73,704 research outputs found

    One-bit Distributed Sensing and Coding for Field Estimation in Sensor Networks

    Full text link
    This paper formulates and studies a general distributed field reconstruction problem using a dense network of noisy one-bit randomized scalar quantizers in the presence of additive observation noise of unknown distribution. A constructive quantization, coding, and field reconstruction scheme is developed and an upper-bound to the associated mean squared error (MSE) at any point and any snapshot is derived in terms of the local spatio-temporal smoothness properties of the underlying field. It is shown that when the noise, sensor placement pattern, and the sensor schedule satisfy certain weak technical requirements, it is possible to drive the MSE to zero with increasing sensor density at points of field continuity while ensuring that the per-sensor bitrate and sensing-related network overhead rate simultaneously go to zero. The proposed scheme achieves the order-optimal MSE versus sensor density scaling behavior for the class of spatially constant spatio-temporal fields.Comment: Fixed typos, otherwise same as V2. 27 pages (in one column review format), 4 figures. Submitted to IEEE Transactions on Signal Processing. Current version is updated for journal submission: revised author list, modified formulation and framework. Previous version appeared in Proceedings of Allerton Conference On Communication, Control, and Computing 200

    The computational content of Nonstandard Analysis

    Get PDF
    Kohlenbach's proof mining program deals with the extraction of effective information from typically ineffective proofs. Proof mining has its roots in Kreisel's pioneering work on the so-called unwinding of proofs. The proof mining of classical mathematics is rather restricted in scope due to the existence of sentences without computational content which are provable from the law of excluded middle and which involve only two quantifier alternations. By contrast, we show that the proof mining of classical Nonstandard Analysis has a very large scope. In particular, we will observe that this scope includes any theorem of pure Nonstandard Analysis, where `pure' means that only nonstandard definitions (and not the epsilon-delta kind) are used. In this note, we survey results in analysis, computability theory, and Reverse Mathematics.Comment: In Proceedings CL&C 2016, arXiv:1606.0582
    • …
    corecore