33,935 research outputs found

    Electric Vehicles Charging Control based on Future Internet Generic Enablers

    Full text link
    In this paper a rationale for the deployment of Future Internet based applications in the field of Electric Vehicles (EVs) smart charging is presented. The focus is on the Connected Device Interface (CDI) Generic Enabler (GE) and the Network Information and Controller (NetIC) GE, which are recognized to have a potential impact on the charging control problem and the configuration of communications networks within reconfigurable clusters of charging points. The CDI GE can be used for capturing the driver feedback in terms of Quality of Experience (QoE) in those situations where the charging power is abruptly limited as a consequence of short term grid needs, like the shedding action asked by the Transmission System Operator to the Distribution System Operator aimed at clearing networks contingencies due to the loss of a transmission line or large wind power fluctuations. The NetIC GE can be used when a master Electric Vehicle Supply Equipment (EVSE) hosts the Load Area Controller, responsible for managing simultaneous charging sessions within a given Load Area (LA); the reconfiguration of distribution grid topology results in shift of EVSEs among LAs, then reallocation of slave EVSEs is needed. Involved actors, equipment, communications and processes are identified through the standardized framework provided by the Smart Grid Architecture Model (SGAM).Comment: To appear in IEEE International Electric Vehicle Conference (IEEE IEVC 2014

    Future “greener” urban transport: accessible, mobile and resilient cities?

    Get PDF
    Geographers, amongst others, have been considering urban futures for some time now. They all try to conceptually understand what a “sustainable city” in Europe / the UK / globally might look like. oncepts such as liveable, “green”, sustainable and resilient are being discussed, with carbon emissions and transitions, including from transport. Mobility (or what some authors call motility) is one strand, with lifecycle assessment of vehicles and fuels being applied . This article reviews visions and policies for more resilient urban transport

    Motion Hub, the implementation of an integrated end-to-end journey planner

    Get PDF
    © AET 2018 and contributorsThe term “eMobility” and been brought into use partly to encourage use of electric vehicles but more especially to focus on the transformation from electric vehicles as products to electrified personal transport as a service. Under the wider umbrella of Mobility-as-a-Service (MaaS) this has accompanied the growth of car clubs in general. The Motion Hub project has taken this concept a step further to include not just the car journey but the end-to-end journey. The booking of multifaceted journeys is well established in the leisure and business travel industries, where flights, car hire and hotels are regularly booked with a single transaction on a website. To complete an end-to-end scenario Motion Hub provides integration of public transport with electric vehicle and electric bike use. Building on a previous InnovateUK funded project that reviewed the feasibility of an integrated journey management system, the Motion Hub project has brought together a Car Club, a University, and EV infrastructure company, a bicycle hire company with electric bicycle capabilities and a municipality to implement a scheme and test it on the ground. At the heart of the project has been the development of a website that integrates the public transport booking with the hire of electric vehicles or bicycles. Taking the implementation to a fully working system accessible to members of the public presents a number of significant challenges. This paper identifies those challenges, details the progress and success of the Motion Hub and sets out the lessons learnt about end-to-end travel. The project was fortunate to have as its municipal partner the Council of a sizeable South East England town, Southend-on-Sea. With a population of 174,800 residents with good road, rail and air links there is considerable traffic in and out of the town. The Council has already shown its commitment to sustainable transport. In the previous six years it had installed a number of electric vehicle charging points for use by the public and latterly had trialled car club activity. An early challenge in the project was the location of physical infrastructure in an already crowded municipal space in order to provide the local ‘spokes’ of the system. In addition to its existing charging points, Southend now has four locations where electric cars can be hired, five where electric bikes are available and the local resources to maintain these assets. Combining a number of web-based services and amalgamating their financial transactions is relatively straightforward. However, introducing the potential for public transport ticketing as well raises additional security, scale and financial constraints. The project has engaged with major players and regulators across the public transport industry.Peer reviewe

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    VANET Applications: Hot Use Cases

    Get PDF
    Current challenges of car manufacturers are to make roads safe, to achieve free flowing traffic with few congestions, and to reduce pollution by an effective fuel use. To reach these goals, many improvements are performed in-car, but more and more approaches rely on connected cars with communication capabilities between cars, with an infrastructure, or with IoT devices. Monitoring and coordinating vehicles allow then to compute intelligent ways of transportation. Connected cars have introduced a new way of thinking cars - not only as a mean for a driver to go from A to B, but as smart cars - a user extension like the smartphone today. In this report, we introduce concepts and specific vocabulary in order to classify current innovations or ideas on the emerging topic of smart car. We present a graphical categorization showing this evolution in function of the societal evolution. Different perspectives are adopted: a vehicle-centric view, a vehicle-network view, and a user-centric view; described by simple and complex use-cases and illustrated by a list of emerging and current projects from the academic and industrial worlds. We identified an empty space in innovation between the user and his car: paradoxically even if they are both in interaction, they are separated through different application uses. Future challenge is to interlace social concerns of the user within an intelligent and efficient driving

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
    • 

    corecore