throughput, delivery ratio, network delay, and load as performance metrics with the OMNET++ embedded datasets showed good performance of the model, which was better than the existing conventional survivability systems. The comparison of the proposed model with the existing model is also presented. The study concludes that the proposed communal defence model was effective in protecting the entire routing layer (layer 2) of the AODV protocol when exposed to diverse forms of intrusion attacks
    corecore