36,869 research outputs found

    Bringing context-aware access to the web through spoken interaction

    Get PDF
    The web has become the largest repository of multimedia information and its convergence with telecommunications is now bringing the benefits of web technology to hand-held devices. To optimize data access using these devices and provide services which meet the user needs through intelligent information retrieval, the system must sense and interpret the user environment and the communication context. In addition, natural spoken conversation with handheld devices makes possible the use of these applications in environments in which the use of GUI interfaces is not effective, provides a more natural human-computer interaction, and facilitates access to the web for people with visual or motor disabilities, allowing their integration and the elimination of barriers to Internet access. In this paper, we present an architecture for the design of context-aware systems that use speech to access web services. Our contribution focuses specifically on the use of context information to improve the effectiveness of providing web services by using a spoken dialog system for the user-system interaction. We also describe an application of our proposal to develop a context-aware railway information system, and provide a detailed evaluation of the influence of the context information in the quality of the services that are supplied.Research funded by projects CICYT TIN2011-28620-C02-01, CICYT TEC 2011-28626-C02-02, CAM CONTEXTS (S2009/TIC-1485), and DPS2008-07029-C02-02.Publicad

    Multi-Agent System (MAS) Applications in Ambient Intelligence (AmI) Environments

    Get PDF
    Proceedings of: 8th Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS`10). Salamanca (Spain), 28-30 April 2010Research in context-aware systems has been moving towards reusable and adaptable architectures for managing more advanced human-computer interfaces. Ambient. Intelligence (AmI) investigates computer-based services, which are ubiquitous and based on a variety of objects and devices. Their intelligent and intuitive interfaces act as mediators through which people can interact with the ambient environment. In this paper we present an agent-based architecture which supports the execution of agents in AmI environments. Two case studies are also presented, an airport information system and a railway information system, which uses spoken conversational agents to respond to the user's requests using the contextual information that includes the location information of the user.This work has been partially supported by CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM MADRINET S-0505/TIC/0255 and DPS2008-07029-C02-02Publicad

    Ensuring Cyber-Security in Smart Railway Surveillance with SHIELD

    Get PDF
    Modern railways feature increasingly complex embedded computing systems for surveillance, that are moving towards fully wireless smart-sensors. Those systems are aimed at monitoring system status from a physical-security viewpoint, in order to detect intrusions and other environmental anomalies. However, the same systems used for physical-security surveillance are vulnerable to cyber-security threats, since they feature distributed hardware and software architectures often interconnected by ‘open networks’, like wireless channels and the Internet. In this paper, we show how the integrated approach to Security, Privacy and Dependability (SPD) in embedded systems provided by the SHIELD framework (developed within the EU funded pSHIELD and nSHIELD research projects) can be applied to railway surveillance systems in order to measure and improve their SPD level. SHIELD implements a layered architecture (node, network, middleware and overlay) and orchestrates SPD mechanisms based on ontology models, appropriate metrics and composability. The results of prototypical application to a real-world demonstrator show the effectiveness of SHIELD and justify its practical applicability in industrial settings

    Precise vehicle location as a fundamental parameter for intelligent selfaware rail-track maintenance systems

    Get PDF
    The rail industry in the UK is undergoing substantial changes in response to a modernisation vision for 2040. Development and implementation of these will lead to a highly automated and safe railway. Real-time regulation of traffic will optimise the performance of the network, with trains running in succession within an adjacent movable safety zone. Critically, maintenance will use intelligent trainborne and track-based systems. These will provide accurate and timely information for condition based intervention at precise track locations, reducing possession downtime and minimising the presence of workers in operating railways. Clearly, precise knowledge of trains’ real-time location is of paramount importance. The positional accuracy demand of the future railway is less than 2m. A critical consideration of this requirement is the capability to resolve train occupancy in adjacent tracks, with the highest degree of confidence. A finer resolution is required for locating faults such as damage or missing parts, precisely. Location of trains currently relies on track signalling technology. However, these systems mostly provide an indication of the presence of trains within discrete track sections. The standard Global Navigation Satellite Systems (GNSS), cannot precisely and reliably resolve location as required either. Within the context of the needs of the future railway, state of the art location technologies and systems were reviewed and critiqued. It was found that no current technology is able to resolve location as required. Uncertainty is a significant factor. A new integrated approach employing complimentary technologies and more efficient data fusion process, can potentially offer a more accurate and robust solution. Data fusion architectures enabling intelligent self-aware rail-track maintenance systems are proposed

    Separation Framework: An Enabler for Cooperative and D2D Communication for Future 5G Networks

    Get PDF
    Soaring capacity and coverage demands dictate that future cellular networks need to soon migrate towards ultra-dense networks. However, network densification comes with a host of challenges that include compromised energy efficiency, complex interference management, cumbersome mobility management, burdensome signaling overheads and higher backhaul costs. Interestingly, most of the problems, that beleaguer network densification, stem from legacy networks' one common feature i.e., tight coupling between the control and data planes regardless of their degree of heterogeneity and cell density. Consequently, in wake of 5G, control and data planes separation architecture (SARC) has recently been conceived as a promising paradigm that has potential to address most of aforementioned challenges. In this article, we review various proposals that have been presented in literature so far to enable SARC. More specifically, we analyze how and to what degree various SARC proposals address the four main challenges in network densification namely: energy efficiency, system level capacity maximization, interference management and mobility management. We then focus on two salient features of future cellular networks that have not yet been adapted in legacy networks at wide scale and thus remain a hallmark of 5G, i.e., coordinated multipoint (CoMP), and device-to-device (D2D) communications. After providing necessary background on CoMP and D2D, we analyze how SARC can particularly act as a major enabler for CoMP and D2D in context of 5G. This article thus serves as both a tutorial as well as an up to date survey on SARC, CoMP and D2D. Most importantly, the article provides an extensive outlook of challenges and opportunities that lie at the crossroads of these three mutually entangled emerging technologies.Comment: 28 pages, 11 figures, IEEE Communications Surveys & Tutorials 201

    A software architecture for autonomous maintenance scheduling: Scenarios for UK and European Rail

    Get PDF
    A new era of automation in rail has begun offering developments in the operation and maintenance of industry standard systems. This article documents the development of an architecture and range of scenarios for an autonomous system for rail maintenance planning and scheduling. The Unified Modelling Language (UML) has been utilized to visualize and validate the design of the prototype. A model for information exchange between prototype components and related maintenance planning systems is proposed in this article. Putting forward an architecture and set of usage mode scenarios for the proposed system, this article outlines and validates a viable platform for autonomous planning and scheduling in rail

    Context-Awareness Enhances 5G Multi-Access Edge Computing Reliability

    Get PDF
    The fifth generation (5G) mobile telecommunication network is expected to support Multi- Access Edge Computing (MEC), which intends to distribute computation tasks and services from the central cloud to the edge clouds. Towards ultra-responsive, ultra-reliable and ultra-low-latency MEC services, the current mobile network security architecture should enable a more decentralized approach for authentication and authorization processes. This paper proposes a novel decentralized authentication architecture that supports flexible and low-cost local authentication with the awareness of context information of network elements such as user equipment and virtual network functions. Based on a Markov model for backhaul link quality, as well as a random walk mobility model with mixed mobility classes and traffic scenarios, numerical simulations have demonstrated that the proposed approach is able to achieve a flexible balance between the network operating cost and the MEC reliability.Comment: Accepted by IEEE Access on Feb. 02, 201
    corecore