7 research outputs found

    Identifying Web Tables - Supporting a Neglected Type of Content on the Web

    Full text link
    The abundance of the data in the Internet facilitates the improvement of extraction and processing tools. The trend in the open data publishing encourages the adoption of structured formats like CSV and RDF. However, there is still a plethora of unstructured data on the Web which we assume contain semantics. For this reason, we propose an approach to derive semantics from web tables which are still the most popular publishing tool on the Web. The paper also discusses methods and services of unstructured data extraction and processing as well as machine learning techniques to enhance such a workflow. The eventual result is a framework to process, publish and visualize linked open data. The software enables tables extraction from various open data sources in the HTML format and an automatic export to the RDF format making the data linked. The paper also gives the evaluation of machine learning techniques in conjunction with string similarity functions to be applied in a tables recognition task.Comment: 9 pages, 4 figure

    SEMv2: Table Separation Line Detection Based on Instance Segmentation

    Full text link
    Table structure recognition is an indispensable element for enabling machines to comprehend tables. Its primary purpose is to identify the internal structure of a table. Nevertheless, due to the complexity and diversity of their structure and style, it is highly challenging to parse the tabular data into a structured format that machines can comprehend. In this work, we adhere to the principle of the split-and-merge based methods and propose an accurate table structure recognizer, termed SEMv2 (SEM: Split, Embed and Merge). Unlike the previous works in the ``split'' stage, we aim to address the table separation line instance-level discrimination problem and introduce a table separation line detection strategy based on conditional convolution. Specifically, we design the ``split'' in a top-down manner that detects the table separation line instance first and then dynamically predicts the table separation line mask for each instance. The final table separation line shape can be accurately obtained by processing the table separation line mask in a row-wise/column-wise manner. To comprehensively evaluate the SEMv2, we also present a more challenging dataset for table structure recognition, dubbed iFLYTAB, which encompasses multiple style tables in various scenarios such as photos, scanned documents, etc. Extensive experiments on publicly available datasets (e.g. SciTSR, PubTabNet and iFLYTAB) demonstrate the efficacy of our proposed approach. The code and iFLYTAB dataset are available at https://github.com/ZZR8066/SEMv2

    Pattern-Based Approach to Table Extraction

    Get PDF
    International audienceIn this paper, we address a client-driven approach to automatically extract information content within the table in document images. We start with a graph-based representation of a set of key-fields selected by clients and perform graph mining in a document in order to learn them to produce a model. Such models are aimed to use to extract information content in the absence of clients. To avoid NP-hard general problem, our graph matching is based on relation assignment to see whether pairs of nodes are semantically identical. We have validated the concept by using a real-world industrial problem

    Strategies for Managing Linked Enterprise Data

    Get PDF
    Data, information and knowledge become key assets of our 21st century economy. As a result, data and knowledge management become key tasks with regard to sustainable development and business success. Often, knowledge is not explicitly represented residing in the minds of people or scattered among a variety of data sources. Knowledge is inherently associated with semantics that conveys its meaning to a human or machine agent. The Linked Data concept facilitates the semantic integration of heterogeneous data sources. However, we still lack an effective knowledge integration strategy applicable to enterprise scenarios, which balances between large amounts of data stored in legacy information systems and data lakes as well as tailored domain specific ontologies that formally describe real-world concepts. In this thesis we investigate strategies for managing linked enterprise data analyzing how actionable knowledge can be derived from enterprise data leveraging knowledge graphs. Actionable knowledge provides valuable insights, supports decision makers with clear interpretable arguments, and keeps its inference processes explainable. The benefits of employing actionable knowledge and its coherent management strategy span from a holistic semantic representation layer of enterprise data, i.e., representing numerous data sources as one, consistent, and integrated knowledge source, to unified interaction mechanisms with other systems that are able to effectively and efficiently leverage such an actionable knowledge. Several challenges have to be addressed on different conceptual levels pursuing this goal, i.e., means for representing knowledge, semantic data integration of raw data sources and subsequent knowledge extraction, communication interfaces, and implementation. In order to tackle those challenges we present the concept of Enterprise Knowledge Graphs (EKGs), describe their characteristics and advantages compared to existing approaches. We study each challenge with regard to using EKGs and demonstrate their efficiency. In particular, EKGs are able to reduce the semantic data integration effort when processing large-scale heterogeneous datasets. Then, having built a consistent logical integration layer with heterogeneity behind the scenes, EKGs unify query processing and enable effective communication interfaces for other enterprise systems. The achieved results allow us to conclude that strategies for managing linked enterprise data based on EKGs exhibit reasonable performance, comply with enterprise requirements, and ensure integrated data and knowledge management throughout its life cycle

    Chart recognition and interpretation in document images

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Table recognition in mathematical documents

    Get PDF
    While a number of techniques have been developed for table recognition in ordinary text documents, when dealing with tables in mathematical documents these techniques are often ineffective as tables containing mathematical structures can differ quite significantly from ordinary text tables. In fact, it is even difficult to clearly distinguish table recognition in mathematics from layout analysis of mathematical formulas. Again, it is not straight forward to adapt general layout analysis techniques for mathematical formulas. However, a reliable understanding of formula layout is often a necessary prerequisite to further semantic interpretation of the represented formulae. In this thesis, we present the necessary preprocessing steps towards a table recognition technique that specialises on tables in mathematical documents. It is based on our novel robust line recognition technique for mathematical expressions, which is fully independent of understanding the content or specialist fonts of expressions. We also present a graph representation for complex mathematical table structures. A set of rewriting rules applied to the graph allows for reliable re-composition of cells in order to identify several valid table interpretations. We demonstrate the effectiveness of our technique by applying them to a set of mathematical tables from standard text book that has been manually ground-truthed
    corecore