303 research outputs found

    Global semantic typing for inductive and coinductive computing

    Get PDF
    Inductive and coinductive types are commonly construed as ontological (Church-style) types, denoting canonical data-sets such as natural numbers, lists, and streams. For various purposes, notably the study of programs in the context of global semantics, it is preferable to think of types as semantical properties (Curry-style). Intrinsic theories were introduced in the late 1990s to provide a purely logical framework for reasoning about programs and their semantic types. We extend them here to data given by any combination of inductive and coinductive definitions. This approach is of interest because it fits tightly with syntactic, semantic, and proof theoretic fundamentals of formal logic, with potential applications in implicit computational complexity as well as extraction of programs from proofs. We prove a Canonicity Theorem, showing that the global definition of program typing, via the usual (Tarskian) semantics of first-order logic, agrees with their operational semantics in the intended model. Finally, we show that every intrinsic theory is interpretable in a conservative extension of first-order arithmetic. This means that quantification over infinite data objects does not lead, on its own, to proof-theoretic strength beyond that of Peano Arithmetic. Intrinsic theories are perfectly amenable to formulas-as-types Curry-Howard morphisms, and were used to characterize major computational complexity classes Their extensions described here have similar potential which has already been applied

    Computability in constructive type theory

    Get PDF
    We give a formalised and machine-checked account of computability theory in the Calculus of Inductive Constructions (CIC), the constructive type theory underlying the Coq proof assistant. We first develop synthetic computability theory, pioneered by Richman, Bridges, and Bauer, where one treats all functions as computable, eliminating the need for a model of computation. We assume a novel parametric axiom for synthetic computability and give proofs of results like Rice’s theorem, the Myhill isomorphism theorem, and the existence of Post’s simple and hypersimple predicates relying on no other axioms such as Markov’s principle or choice axioms. As a second step, we introduce models of computation. We give a concise overview of definitions of various standard models and contribute machine-checked simulation proofs, posing a non-trivial engineering effort. We identify a notion of synthetic undecidability relative to a fixed halting problem, allowing axiom-free machine-checked proofs of undecidability. We contribute such undecidability proofs for the historical foundational problems of computability theory which require the identification of invariants left out in the literature and now form the basis of the Coq Library of Undecidability Proofs. We then identify the weak call-by-value λ-calculus L as sweet spot for programming in a model of computation. We introduce a certifying extraction framework and analyse an axiom stating that every function of type ℕ → ℕ is L-computable.Wir behandeln eine formalisierte und maschinengeprüfte Betrachtung von Berechenbarkeitstheorie im Calculus of Inductive Constructions (CIC), der konstruktiven Typtheorie die dem Beweisassistenten Coq zugrunde liegt. Wir entwickeln erst synthetische Berechenbarkeitstheorie, vorbereitet durch die Arbeit von Richman, Bridges und Bauer, wobei alle Funktionen als berechenbar behandelt werden, ohne Notwendigkeit eines Berechnungsmodells. Wir nehmen ein neues, parametrisches Axiom für synthetische Berechenbarkeit an und beweisen Resultate wie das Theorem von Rice, das Isomorphismus Theorem von Myhill und die Existenz von Post’s simplen und hypersimplen Prädikaten ohne Annahme von anderen Axiomen wie Markov’s Prinzip oder Auswahlaxiomen. Als zweiten Schritt führen wir Berechnungsmodelle ein. Wir geben einen kompakten Überblick über die Definition von verschiedenen Berechnungsmodellen und erklären maschinengeprüfte Simulationsbeweise zwischen diesen Modellen, welche einen hohen Konstruktionsaufwand beinhalten. Wir identifizieren einen Begriff von synthetischer Unentscheidbarkeit relativ zu einem fixierten Halteproblem welcher axiomenfreie maschinengeprüfte Unentscheidbarkeitsbeweise erlaubt. Wir erklären solche Beweise für die historisch grundlegenden Probleme der Berechenbarkeitstheorie, die das Identifizieren von Invarianten die normalerweise in der Literatur ausgelassen werden benötigen und nun die Basis der Coq Library of Undecidability Proofs bilden. Wir identifizieren dann den call-by-value λ-Kalkül L als sweet spot für die Programmierung in einem Berechnungsmodell. Wir führen ein zertifizierendes Extraktionsframework ein und analysieren ein Axiom welches postuliert dass jede Funktion vom Typ N→N L-berechenbar ist

    On tiered small jump operators

    Full text link
    Predicative analysis of recursion schema is a method to characterize complexity classes like the class FPTIME of polynomial time computable functions. This analysis comes from the works of Bellantoni and Cook, and Leivant by data tiering. Here, we refine predicative analysis by using a ramified Ackermann's construction of a non-primitive recursive function. We obtain a hierarchy of functions which characterizes exactly functions, which are computed in O(n^k) time over register machine model of computation. For this, we introduce a strict ramification principle. Then, we show how to diagonalize in order to obtain an exponential function and to jump outside deterministic polynomial time. Lastly, we suggest a dependent typed lambda-calculus to represent this construction

    Semantics of Types for Database Objects

    Get PDF
    This paper proposes a framework of denotational semantics of database type systems and constructs a type system for complex database objects. Starting with an abstract analysis of the relational model, we develop a mathematical theory for the structures of domains of database objects. Based on this framework, we construct a concrete database type system and its semantic domain. The type system allows arbitrarily complex structures that can be constructed using labeled records, labeled variants, finite sets and recursion. On the semantic domain, in addition to standard operations on records, variants and sets, a join and a projection are available as polymorphically typed computable functions on arbitrarily complex objects. We then show that both the type system and the semantic domain can be uniformly integrated in an ML-like programming language. This leads us to develop a database programming language that supports rich data structures and powerful operations for databases while enjoying desirable features of modern type systems of programming languages including strong static type-checking, static type inference and ML polymorphism

    Polynomial Time and Dependent Types

    Full text link
    We combine dependent types with linear type systems that soundly and completely capture polynomial time computation. We explore two systems for capturing polynomial time: one system that disallows construction of iterable data, and one, based on the LFPL system of Martin Hofmann, that controls construction via a payment method. Both of these are extended to full dependent types via Quantitative Type Theory, allowing for arbitrary computation in types alongside guaranteed polynomial time computation in terms. We prove the soundness of the systems using a realisability technique due to Dal Lago and Hofmann. Our long-term goal is to combine the extensional reasoning of type theory with intensional reasoning about the resources intrinsically consumed by programs. This paper is a step along this path, which we hope will lead both to practical systems for reasoning about programs' resource usage, and to theoretical use as a form of synthetic computational complexity theory
    • …
    corecore