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Abstract

In graphics recognition, chart recognition and interpretation is aprocedure to change
scientific chart images into computer readable form. In this dissertation, we have
investigated four problem domains in it. First, we propose a hierarchical statistical-
model-based framework for chart recognition system. Second, we propose an improved
projectionbased plot area detection method to detect plot areas and a Hough-based axis
detection algorithm to detect axes. Third, we propose a new approach for chart
classification and segmentation based on statistical modeling. A novel chart classification
approach based on Hidden Markov Models is proposed. A new approach for chart
segmentation using optimal path finding is aso proposed. Fourth, we propose a novel
structure called zoned directional X-Y tree to hierarchically represent the text primitives
in charts. An algorithm of generating the zoned directional X-Y tree is presented. Both
results from chart segmentation and text primitive analysis are correlated for chart
interpretation.
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Summary

Chart recognition and interpretation is a procedure to change scientific chart images
into computer readable form such as tabular data. Unfortunately there is little work
reported on it due to the difficulties and chalenges in four main issues. the great
diversity of chart types, the flexibilities in the structural arrangement, the difficulty in
describing the syntax and semantics of complex charts and the difficulty in dealing with
degraded, distorted or noisy input.

In this dissertation, we have investigated four problem domains in chart recognition:
chart recognition system, chart graphic symbol extraction, chart classification and
segmentation, text primitive analysis and chart interpretation.

Chart recognition system: We propose a hierarchical statistical- model-based
framework for scientific chart recognition system. First, the knowledge of chart
generation software is explored and notation conventions of a scientific chart from both
generation and recognition point of views are defined. Second, investigation in
psychological aspect and human visual perception on charts deduces three arguments thet
are the backbone of the proposed framework. Our testing data is constructed with more
than 500 chart images from technical journals that are scanned by 300 dpi.

Chart graphic symbol extraction: Chart graphics symbol recognition of current

work includes plot area detection and axis detection. We propose an improved

Xi



projection-based plot area detection method to detect plot areas. For axis detection, we
propose a Hough-based axis detection agorithm that combines geometric analysis of 2-D
and 3-D axes.

Chart classification and segmentation: We propose a new approach for chart
classification and segmentation based on dtatistical modeling. Four chart models
including separated bar model, contiguous bar model, single-line-series line model and
multiple- line-series line model are constructed and trained using a segmental K- means
algorithm to model the semantics of chart stage area. Charts are classified by choosing
the chart model with the largest posteriori probability. The best state path for that model
is also obtained by applying Viterbi algorithm. Two kinds of classifications, dimension
classification and type classification, are addressed. We aso propose a new approach for
chart segmentation using optimal path finding. Two chart segmentation problems are
addressed, including detecting the number of data series and bar pattern segmentation.

Text primitive analysis and chart interpretation: We propose a zoned directional
X-Y tree structure to hierarchically represent the text primitives in charts. An agorithm
of generating the zoned directional X-Y tree is presented. The agorithm includes three
procedures. directional transformation of the bounding boxes, recursive X-Y cut by the
bounding boxes and linking the bounding boxes with the X-Y tree. A scheme combining
X-Y tree searching and traversing with structural analysis is proposed to label the text
primitives in a chart. Three kinds of axes tick labels are extracted: vertical axes tick
labels, horizontal axes tick labels and directional axes tick labels. The extraction of the
axes titles and the figure titles is also presented. Finally, both the result from chart

segmentation and text primitive analysis are correlated for chart interpretation.

Xii



Chapter 1

| ntr oduction

1.1 Motivation

In our society today, paper is still an important medium for exchanging information in
literary, scientific or commercia fields. Most of the paper-based documents are in the
raster file style. Thus by changing the paper-based documents into a computer readable
electronic format, it can broaden the scope of our information source. The growing need
for information sharing among different work and research communities and the
development of new technologies for digital information diffusion have increased the
demand for tools for automatically converting paper-based information into computer
readable information.

Asfar back as 1985, it was stated that about one trillion statistical graphs were printed
each year [114]. Many more of such graphs are expected with the proliferation of printed
paper documents today. Most of statistical graphs appearing in scientific papers are
scientific charts or diagrams. Like forms or tables which convey information from
structurally arranged data, scientific charts are also a very powerful representation tool in

the scientific research area because people understand symbolic graphs better and faster



than the corresponding text [115]. The processing procedure to change scientific chart
images into computer readable form is scientific chart recognition. The ensuing
processing procedures like understanding the meaning of the scientific charts or changing
recognized electronic charts into other computer readable forms such as tabular data form
are in the field of scientific chart interpretation. There is little research work and
practical products reported on recognizing and interpreting scientific chart images in
comparing with those on the table or form recognition. In the next section, we discuss the
challenges and difficulties in recognizing and interpreting scientific chart images that lie

in the following main four aspects.

1.2 Challenges

The Great Diversity of Chart Types

Many text-processing software packages have built-in features or tools for generating
charts and graphs, such as Microsoft Excel and Word, Harvard Graphics, Corel Chart,
etc. 2D or 3D graphical objects such as lines, circles, rectangles, cones, cylinders,
pyramids and spheres are used in these scientific chart generation tools as one of the
customized features. Figure 1.1 shows some chart types used in the Microsoft Excel
Chart tools. Charts can be classified into color charts or monotonic charts. Combinational
charts in which different chart graphical objects are used to present complex data also
appear frequently in the data presentation. Different patterns and textures can also be
used for filling the graphical objects like bars and pies to denote different categories in
the scientific charts. For instance, there are 48 textured patterns in the chart generation

tools of Microsoft Excel chart tools as shown in figure 1.2. The color variations for the
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Figure 1.1: Some chart types in the Microsoft Excel Chart tool: (1): clustered column.
(2): open-high-low-close. (3): gacked column. (4): volume-high-low-close. (5): 3D
column. (6): column with a cylindrical shape. (7): column with a conical shape. (8):
column with a pyramid shape. (9): line. (10): line with markers displayed on each data
point. (11): pie. (12): pie with a 3D visual effect. (13): scatter. (14): high-low-close.
(15): area. (16): areawith a3-D visual effect.
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Figure 1.2: Filling patterns in the chart generation tool of Microsoft Excel. There are 48
texture patterns that can be applied on the surfaced graphical objects such as bars,
columns, pies and areas.



foreground and the background inside each pattern can give birth to a large number of
colorful patterns. Consider applying 64 colors on the textured patterns. There will be
193,536 colorful textured patterns generated. Therefore for a smple bar chart with only
one data series, different colorful textured patterns in the bars lead to a total of 193,536

different bar charts, not to mention bar charts with several data series.

TheFlexibilitiesin the Structural Arrangement

Even in the same chart type, charts may look very different from each other due to the
positional tranglation or rotation of graphical or text objects. For example, most chart
generation tools offer users with various customization functions, such as putting the title

at an arbitrary position of the chart, etc.

The Difficulty in Describing the Syntax and Semantics of Complex Charts
While most of the two-dimensional charts have simple syntactic and semantic meaning
like bar charts and line charts, the meaning for most of the three-dimensiona charts is

always difficult to describe for further chart recognition or interpretation.

The Difficulty in Dealing with Degraded, Distorted or Noisy I nput

Poor image quality introduced by an inappropriate acquisition of an image such as bad
illumination, noise introduced by an external device or vibrations in the acquisition
device, image degrading caused by previous processing steps, increases the difficulty of a
recognition procedure. Typical degradations appearing in the document image are: gaps
due to the lack of ink which causes the discontinuity of lines, extra large noise caused by

ink blobs, or image warping at the left or right side caused by uneven scanning, etc.



Thus to generate a generic type-independent chart recognition system is a highly
challenging problem. The difficulties led us to the research objectives given in the next

section.

1.3 Research Objectives

The task of meeting the challenges set out in the preceding subsection is indeed daunting
and is not very much researched so far in the document image analysis community. It is
impossible to address the entire problem within the time frame of the present
dissertation.

With a practical scope in mind, this dissertation ams to investigate four problem
domains in chart recognition by investigating the recognition and interpretation of two
major kinds of charts. bar charts and line charts. Furthermore, it consists of four main
objectives:

1. Chart recognition system: Propose a sound scientific chart recognition framework
and theoretical analysis for the foundation of the proposed chart recognition
framework.

2. Chart graphic symbol extraction: Investigate two intermediate-level graphical
processing procedures: plot area detection and axes detection.

3. Chart classification and segmentation: Investigate two kinds of chart
classification: dimension classification and type classification. Dimension
classification is to classify a chart into a 2-D chart or a 3-D chart. Type
classification is to classify a 2D chart into one of the four chart categories. the

single- line-series chart, the multiple-line-series chart, the separated bar chart and



the contiguous bar chart. Chart segmentation involves two issues. detect the
number of data series and bar pattern segmentation.

4. Text primitive analysis and chart interpretation. The problem of labeling the
structural texts in a chart is also explored. Text primitive analyses involving
extraction of the axes tick labels, the axes titles and the figure titles are proposed
in our work. The segmented axis tick labels are essential for interpreting a chart
and transferring chart data into a tabular output by correlating with the value

points from chart segmentation.

1.4 Contributionsand Dissertation Outline

We aim to make contributions from four problem domains that we will investigate in this
dissertation: chart recognition system, chart graphic symbol extraction, chart
classification and segmentation, text primitive analysis and chart interpretation.

In the problem domain of chart recognition system, the contributions will be as

follows:

1. We will propose some notation definitions of a scientific chart from a recognition
point of view. Notational conventions from both generation point of view and
recognition point of view facilitate the whole chart recognition procedure.

2. We will give theoretical contributions in constructing a chart recognition system
by investigating the mechanism of human visual perception on chart recognition.
We will examine the arguments that form the principles and backbone of our chart
recognition problems.

3. We will propose a hierarchical satistica-model-based chart recognition

framework which focuses on the intermediate level of vision.



4. We will collect alarge set of test data. The procedure of setting up the testing data
for our system is not difficult but tedious. In future work, the test data set will be
made publicly available for future studies.

In the problem domain of chart graphics symbol recognition, the contributions will be

as follows:

5. Wewill propose an improved projectionbased approach for plot area detection.

6. We will present a method of axes detection with Hough feature clustering and
geometric analysis in our work to detect 2-D and 3-D axes.

In the problem domain of chart classification and segmentation, the contributions will
be as follows:

7. We will propose a new framework for chart classification and segmentation based
on statistical modeling.

8. We will propose a model-based chart classification approach. This includes feature
extraction with feature point segmentation and analysis, construction and train of
HMM-based chart models, type classification by chart model matching.

9. Wewill propose a new approach for chart segmentation by optimal path clustering
and finding.

In the problem domain of text primitive analysis and chart interpretation, the

contributions will be as follows:

10. We will propose a zoned directional X-Y tree structure to hierarchically represent
the text in graphical documents. The proposed zoned directional X-Y treeis a
generalized version of the classical X-Y tree which considers only orientations in

the vertical and the horizontal directions.



11. We will propose a method of directional transforming the bounding boxes in the
image space to the r -space.

12. We will propose a recursive XY cut segmentation algorithm using origina and
transformed bounding boxes to generate the zoned directional XY tree for text
primitives.

13. We will present an approach of combining X-Y tree searching and traversing with
structural analysis to label the text primitives in a chart. Detailed procedures to
extract axes tick labels and titles will be illustrated.

14. We will present a method of correlating value points with axis tick labels in order
to interpret chart data into a tabular format for bar charts and line charts.

The above targeted contributions will be addressed in the dissertation which is

outlined below:

A survey of graphics recognition and related works will be conducted in chapter 2.
Chart recognition system will be addressed in the chapter 3. In chapter 4, intermediate-
level chart graphical processing such as plot area detection and axes detection are
proposed. Chart classification and segmentation using statistical modeling are presented
in the chapter 5. In chapter 6, the problems of text primitives analysis and chart
interpretation are addressed. We conclude the dissertation and point out the further

directions of our work in chapter 7.



Chapter 2

Related Works

Scientific chart recognition is a branch of the application of graphics recognition which
in term is a sub-area of document image analysis (DIA). Document image analysis is
“the study of converting documents from paper form to an electronic form that captures
the information content of the document” [10] and “ the practice of recovering the
symbolic structure of digital images scanned from paper or produced by computer” [82].
The wide ranging research interests and topics due to the great variety of the
document contents have led to the emergence of the field of document image analysis.
These active studies and practices are classified into two main categories in terms of the
document contents. one is the mostly-text DIA such as optical character recognition [55,
96, 105], handwritten character recognition [48, 70, 80] and document layout analysis
[63, 103], etc. The other category is the mostly-graphics DIA, namely, graphics
recognition. Within the last two decades, we have seen conferences and workshops
organized for the sole purpose of document image analysis research. These include the
international conference on document analysis and recognition (ICDAR), the
international workshop on document analysis systems (DAS), the international workshop

on graphics recognition (GREC), the SPIE conference on document recognition and



retrieval, etc. A new journal, namely, international journal of document analysis and
recognition (IJDAR) also came into being following the growing interest in the field.
Comprehensive surveys and research studies on the document image analysis can be

found in[3, 11, 12, 41, 82, 107].

2.1 Graphics Recognition

Although text is no doubt the major source of document data, a large number of graphs,
photographs, pictures, and diagrams are also accessible in our daily lives. Just like the
old adage that "a picture is worth a thousand words®, information in pictoria
representation is much more complex and unwieldy than that in textual representation.
Graphics are complex and difficult to interpret for machines, while machines can

recognize characters quite easily.

We focus on graphs and diagrams which are concise and abstract pictorial
representations of information. Maps, scientific charts, engineering drawings, and
sketches are all examples of graphs and diagrams. For example, people use scientific
charts such as line charts and bar charts to intuitively convey a clear anaysis of
commercial data and research data. In architecture and engineering design, the technique
of computer aided design (CAD) is extensively used to produce a large number of
engineering drawings, electrical circuit diagrams, flow charts and process diagrams to
facilitate the communication among human designers, producers and engineers. The goal
of graphics recognition is to convert information from its paper-based graphical

representation into computer interpretable data.

10



The area of graphics recognition has undergone extensive investigation for several

decades. But there are still many tough problems unsolved in thisfield [24, 58, 82, 110].

We first review some graphics recognition systems in the next section.

2.1.1 Graphics Recognition Systems

Works in many specific application domains of graphic recognition have been reported,
such as circuit diagram recognition, geographical map recognition, engineering drawing

recognition, fingerprint classificationetc.

Engineering Drawings Recognition
Yu et al. [123] presented a system to recognize a large class of engineering drawings
which include flowcharts, logic and electrical circuits, and chemical plant diagrams.
First, domain-independent rules are used to segment symbols from connection lines in
the drawing image that has been thinned, vectorized, and preprocessed. Second, a
drawing understanding subsystem works with a set of domain-specific matchers to
classify symbols and correct errors. The final output of the system is a net list of

identified symbol types and interconnections
Unlike routine engineering drawing recognition systems which use a two-pass
vectorization work flow that introduces more propagation error, Song et al. [104]
proposed an efficient one-phase object-oriented vectorization model that recognizes each
class of graphic objects from raw images. Each graphic object is recognized directly in

its entirety at the pixel level. The raster image is progressively simplified by erasing

11



recognized graphic objects to eliminate their interference with subsequent recognition.
The experiments and evaluation results show significant improvement in speed and
recognition rate.

Other works ard survey papers on engineering drawings can be found in [46, 53, 74,

75, 109], etc.

Circuit/Structure Diagram Recognition

In [33], Fahn et al. designed a topologica—based electronic circuit diagram
recognition. His objective was to extract circuit symbols and characters. Line segments
were detected and approximated using a segment-tracking algorithm and a piecewise
linear approximation algorithm. A topological search was performed to separate them
into symbols and characters. Context-based depth-first-search approach was to classify
al the symbols.

Casey et al. proposed a prototype for encoding chemical structure diagrams in [14].
The structure diagram first was separated using size and spacing characteristics. Line
drawings were discriminated and the meaning of bonds was obtained after vectorization.
Atomic symbols were classified using chemical drawing conventions and optical
character recognition.

Other works on circuit diagram can be found in [31, 85], etc.

M aps Recognition
In [44], Hartog et al. proposed a knowledge-based framework to interpret and
segment maps from top to down. First the image was segmented globally. Then a top-

down segmentation combining the contextual reasoning framework was performed to

12



detect the inconsistency. The interpretation of maps is based on a priori knowledge of
maps.

Oshitani and Watanabe [86] discussed a pipeline-like recognition strategy based on
information propagation to address the boundary and synchronization problems caused
by parallel processing on the partitioned map images.

Other recent works and survey papers on maps recognition can be found in [98, 99,

119], etc.

Music Scripts Recognition

Fahmy and Blostein [32] applied a graphrewriting technique to recognize printed
musical scripts. The recognition starts from vectorized music primitives. Layout
constraints are handled by the graphrewriting paradigm for discrete relaxation where
neighborhood-construction is interleaved with constraint-application. Approximately 180
graph-rewriting rules are used to express notational constraints and semantic-
interpretation rules for smple music notation.

Blostein and Haken [9] also investigated ways to use diagram generators to improve
diagram recognizers. The Lime music-notation editor, a generator for music notation
authored by Blostein and Haken, has been used to correct over 80% of the note-duration
errors made by MIDIScan, a commercia recognizer for music notation.

Other recent works and survey papers on music scripts recognition can be found in [8,

62, 106], etc.

M athematics Recognition

13



Zanibbi and Blostein [124] proposed an efficient typeset and handwritten
mathematical notation recognition system. They used a tree transform technique to direct
the high level recognition of mathematica notation. Three levels of processing
procedures are proposed. In the first Layout Pass level, a Baseline Structure Tree (BST)
is constructed from a list of symbols with bounding boxes. Next, a Lexed BST is
generated from the initial BST by grouping the low level input symbols into complex
tokens and then trandated into LATEX in the Lexical Pass level. Finally, additional
domain-specific processing is applied to produce output for symbolic algebra systems in
the Expression Analysis Pass level.

Other recent works and survey papers on mathematics recognition can be found in

[17, 18, 25, 26, 56, 79, 108], etc.

Tables/Forms Recognition

Yu and Jain [122] proposed a generic form recognition system using block adjacency
graph (BAG) to the extraction of form frames and preprinted data. The strokes of the
characters that overlap the frame are reconstructed after removal of the line. Templates
are congtructed from empty forms and correlated with filled-in forms. With the form
template, the system can recognize both handwritten and machine-typed filled-in forms.

Fan et al. [34] presented a clustering-based approach to recognize form document.
Characters are first extract from the form using feature points clustering method on the
feature points from thinning. Next, a clustering process is goplied to the corner points of
the remaining structured line patterns. Form document is then represented as a weighted

graph according to the clustering result for further graph matching.
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Other recent works and survey papers on tables and forms recognition can be found in

[2, 4, 50, 73, 76, 96, 102, 125], etc.

Other Diagrams Recognition

Kasturi et al. [57] developed a system to interpret line drawings. Many graphics
techniques are exploited such as connected components, collinear component grouping,
thinning, boundary tracking, loop analysis, to identify outline and solid polygonal objects
and their spatia relationships, such as circular arc segments, hatched areas, dashed lines,
connectors between objects and text strings, etc.

Francesconi et al. [36] developed an adaptive recursive neural network model to
recognize logos. First, logos with exterior or interior contour features are represented in
contour-tree format which contains the structural information of logos and continuous
attributes of contour nodes. The contour—tree features are then used to train and
recognize logos through recursive neural networks.

Other works on other diagrams recognition can be found in [28, 38, 65, 84, 93], etc.

2.1.2 Methodology of Graphics Recognition

The sequence of processing steps for graphics recognition is similar to that of common
document image processing. Many review papers have proposed the basic structures of
graphics recognition system from different points of view [7, 29, 82]. The whole
graphics recognition system can be roughly divided into two levels of processing:

graphics symbol objects recognition and graphics symbol arrangement analysis|[7].

15



Graphics Symbol Recognition

While more detailed surveys on graphics symbol recognition can be found in [24, 40,
69, 72], we give a brief survey below:

The symbol objects recognition is the lower level processing in the whole graphics
recognition processing system. Usually it consists of four steps. preprocessing which
includes noise reduction and de-skew operations, vectorization, symbols segmentation,
symbols classification and recognition.

There are three different approaches to symbol objects recognition: template matching
recognition, deformable template matching recognition and learning-based recognition.

Template matching recognition usually comprises of segmenting symbols,
vectorization and generating a description file and finally model matching to get the best
matched symbols [1, 33, 67]. In [1], Ah-Soon proposed a constraint network for symbol
detection in architectural drawings. First the symbols are described as a set of constraint
rules of segments and arcs. A description language is used to describe the rules. Symbols
are detected by propagating the segments and arcs in the network in order to search for
the matched modes. In [67], Lee proposed a model based method to recognize the
electrical circuit symbols. An attribute graph encoding structural and statistical featuresis
used in model matching.

In deformable template matching recognition, the template or the modd is variable to
some degree [13, 77, 116]. Messmer and Bunke [77] presented a model-based method
combining pattern recognition and machine learning techniques to recognize and learn
the graphics symbols in engineering drawings. First, vectorized line drawings and
graphics symbols are represented in the attributed relational graph format and stored in

the database. The matching models are organized in a network format. In the graphics
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symbols processing, a sub-graph isomorphism recognition method is performed to give
the optimal match. Finally, the detected symbols are grouped into the database using
heuristic rules.

Learning-based recognition is usually segmentationfree. In this approach, the features
extracted for training and testing are selected before segmentation. Therefore, the
inaccuracy caused by the segmentation processing can be avoided [15, 23, 36]. In [23]
Cheng et al. developed a hierarchical neural network based segmentation free symbol
recognition for electrical drawings. The invariant geometric features are selected for the
neural classifiers for further processing. In [15], Cesarini et al. developed a neural
network based system to locate and recognize the low level graphics items. Graphics
items are first located by morphological operations and connected component analysis.
Then an auto-associator-based neura network is used to classify the located items.
Symbol recognition using Hidden Markov Models (HMM) can aso be classified into
learning-based category since each HMM needs training before being used to recognize
new symbols. The applications based on Hidden Markov Models are reviewed in the

section 2.2.2.

Graphics Symbol Arrangement Analysis
Graphics symbol arrangement analysis congtitutes the high level graphics recognition
processing. The structural and logical relationships between the symbols are explored in
this level processing. Besides heavy domain-specific knowledge needs to be applied to
this procedure for arobust system. In [7], Blostein gave a detailed analysis on the
genera frameworks of symbol arrangement analysis and classified different approaches

into five categories of framework: blackboard framework, schema-based framework,
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syntactic-based framework, computational vision framework and graphrewriting

framework. These five categories are briefly explained below.

In the first category, blackboard framework can be also called hypothesis testing
framework, in which knowledge sources are incorporated into different hypothesis levels
with confidence values. A rule-based inference engine for interpreting rules is usually
used to further search for the best symbol arrangement scheme. For instance in [59], Kato
and Inokuchi developed a four-level blackboard-based system to recognize circuit
diagrams. The four levels are input diagrams, symbol hypotheses, diagram hypotheses
and recognition results.

In the second category, schema-based framework usually defines a schema class to
represent the diagram prototype. Two kinds of information, spatial relationship and
object composition, are incorporated into the schema class. Also a strategy grammar like
rule-based inference engine is used to direct the searching or parsing of the schemas. The
Mapsee systems developed by Mulder et al. [81] are one example of schema-based
diagram recognition systems. Mapsee uses a scene constraint graph to represent the
knowledge of sketch maps. Constraints are applied and propagated when parsing the
scene constraint graph and directing the interpretation of the sketch maps.

In the third category, syntactic-based framework uses grammar to represent diagram
domain knowledge, which is composed of a start symbol and a set of rewriting rules. By
using top-down or bottomup parsing, the production rules were combined with the
gpatial constraints and the grammar to partition the symbols into related groups. For
example, Chou [25] used syntactic stochastic grammars to recognize the noisy

mathematical expression images.
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In the fourth category, computational vision framework goes with a high-level
computation related with hierarchical views of vision [112].

In the fifth category, graphrewriting framework first uses graph representation to
construct the knowledge base. The nodes of the graph encode the information of symbol
objects in the graphics image, such as the attributes of the objects. The edges of the graph
are used to build the relationships among the objects. There are also attributes associated
with the edge. A graph grammar that is composed of an initial graph and graph transition
rule sets is used to direct the parsing and searching scheme. For example, in [32], Fahmy
and Blostein used graphrewriting rules to recognize the music notations.

Besides the above five categories, statistic-model-based frameworks such Hidden
Markov Model based framework are receiving more and more interests in the field of

document image analysis. Works related with this approach are reviewed at section 2.2.2.

2.1.3 Scientific Chart Recognition

Research works for scientific chart or business chart recognition reported are not as many
as other diagrams recognition.

In [37], Futrelle and Nikolakis presented a diagram understanding system by
constructing graphics constraint grammars for different types of diagrams with syntactic
analysis. The work focuses onhigh level arrangement analysis. The symbol arrangement
analysis can be classified into the syntactic-based framework. The basic assumption for
his work is that the segmentation is successfully implemented and vectorized primitives
are extracted by other vectoriztion tools before applying graphics constraint grammars

analysis. The magjor work he reported is on X, y data graphs and gene diagrams.

19



In [121], Yokokura and Watanabe proposed a layout-based network which is a
schema-based framework to graphically describe the layout relationship information of
the bar chart. During the process of symbol object recognition, he used simple vertica
and horizontal projection to do segmentation and combine bar chart layout information
while extracting graphical and text primitives. In his work, the interleaving of
segmentation and classification improves the accuracy of bar chart recognition. But due
to the simplicity of the segmentation method, the types of bar charts that can be
recognized are constrained by many assumptions. Scanned bar chart images are tested
and performance is reported.

Our work in this dissertation is to recognize and interpret scanned chart images.
Futrelle and Nikolakis work assumed that the primitive extraction is completed thus
vector representation of graphics primitives is already available for further processing.

Thus Y okokura and Watanabe' s work is closer to our research.

2.2 Other Related Techniques

In this section, we review some of the computer vision and statistical techniques which
we apply in our chart recognition.

2.2.1 Hough Transform

The Hough transform is very closely related to Radon transform. The principle of the
Hough transform is to detect geometric shapes by utilizing a voting mechanism to
estimate parameters that represent different shape such as line, circle, etc. A brief

introduction of Hough transform can be found in appendix A. The Hough transform was
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first formulated in 1962 by Hough [47]. Since its presentation, it has undergone intensive
investigations that have resulted in several generations and a variety of applications in
computer vision and image processing area [51].

The Hough transform is further generalized to detect circle, ellipses or arbitrary
shapes [5, 30, 66, 88]. The probabilistic classes of the Hough transforms, such as the
probabilistic Hough transform [6] and the random Hough transform [120], were
devel oped to reduce the computation time by minimizing the proportion of points that are
used in the voting scheme. Wahl [118] proposed an algorithm by structurally analyzing
the cluster patterns in Hough space to interpret 3-D scenes of polyhedral objects.
Collinear features are first clustered in the Hough space and construct a structure called
Hough net. Based on the anadysis of the Hough net, hypotheses about the 3-D
interpretation are inferred and represented as an attributed graph structure.

There are aso many applications of Hough transform in the research area of
document image analysis such as handwritten character recognition [22], collinear text

grouping [35], feature extraction in graphics recognition [71, 113], etc.

2.2.2 Hidden Markov Modd

Hidden Markov Modd (HMM) is a probabilistic modeling tool for time series data.
There are many tutorials on it [27, 49, 68, 91, 92]. We also give a brief description on it
in the appendices of the dissertation.

Hidden Markov Models have been successfully applied in speech recognition [49, 54,

68|, part-of-speech tagging [64] and image processing [45]. In the area of document
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image analysis, successful applications in handwritten character recognition are also

reported [20, 21, 39, 48, 80].

Kopec and Chou proposed the influential document image decoding (DID) approach
based on statistical Hidden Markov Models in [61]. DID system contain three elements:
an image generator, a noisy channel and an image decoder. The model of document
recognition process comprises of a message source, an imager and a noise channel. The
message source defines the knowledge encoded in a document. The imager is modeled as
the mapping scheme from a message source to a noise free image. The channel
transforms the noisy free image to an observed image. Given the observed image, the
decoder estimates the message source by finding the most probable path. The approach is
applied to the problem of decoding scanned telephone yellow pages to extract names and
numbers from the listings. Satisfactory results are obtained. The DID approach was aso
successfully applied to music notation recognition [62]. Unlike DID based on a
generative (source) model, Stickelberg and Doermann proposed a descriptive

recognition model based on HMM for the task of document understanding [106].
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Chapter 3

Chart Recognition System

3.1 Analysisof Scientific Charts

A chart is a symbolic representation of data or information, such as a bar chart, a pie
chart or aflow chart, etc. A bar chart is a chart displaying values as vertical or horizontal
bars. A pie chart uses a pie and its dices to represent data. The representation element in
a line chart is a line. Unlike the abovementioned charts that represent data or values, a
flow chart is a diagram that shows the steps in the execution of a program. A scientific
chart is a chart using graphics elements such as bars, pies, or lines, etc as the principle
presentation elements to present data in a highly meaningful form. Pie charts, dot charts,
bar charts are al examples of scientific charts. On the other hand, a flow chart or a
structure chart is not in the category of the scientific chart. In our research, our focus is
on the scientific charts.

Despite the diversity in chart types, scientific charts show some structural similarity
from the perspective point of view. Blostein and Haken [9] suggested using diagram
generators to improve diagram recognizers. To understand the features of a chart, we first
examine the notational conventions defined by the chart generation tools in order to

develop a chart recognition system. To figure out how a chart generation tool creates a
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chart is also helpful for developing a chart recognition system. In the following section,

we introduce the knowledge of charts from the point view of chart generation.

3.1.1 Knowledge from the Microsoft Excel Chart Tool

Commercia chart creation tools like chart wizard in Microsoft Excel have their detailed
notational conventions for charts. Microsoft Excel chart tool is crude but sufficient for
recognition as machine will not handle fine details anyway. The chart wizard creates a
chart from a two-dimensional data sheet or a table. The dimension with fewer rows or
columns is the value dimension, normally along the Y-axis. The dimension with more
rows or columns is the category dimension, usually along the X-axis. Chart items include
category axis, vaue axis, data series, data marker, data label, tick marks, tick-mark
labels, legend, or gridlines, etc. A real chart may comprise of all of them or part of them.
Some charts may aso include complementary items such as a secondary value axis. We
briefly define the main chart items and areas of a chart as follows. Detailed notational
conventions related to them can aso be found in the help sources of the Microsoft Excel
software [78]. Figure 3.1 also gives an example illustration for these entity definitions.

Chart area: The entire chart and al its elements.

Axis: A line that borders one side of the plot area, providing a frame of reference for

measurement or comparison in a chart.

Plot area: The areathat is bounded by the axes. The plot area in our work includes the

axes.,
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Data marker: A bar, area, dot, dice, or other symbol in a chart that represents a single

data point or value that originates from a worksheet cell. Related data markers in a

chart congtitute a data series.

Data series: Thisrefersto a group of related data points that are plotted in a chart. Each

data series in a chart has a unique color or pattern and is represented in the chart

legend. One can plot one or more data series in a chart. Pie charts have only one data

series.

Tick marks: Tick marks are small lines of measurement, similar to divisions on a ruler

that intersect an axis.

Gridlines: The lines that are added to a chart to make it easier to view and evauate

data. Gridlines extend from the tick marks on an axis across the plot area.

Datalabel: A label that provides additional text information about a data marker, which

represents a single data point or value.

Title: This refers to the descriptive text that is automatically aligned to an axis or

centered at the top of a chart. See the chart title, X-axis title and Y-axis title in figure

3.1

Tick-mark labels (also called tick names): Tick-mark labels identify the categories, values,

or seriesin the chart.

Legend: A box that identifies the patterns or colors that are assigned to the data series

or categoriesin a chart.

The element ertities can be classified into two main categories: graphics elements and
text elements. Graphics elements include axes, data markers, data series, tick marks, and

gridlines. Text elements comprise of various titles and labels.
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Figure 3.1: Element entitiesin a chart. Note: the element entities of a chart are indicated
in the oval
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3.1.2 Definitions

Versdtile chart creation tools can create tremendous chart variations by varying the type,
format and placement of a chart. On the other hand, the process of converting a raster
chart image to a table or other computer readable format is by no means an easy task.
While creating a chart from datais a direct process, the reverse process, i.e. from chart to
datais a great challenge to us. To design such a conversion system, we have analyzed the
structure of bar charts [127] in the light of the chart creation process described in the
above section. The same notational conventions in chart creation tools introduced in the
above section are adopted in our work. In addition, we also give new definitions or
different definitions from the image processing and recognition point of view. We first
define two kinds of primitivesin our processing: graphics primitives and text primitives.
Graphics primitives. These are the graphics objects that have highly meaningful form.

Axes, tick marks, data markers such as bars, lines, are al the graphics primitives.

Text primitives. These are the character objects that are grouped in a highly meaningful

form. Titles, labels are examples of the text primitives.

The axes in our work have different names from that of the Excel chart tool. We also
define four types of chart areas inside a chart: substrate area, stage area, axes major areas
and axes mnor areas. The substrate area includes the axes mgor areas and the axes
minor aress.

Axes. For most 2D charts, data values are plotted along the value axis, which is
usually vertical and named Y-axis in our work. Categories in most 2D charts are

plotted along the category axis, which is usually horizontal in 2D charts and also
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named X-axis. In the 3-D charts, the vertical axis is called Zaxis. The axis which is
close to the Z-axis is the X-axis. The remaining axisis the Y-axis.

Stage area: This refers to an area where the data markers such as bars or lines are
active. The stage area is similar to the plot area defined in Excel. In a 2-D chart, the
plot area is the same as the stage area. But in a 3-D chart, the plot area includes more
elementsthan the stage area.

Substrate area: This refers to the part of chart that is composed of the chart frame and
its annotations. The annotations include the titles, tick-marker labels, legends, which
are not inside the stage area. In other word, the substrate area is the chart area that
excludes the stage area.
Axes major areas. The part in the substrate area where the text labels related with axes
lie in. For example, the axis tick labels and the title of the axis lie in this area.
According to different axes, axes major areas are divided into the X-axes major area,
the Y-axes major area, and the Z-axes mgjor area.
Axes minor areas. The part in the substrate area that is paralel to and opposite to the
axes maor areas. Axes minor areas also can be divided into the X-axes minor area,
the Y-axes minor area, and the Z-axes minor area.

We define the following categories of charts according to different classification

criterion.

Two-dimensional-axes charts: Charts that have two axes inside it. The angle between them is

intherangeof 85 and 95°.

Three-dimensional-axes charts: Charts that have three axes inside it. The largest angle

between them is larger than100°.

28



Single-data-series charts. Only one series of data markers appears in these 2-D charts such
asasingle line chart.

Multiple-data-series charts. More than one series of data markers appear in these 2-D charts
that gives a complex comparison relationship between different series.

According to the above definition, those charts that have data markers with 3-D visual

effect but have the largest angle between the axes less than 100° are classified as two-
dimensional-axes charts. Thus, a pie chart is either a two-dimensional-axes chart or a
three-dimensional-axes chart. In this dissertation, if it is not explicitly explained, the two-
dimensiona (2-D) charts means two-dimensional-axes charts and three-dimensional (3-
D) charts means three-dimensional-axes charts.

There are some terms related to chart interpretation level.

Value points: Points convey the value information of the data marker on a particular
position. The value in the horizontal direction of avalue point is called itshorizontal value.
Likewise, the value in the vertical direction of avalue point is called its vertical value.

Figure 3.2 is a definition illustration in a two-dimensional-axes chart. Figure 3.3 gives

an example of the defined areas in a three-dimensional-axes chart.
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Figure 3.2: Definition illustrations in a two-dimensional-axes multiple-data-series chart.
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are in the dashed rectangles with oval corners. D: Vaue points.
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3.2 Methodology of Chart Recognition System

Our methodology of chart recognition system is inspired by what is known of human

visual system.

3.2.1 Perceptual Organization on Charts

Chart creation tools tend to convert tabular data into an intuitive and vivid graphics
representation using simple graphics primitive such as lines, curves, bars, etc. At the
same time, however, the readers are less particular about the precision in a chart or
diagram than they are with a table. Let us imagine the difference between a table of
sales figures for a tenyear period and a line graph for that same data. We get a better
sense of the overall trend in the graph at the expense of precise dollar amount. Unlike
the table that presents quantitative data comparison by its rows and columns, charts
present a qualitative and visual data comparison, such as trends and relationship.

Chart recognition which is a reverse processing of chart creation, attempts to
convert the data in a chart or a graph into a tabular format. Since the data in a chart is
in qualitative representation, the tabulated data recognized by the chart recognition tool
may be not exactly the same as the original tabulated data that is used to create a chart.
Once the tabular data is extracted by a chart recognition tool, some simple
interpretation on the trends and the relationship about the data series, such as the
maximum point, the minimum point, can also be inferred.

Psychologists suggest that human recognition of objects is guided by perceptual
organization in the visual cortex. Perceptual organization refers to a basic capability of

the human vision system to detect relevant groupings and structures from an image
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without prior knowledge of its contents [100]. For instance, the human visual system
has the ability to immediately detect symmetry, collinearity, covlinearity, parallelism,
proximity and repetitive patterns when shown an arbitrary selected image. Perceptual
organization actually can be categorized as the intermediate stages of vision [101]. It is
above the low level sensory processing such as image enhancement, contrast
normalization, but below the high-1evel recognition stage.

A chart image carries many poperties lying in the perceptual organization level,
such as parallelism, collinearity, repetition, etc. In figure 3.4, we generate an image (b)
by cutting off the stage area in the chart image (a). We conducted a preliminary test
involving a group of 10 subjects. All of the subjects were able to classify the image (b)
as a chart within 2 seconds without any prior knowledge about image (). The tick
marker labels of the X-axisin image (b) are arranged on the same line. So are the labels
of the Y-axis. These two lines are perpendicular to each other. Human visua system
performs collinearity grouping on the text elements and relates the perpendicularity of
the structural relationship to the chart structure. Graphics primitives in a chart aso
show the attributes in the perceptua organization level. Line and bar charts are the
most frequent visualizations of data in general. Psychologists, Twersky et al., viewed
the bars as containers [115]. Each bar encloses one kind of things, separating that kind
of thing from other kinds of thing, which may be in another bar. Lines, on the other
hand, can be viewed as paths or connectors [115]. Thus psychologically, bars are used
to convey discrete relationship, while lines are used to convey trends in a chart. The
human visua system differentiates lines and bars by detecting different properties:
collinearity and repetition, in the level of perceptual organization. In figure 3.5 (a), bars

with the same pattern inside them are repeated with equal white space between each
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other. The line in the figure 3.5 (b) shows collinearity that can be viewed as a trend.
The tick markers along the X-axis of both images are short line segments that are
parallel to each other and equally spaced between each other. So are the tick markers
along the Y-axis. After obtaining these perceptua relationships, human visual system
maps these tick markers to the structural elements of the charts at a high leve
recognition. Thus redundancy information is obtained from observing both text and
graphics primitives. In general, redundancy reduces uncertainty.

After exploring human visual perceptua mechanism on recognizing a chart, we
deduce the following three arguments for chart recognition.

Argument 1 Chart recognition is a hierarchical recognition procedure, starting from
low-level vision, intermediate level vision to the final high-level interpretation.

Argument 2 The processing of the graphics part and textual part of a chart can be
applied comparatively independent of each other.

Argument 3 The focus of chart recognition is at the intermediate levd, i.e, the
perceptual organization level.

Argument 1 is applicable to amost al the computer vision problems. Redundancy
information in graphics and texts support argument 2. Nevertheless, feedback between
them is helpful in the whole system. For instance, the orientation information from
graphics processing is used in text processing in our system. Higher level recognitions
such as recognizing the textures in bar patterns or recognizing the 3-D effect can provide

more information about the charts, but are not the focus of the chart recognition problem.
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Figure 3.4: A perceptual test on a chart. (a) A testing chart image. (b) An image
without the stage area of the testing image. All the ten subjects can categorize image
(b) as a chart without the knowledge of image (a) within 2 seconds.
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Figure 3.5: Graphic primitives in charts show properties of perceptual relationship.
(). Repetition of bar patterns. (b). Collinearity of aline segment
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3.2.2 Methodology of the System

Motivated by the human visual system, the three arguments we deduce are the backbone
of our chart recognition system.

The common graphics symbol processing sequence adopts a two-step processing: the
first step is applied on the image level to get vectorized data. The second step processes
the vectorized data to recognize the graphics symbol. Unlike this common sequence, our
processing is a one-step processing, that is, the recognition of the graphics symbols is
directly applied on the image level. One of the advantages for this methodology is that
such sequence avoids the error caused by inaccurate vectorization which is aso a
noticeable problem in graphics recognition. Another alvantage is that it sticks to the
principle of focusing on the intermediate level processing that we deduce from human
visual perception. We also argue that if the target of a particular recognition focuses on
the lower level vision, one-step sequence is preferred to two-step sequence.

A hierarchical statistical- model-based chart recognition framework which focuses on
the intermediate level of vision is proposed in our work. Figure 3.6 is the flow chart of
our scientific chart recognition system. The framework comprises of three level
processing: the lowlevel processing, the intermediate level processing and the high-level
processing. The low-level processing which is also named preprocessing in our work
performs four operations: binarization, noise removal, connected component analysis and
connected component classification. The preprocessing techniques we adopt are al
mature techniques. Brief introduction of the preprocessing is in section 3.3 of this

chapter.
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The intermediate level vision of chart recognition is the focus of our work. Image
processing and computer vision techniques are first applied to extract those generally
invariable graphics symbols such as the plot area and the axes. These works are reported
in chapter 4. After the axes of a chart are detected, the areas defined in figures 3.2 and
3.3 can be segmented which aso separate the graphics primitives and text primitives into
comparable independent areas. Thus we can apply text processing and graphics
processing independently in accordance with the second argument we have deduced. The
information of detected axes is aso used in dimension classification in which a chart is
categorized asa 2-D chart or a 3-D chart.

Data markers insde the stage area are the highly variable graphics symbols that are
the main cause of the great variety of charts. If image processing based primitive
extraction methods are applied to extract data markers, such a system will be intractable
and difficult to extend since the variation of the data markers is huge. Recognizing the
detailed information about textures of the bar patterns and 3-D effect detection are not in
line with the third argument. Besides, these topics remain as difficult topics in the
computer vision area. Therefore in order to extract data markers efficiently and
accurately without falling into the dilemma of texture recognition or 3-D object
recognition, statistical models are proposed in this dissertation to model the repetition of
data markers in the perceptual organization level. Four chart models are constructed and
trained. They are the separated bar chart model, the contiguous bar chart model, the
sngle-line-series chart model and the multiple-line-series chart model. Charts are
classified by selecting the most probable model. The statistical modeling technique is
also applied to segment data markers and extract the value points of them. The detailed

work is reported in chapter 5.
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The texts in a chart are structurally arranged along the graphics symbols such as the
axes. To label and recognize these structured texts, a generalized X-Y tree structure
named zoned directional X-Y tree is proposed in this dissertation to hierarchically
represent the structured texts. A corresponding tree generation algorithm is also proposed
to arrange the texts into a tree structure. Tick mark labels and titles are extracted from the
zoned directional X-Y tree with syntactical analysis. Extracted words images are fed to
the optical character recognition (OCR) module to get text results. In the high-level
vison, the value points of each data series extracted from graphics processing are
correlated with tick mark labels detected by text processing to generate a tabular
interpretation for most 2-D charts. Tabular data are the output after correlating the value
points with tick mark labels. Chapter 6 addresses issues of text primitives analysis and

chart interpretation.
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Figure 3.6: Flow chart of scientific chart recognition system.
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3.2.3 System Assumptions

Chart recognition is a mmplex problem. We make the following ssmplifications and
assumptions about the problem domain to research into various issues in chart
recognition.

1. The chart images we process are in gray scale or binary format. Color gives more
information to the chart images but may add complexity to our problems.

2. We assume that the background of chart area is monotonic, and not textured or
halftoned. Extracting text or graphics from a textured or cluttered background is
still adifficult topic.

3. We assume no gridlines along the X-axis or the Y-axis. The gridlines help the
user to view the data easier. But in a recognition system, they make the
background of the stage area more cluttered. Besides the gridline is not difficult
to be removed by applying particular gridline removing procedures. Nevertheless,
it should not add difficulties to our main topics.

4. No border lines enclose around the two axes. The border lines are the two lines
connecting with the two axes to form the frame of the stage area. When the two
axes are cetected by the recognition system, the border lines can be easly
removed by applying a border line removal agorithm in the future work.

5. The reading order of the chart is from left to right. The reading orders can be
from top to down, or from bottom to p, or from right to left. Nevertheless, the

reading order from left to right is the main order among most charts.
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3.2.4 Testing Data Coallection

Currently known document image analysis databases such as NIST databases for
document image analysis or UW document image databases I, Il and Ill [89], are not
suitable for our work since they contain few chart images. Our testing chart images were
collected by scanning charts on technical journals at a resolution of 300 dpi. The
technical journals were arbitrarily selected, such as IEEE Transaction on Pattern
Analysis and Machine Intelligence, Journal of Pattern Recognition, Journal of Fish,
Journal of Physics etc. The chart images were first photocopied and then scanned. Thus
noise and discontinuity caused by low tone may be introduced. No strict restriction or

alignment on the scanner bed is required. Thus the chart images may be skewed when

photocopied or scanned. The skew degrees for most of the scanned charts are within+ 5°.

Table 3.1 shows the number of different categories of charts as testing data.

2-D charts
3-D charts Bar charts Line charts Other charts Total
44 254 207 32 537

Table 3.1: Testing data distribution of chart recognition system
A total of 537 chart images were collected, including 44 3-D chart images and 493 2-
D chart images. Among 493 2-D charts, there are 254 bar charts, 207 line charts and 32
other charts. Bar charts are grouped into one-bar-series charts and multiple-bar-series
charts. The textures inside the bar patterns are not fixed since the images are acquired by
arbitrarily selecting from the journals. The growing directions for the bar patterns are up,

down, or mixed. For most charts, the growing directions are up. Likewise, line charts are

41




classified & one-line-series charts and multiple- line-series charts. These two categories
of line charts can be further classified into a with-marker group and a without-marker

group. The other charts include data charts, high-low-close charts, etc.

3.3 Preprocessing

Four kinds of preprocessing operations are applied on the original images: binarization,

noise removal, connected component analysis and connected component classification.

Binarization

The chart images may be binarized or in gray level. The gray images first need to be
binarized. There are alot of binarization algorithms, such as p-tile, optimal thresholding,
adaptive thresholding, etc [60, 111]. We adopt the thresholding technique proposed by

Otsu [87].

Noise Removal

After the image is binarized, a simple noise removal morphological operation is
applied on the binary image to remove isolated noises. The isolated noises are dot noises
whose eight neighboring pixels are all background pixels. A 3 by 3 all-ones structural
element is applied on the images. The pixel is considered as a foreground pixel if its

value is greater than one.
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Connected Component Analysis

Connected component analysis is a mature technique. In our method, we assume the
foreground and background to be black and white respectively. In this technique, we use
eight-connectivity in the foreground and four-connectivity in the background to group
pixels into distinctive components. The connected component analysis we adopt is
sequential connected components algorithm in [52]. The output of this operation is all the
labeled components. Each component has a feature vector to identify its properties. We
calculate seven kinds of properties. labels of connected components, top and bottom
points position of the bounding box, mass, centroid position, height of the bounding box,
width of the bounding box, and density. The density means the ratio of mass to the area

of the bounding box.

Connected Component Classification

In this procedure, we classify the connected components into graphics-like
components or character-like components. In the connected components set, the height
and width of graphics elements are usualy larger than those of text elements. Even
though some text elements with large font size may have a large height and width value,
the ratio of mass to height or width is larger than that of graphic elements. In our method,
we use three filters for classification. These three filters are height filter, width filter, and
dengity filter. We apply a histogram technique to get the threshold for each filter. Those
components whose height and width exceed the corresponding thresholds are labeled as
graphics-like elements. If the height, the width and density of a component are less than
the respective thresholds, it is classified as a character-like component. Otherwise, it is

classified as a graphics- like component.



34 Summary

In this chapter, we have defined notational conventions of a scientific chart both from a
generation point of view and recognition point of view. The methodology of our chart
recognition system that tries to mimic the human chart recognition process is also
presented. The basic constraints and assumptions of our recognition system are also
presented. Testing data are introduced. Four preprocessing steps in our system:
binarization, noise removal, connected component analysis and connected component
classification are introduced in this chapter.

The contributions of this chapter are as follows:

1. We propose relevant notational definitions for scientific charts from a recognition
point of view.

2. We give theoretical contributions in constructing a chart recognition system
inspired by what is known of human visua system. The three arguments we
deduced are the principles and backbone of our chart recognition problems.

3. A hierarchical statistical- model-based chart recognition framework which focuses
on the intermediate level of vision is proposed in this dissertation.

4. Testing data set up. The procedure of setting up the testing data for our system is

not complex bu tedious.



Chapter 4

Chart Graphics Symbol Recognition

The procedure that follows the pre-processing procedure is the chart graphics symbol
recognition. Our symbol recognition process is a one-stage process, that is, image
processing operates directly on the image. Prominent and comparatively invariant
graphics symbols such as the coordinate system of the charts are detected directly from
the pixel level so asto avoid the errors caused by vectorization. In order to recognize the
graphics symbols in a chart, the plot area of a chart where most graphics elements are
active must be detected correctly first. Our graphics processing at this level includes plot
area detection, chart axes detection, bar pattern extraction. Chart axes detection is to
detect the position of the coordinate system of the testing chart and from the obtained
dimension information to classify the chart into the two-dimensional-axes chart or the
three-dimensional-axes chart. After obtaining the coordinate system, we then divide the
image space into graphics primitive division and text primitive division. In the next

section, plot area detection will be proposed first.

45



41 Plot Area Detection

The plot area is the area bounded by the axes within which all the main data markerslie.
Normally, the index or the tick names are very close to the corresponding axes. Plot area
detection is to mark out an area that includes at least al the elements inside the plot area
and overlaps the plot area as much as possible. Suppose for the actual plot area A, the
area detected by the detection algorithm is B. Then the relationship between A and B is
that B includes or equals to A. The plot area detection is not complex since we assume
that the chart has already been detected by page layout analysis. But this process is an
important start for a robust chart recognition system. Without correctly locating the plot
area, any further processing isin vain.

Plot area detection is not explicitly presented in both Y okokura and Watanabe [121]
and our previous bar chart recognition algorithms [126, 128]. Both of the agorithms
attempted to find the area enclosed by the X-axis and Y-axis for further graphics
primitive extraction. We name our previous method as Zhou old method [126, 128],
Y okokura and Watanabe's method as Yokokura's method and our present plot area
detection method as Zhou new method.

Y okokura s plot area detection method is such that: first, generate the vertical and
horizontal projection profiles for the chart image. Second extract the left- most peak and
the lowest peak in the vertical and horizontal projections respectively and label them as
the Y-axis and the X-axis respectively. Third, label the upper-right zone divided by the

Y-axis and the X-axis as the plot area.
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Zhou old plot area detection method works as follows: first, apply connected
component analysis on the whole chart image. Next, find the component with the largest
area. The area bounded by the rectangle of it is set as the plot area.

Unlike Zhou_old method which is a bottom-up method, Zhou _new method is a top-
down method which also utilizes the projection profiles of the image. Figure 4.1
illustrates the steps of Zhou new method. Zhou new method is like applying XY cut
algorithm only on the whole image level. The experiments and analysis for the three

methods will be discussed in section 4.3.1.

1. Generate the horizontal projection for the whole image.

2. Get the horizontal segments by cutting the horizontal projection.

3. Merge the neighboring horizontal segments with distance less thanT,.

4. Find the largest horizontal segment and get the horizontal image strip from it.
5. Generate the vertical projection for the horizontal image strip.

6. Get the vertical segments by cutting the vertical projection.

7. Merge the neighboring vertical segments with distance less thanT, .

8. Find the largest vertical segment and set the rectangle of it as the plot area.

Figure 4.1 Algorithm of Plot Area Detection.
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4.2 Chart AxesDetection

After detecting the plot area, the X-axis and the Y-axis, or the Zaxisif it isa 3-D chart,
should be extracted for the subsequent decomposition. Two approaches are used to detect

chart axes: projectionbased and Hough-based.

4.2.1 Projection-based Axes Detection

Yokokura' s plot area detection method already detected the X-axis and Y-axis when it
found a plot area. Zhou_old plot area detection assumes the leftmost peak and the lowest
bottom peak in the plot area as the Y-axis and the X-axis respectively. Since the
projectionbased detection algorithm is computationally fast, we propose an improved
projectionbased axes detection method, named Zhou_Axis projection method. The
Zhou_Axis_projection method first detects the peaks in the vertica and horizonta
projections. Then it obtains the leftmost position in the vertical projection and the lowest
position in the horizontal projection that are greater than a third of the peaks respectively
as the positions of the X-axis and Y-axis on the plot areas.

Projection-based axes detection algorithms obtain the approximate positions of axes
lying in the horizontal and the vertical directions. They cannot correctly detect the axes
lying in other different angles than vertical or horizontal directions such asin the case the
axes are distorted or skewed seriously for some scanned chart images. They cannot be
applied successfully to detect the axes in 3D charts either. In order to obtain robust
result of axes detection for further chart recognition, we propose a novel Hough-based
axes detection algorithm with geometric analysis to detect the axis lying in an arbitrary

direction. Thisis explained in detail in the ensuing section 4.2.2.



4.2.2 Hough-Based Axes Detection with Geometric Analysis

Hough transform is a voting technique to detect straight lines by utilizing a parametric
equation to transform each point in the image to be processed from Cartesian feature
space (X-Y) to a new parameter space (r-q). We adopt the following polar

parameterization for a straight line.

r =xcosq +ysnq 4.2)
The standard Hough transform algorithm can be found in [52]. We also propose a
concise and agebra representation for it in Appendix A.
The axes detection algorithm can be outlined as four procedures:
Preprocessing and applying Hough transform.
Multi-section peak clustering in Hough domain.
Line segment verification in the image domain and merging.
Geometric axes reconstruction.
Figure 4.2 shows the main step of Houghtbased axes detection algorithm with
geometric analysis. We describe the details of the four procedures in the following

sections.
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. Preprocess the plot area and apply Hough transform.

. For each g section in the Hough space, do step 3 to step 8 to obtain the peak
information.

. Binarize the accumulator section.

. Clustering the peaks to obtain the peak objects list in the section.

. Cdculate the value for the peak objects.

. Sort the peak objects along the r and check related peak pairs for the
neighboring peak objects.

. Get the peak objects with the maximum and minimumr .

. Verify each peak object in the image space for valid line segments. The length
of the valid line segments is larger than one fifth of the longest line segment
found in that section.

. Merge the line segments in the image space.

10. Detect the vertical axis by selecting the leftmost line segment whose end point

is closest to the left boundary of the plot areain the vertical major section.

11. Find the line segment whose end point is closest to the bottom boundary of the

plot area and verify it. If it is the second axis in a two-dimensional chart, stop

the program, else go to step 12.

12. Find the third axis which has shortest end point distance with the found axes.

Figure 4.2: Hough-based Axes Detection Algorithm with geometric analysis

50




Preprocessing and Applying Hough Transform

For a large number of feature points, the Hough transform is computationally expensive
hence a preprocessing on the detected plot area should be applied first. In our
preprocessing, we first filter the character-like elements inside the plot area. Thus alot of
feature points are dropped. Then we get the interior boundary image for the remaining
graphic image as feature points for Hough transform using the boundary generation
algorithm in [95]. The points inside the solid bars are also dropped, which minimize
greatly the number of voting points. Therefore the number of feature points for voting is

small. The resolution along the q is set to one degree. The resolution along ther is set to
one degree too. Both the increment step of r and pixel in feature space are the same in
the vertical and horizontal direction. Thus we can get a close correlation between the

Hough space and the image space using thisr resolution.

Multi-Section Peak Clustering in Hough Domain

The peaks in the Hough space represent the straight lines. In order to delineate the axes,
more detailed processing on the result of Hough transform should be implemented. We
first divide the g into 18 sections. starting from the division combining175° ~180° and
0" ~5, then 6°~15", until the divison 165 ~174°. The two sections where the
horizontal and vertical lines lie are called the mgor sections. The other sections are
called minor sections. The resolution of quantization of the Hough space is important for
correctly detecting straight lines in the Hough space. If the resolution is too small, there
will be over-fitting problem. In order to avoid the spurious peaks caused by over-fitting,

apeak points clustering procedure is applied on the peak points. In each section, the peak
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points are first projected in the horizontal direction. The horizontal profile is segmented
into peak objects with an allowable discontinuity distance. The peak objects in the
sections usualy comprise of multiple bins. Suppose there are M bins composing of a

peak object. For a specific bin inside the peak object, the value of the binisH, (i, j). The

value of the peak object is computed by

H, (. )
Vpeak :T (42)

Qo=

For the neighboring peak objects along the r direction, if the value difference between
them is less than one tenth of the smaller peak value, these two neighboring peak objects

are considered as a pair of related peak objects

Line Segment Verification in the Image Domain and Merging

Hough transform renders the approximate positions of the straight lines. Some of results
from Hough transform may represent a cluster of dashed line segments or points. In order
to detect axes, a line segment detector, a line segment verification procedure, is first
applied in the each section to find valid line segments which are above a threshold T ;¢
from the voting image pixd list. Then line segments on the same straight line that the

internal distance is less than T, are merged. The inter-section line merging is aso

Inter

applied to overcome the problem of duplicated representation of aline segment.
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Geometric Axes Reconstruction

We first analyze the geometry of the axes in both two-dimensional-axes ard three-
dimensional-axes charts. The norma reading order is from left to right. Figure 4.3
illustrates the geometry of the axes. In reconstructing the axes, the leftmost line segment
in the major vertical section is selected as the Y-axis in two-dimensional-axis charts or Z-
axis in three-dimensional-axis charts. The line segment of which one end point (x,Y,) is
closest to the lowest bottom of the plot area is the candidate of axes. If this line segment
lies in the major sections, then it B the X-axis and the chart is classified as the two-
dimensiona chart. If it liesin minor sections, then it may be the X-axisor the Y-axisin a

three-dimensional chart as shown in figure 4.3 (b). If Yy, of the crossing point(X_,Y,) is

smaller thany,, then the second detected axis is the X-axis, otherwise it is recognized as
the Y-axis. The remaining axis is found by searching the shortest distance between the
end points of the second found axis and other line segments in the Hough space. The
crossing point of the Y-axis with the X-axis in a two-dimensional chart or the crossing

point of the Z-axis with the X-axis in a three-dimensional chart is the origin point

(%,,Y,)of the coordinate system. Experiments and result analysis will be reported in

section 4.3.2.
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Figure 4.3: Geometry illustration of the axes in charts. (a) X-axis and Y-axis in the two-
dimensional chart. (b) Z-axis, X-axis and Y-axisin the three-dimensional chart. Note: the
solid line segments are recovered line segments from the Hough space.

4.3 Experimentsand Analyss

In this section, we present experiments on the algorithms in detecting plot areas and axes
which are proposed in previous sections. The output of the plot area detection is a
rectangle that includes the plot area. We draw the detected plot areas directly on the
testing image by using red rectangles. The outputs of axes detection are the coordinates
of two end points of line segments. We reconstruct the axes on the testing images by
drawing them in red color. The origin of the coordinate system is represented in blue
color. The topics on performance anaysis and benchmark development are incurring
more and more interests in the document image analysis domain [43, 70, 90]. Developing

benchmarks to evaluate the performance will be future work. To evaluate the
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performance of the algorithms in our work, we adopt two evaluation criteria, precision
and recall from the information retrieval domain [94]. The precision of the algorithm is
the proportion of detected objects that are actually correct. The recall is the proportion of

correctly detected objectsto all actual objects present in the chart.

4.3.1 Resaultsof Plot Area Detection

537 chart images that have 537 plot areas in total were used to test the three plot area
detection methods discussed earlier. Among these 537 chart images, there are 493 images

with 2-D axes and 44 images with 3-D axes. The thresholdsin Zhou_new method are:
T,=4 and T, =7 respectively. Both thresholds are fixed for al tested images. Figure

4.4 shows an example that al of the methods succeed in finding the plot area. Table 4.1
illustrates the testing results of al the three plot area detection methods. Since al of the
three methods render a plot area for each testing image, the recall and precision are
equal. Therefore table 4.1 only shows the results of recall. Recall measures the

proportion of correct plot areas to all the plot areas.

2-D plot areas 3-D plot areas Total plot areas
(total 493) (total 44) (537)
Methods
Correct area Recall Correct area Recall Correct area Recall

detected detected detected
Y okokura 237 48.07% 0 0% 237 44.13%
Zhou_old 386 78.30% 38 86.36% 424 78.96%
Zhou_new 475 96.35% 44 100% 519 96.65%

Table 4.1: Testing results of plot area detection methods
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From the above result table, we see the Zhou new method renders the best detection
rate both on 2-D and 3-D charts. The performance of Y okokura method is the worst. The
performance of Zhou old method has a great improvement comparing with that of
Y okokura method, but still worse than the performance of Zhou_new method.

Figure 4.5 presents the wrong plot area detection examples by the three methods. The
plot areas in subfigures (a) to (g) of figure 4.5 are wrongly detected by both Y okokura
and Zhou_old methods. Yet Zhou_new method can detect al of them correctly. All the
above methods fail in detecting the plot areas of subfigures (h) and (i) of figure 4.5.
Figure 4.5 only shows the results of one of the algorithms that detect the plot areas
wrongly. Although 98% of the Y axes and X axes of the testing 2-D charts lie in the left
and bottom part of the images respectively, the detection rate of Y okokura' s method is
not satisfactory, not to mention its result on the testing 3-D charts. On visual inspection,
we note that the axes are the two salient peaks in a chart. But in a projection profile,
severa bins represent the position of an axis due to the non-smoothness of the line, noise,
or other uncertainty effect. Other graphic elements such as a solid bar may compete with
the axis as in subfigures (a) and (d). Other problems such as interference by the outside
frame of a plot area or the skewness of the axes or even the whole charts like the
subfigures (b) and (d) may also affect the precision of plot area detection. Therefore,
using a naive observation to treat the upper-right area divided by the leftmost peak and
the lowest peak of vertical and horizontal projections as the plot area, is not robust for a
practical chart recognition system. The problem degrades the accuracy of Zhou_old plot
area detection most is caused by broken graphics elements, especially when the axes are

severely broken due to scanning or other reasons as in subfigure (€) and (f). Even if there
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is no broken graphic element, a non-axis graphics element such as in subfigure (g) may
also be mistaken as the plot area due to its larger size. Zhou_new method lessens the
major problem of Zhou_old method by adding a merger operation. Nevertheless, same
problems remain as in subfigure (h) and (i) if the merging thresholdT, is not suitable for

these images.
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Figure 4.4: The results of plot area detection on an example image: (a) the result of

Yokokura method. (b) the result of Zhou old method. (c) the result of Zhou new
method. Note: the red rectangles are detected plot areas.
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Figure 4.5: Wrong detection results of plot area detection: (a)—(d) wrong results of
Y okokura method. (€)—(g) wrong results of Zhou_old method. (h)—(i) wrong results of
Zhou_new method. Note: the rectangles are detected plot areas.
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4.3.2 Reaultsof Chart Axes Detection

Projection-based axes detection methods in [121, 127] are also implemented to compare
the results of Hough-based axes detection algorithms. Two projection-based algorithms
are implemented: Yokokura method and Zhou old method. Figure 4.6 shows some
successful examples of axes detection of the three algorithms. The red lines depict the
position of X-axis and Y-axis respectively and the blue asterisk point indicates the origin
of the coordinate system. Besides detecting the axes lying in the ordinary orientation,
Hough-based algorithm can detect axes that both projection-based algorithms cannot find
such as three-dimensional coordinate systems and also dant two-dimensiona coordinate
systems, or even hand-drawn charts as shown in the figure 4.7. We name Hough-based
=7 and

algorithm as Zhou_new method. The thresholds in Zhou new method are: T

Inter

TAig €quals to one tenth of the largest peak. Both thresholds are fixed for all tested
images.

Table 4.2 gives the result of comparison for the three agorithms in testing on 2D
charts. Table 4.3 shows the result of comparison for the three algorithms in detecting
axes of 3-D charts. Precision is defined the proportion of detected axes that is actually
correct. Recall measures the probability of correct detected axes on existing axes. The
performance of detecting each axis in both two-dimensional and three-dimensional
coordinate systems is presented in detail. Projectionbased methods cannot detect the X-
axis and the Y-axis in three-dimensional charts and also perform poorly on detecting the
vertical axis. However both methods will always output an X-axis and a Y-axis for each

testing image but both precision and recall for Y-axis detection is obviously lower
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Figure 4.6: Successful examples of axes detection agorithms: (a)—(c) results from

Y okokura method, (d)—(f) results from Zhou_old method, (g)—(i) results from Hough-
based method. Note: the red line segments are axes and the blue points are the origin of
the coordinate systems.
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Figure 4.7: Successful results of our Hough-based axes detection algorithms. The other

two methods failed on these images. (a)—(e) three-dimensiontaxis charts, (f)—(h) two-
dimension-axis charts from technical jourrdls, (i) atwo-dimension-axis hand-draw chart.
Note: the red line segments are axes and the blue points are the original point of the

coordinate systems.
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than those of X-axis detection. One of the major reasons is the interference of the graphic
primitives such as solid bars, etc. Hough-based agorithm outperforms greatly in all the
axes detection for both two-dimensional and three-dimensional charts shown from table
4.2 and table 4.3.

Houghtbased detection algorithm shows comparatively robust performance in
detecting two-dimensional axes on performance of both precision and recall. By
examining the display of axes output, we aso find that the position and orientation of the
correctly detected axes from Hough-based algorithms are better than those from
projection-based methods when the real axes in the testing chart have some skew. The
performance on detecting the Zaxis of the three-dimensional coordinate system is also
robust. However many Y-axes in three-dimensional charts are missing, lowerimg the
recall rate. Figure 4.8 (e) and (f) illustrate two examples of such a case. The missing axis
is caused by interference of other graphic primitives. Nevertheless, they still can be

classified as a three-dimensional chart since the clockwise angle between Zaxis and X-

axisis greater than100° .

Although Hough+based axes detection algorithm shows satisfactory results on
detecting the two-dimensional axes, there are cases where it fals in detection as
illustrated in Figure 4.8. One of the main reasons is the propagation error caused by the
plot area detection. For example in figure 4.8 (a), an incomplete plot area leads to a
wrongly detected Y-axis while in figure 4.8 (b) the Y-axis is totally missing. Although
the Hough-based method is tolerant to the discontinuities of line segments, if the quality

of image is poor and broken lines are widely segmented, other data markers or graphic
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elements in the plot area may prevail over the rea axes and hence are erroneoudy

selected as the axes like infigure 4.8 (c) and (d).

Categories | Detected Axes | Correct Axes | Precision (%) Recall (%)

Metho X-axis | Y-axis | X-axis | Y-axis | X-axis | Y-axis | X-axis | Y-axis
Y okokura 493 493 | 323 240 | 65.52% | 48.68% | 65.52% | 48.68%
Zhou_old 493 493 | 413 387 | 83.37% | 74.94% | 83.37% | 74.94%
Zhou_new 477 484 | 462 467 | 96.86% | 96.49% | 93.71% | 94.73%

Table 4.2: Testing results of axes detection algorithms for 2-D charts

Detected Axes |Correct Axes  [Precision (%) Recall (%)
X-1Y-|2Z | X-]Y-| Z |X-axis|Y-axigZ-axis| X-axis|Y-axis| Z-axis
axis | axis| axis| axis| axis | axis

Yokokura| 44 | O |44 | O 0 | 15 0 0 |3#41 0 0 34.1
Zhouold|44 | O (44| O 0 | 22 0 0 50 0 0 50
Zhou new| 43 | 32 | 44 | 37 | 29 | 43 [86.05|90.63|97.73| 84.09 | 65.91| 97.73

Table 4.3: Testing results of axes detection algorithms for 3-D charts




Wumher of Nish, %

— 4 i
il

} U] ||
L3
;_! | e ' ; 1
& o i _-_‘.,L QR=MO FGE0 SH-ADD TR
e e BN HE=alkh Bl -700
53 E v ;
LS 8 Depth. m
e i
= i
4=
i

i 5 T
-
-
Ak
T
&
5
]
i
5
E ]
:.I "
Fy
..... o b
el A
= o T o et
Al
i Cada ek, sl ol @ epieat el o aced A
| 1 b pante. The 14
v ke o b b 1o appeas sals by o ety ke T
Vaty: £10 ] botalios of the dats poisks

(d)
Curve Three

R
wm” fradi

AR

do fda (1

Figure 4.8: Unsuccessful results by Hough-based axes detection algorithm: (ay—(d)
two-dimensionaxis charts, (e—(f) three-dimension-axis charts. Note: the red line
segments are axes and the blue points are the origin of the coordinate systems.
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44 Summary

In this chapter, we propose our processing on the intermediate level chart symbol
recognition. First, the plot area is detected by applying an improved projectionbased
algorithm. Next, a novel axes detection algorithm is further applied on the plot area to
detect the coordinate system. Experiments and performance analysis on the plot area
detection and axes detection are illustrated.

The contributions of this chapter include:

1. We propose an improved projectionbased approach for plot area detection.

2. We present a method of axes detection with Hough feature clustering and
geometric analysis in our work to detect 2-D and 3-D axes. The axes information
will be used to classify charts into 2-D charts and 3-D charts in the stage of chart
classification. Our experiment shows that the proposed axes detection is robust

comparing with other projectionbased methods.
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Chapter 5

Chart Classification and Segmentation

In the previous chapter, we have investigated two graphical processing procedures, plot
area detection and axes detection, which give us some essential information of a
processed chart. Yet the information is still insufficient to enable us to interpret the
generated tabular data since the data markers have not been extracted. The series of data
markers are the key features representing the information conveyed by a chart. When
generating a chart from a data sheet or a table, the attribute variation of the data markers
such as height or area, represerts the tabular data. The value points of the data markers
grasp the attribute variation of the data markers. Thus segmenting the data markers and

extracting the value pointsis the right path to interpret a chart.

Chart segmentation in our work is to segment the data markers and extract the value
points. The diversity of charts is mainly due to the various types of data markers.
Different data markers use different semantics to convey the underlying tabular data.
Therefore before chart segmentation, chart classification should be applied in which
charts are classified into their corresponding categories in terms of their shapes and

semantics representations. Chart classification and chart segmentation interleave with
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each other to some extent. For instance, after extracting the bar patterns or line patterns
from a chart, we can classify the chart into a bar chart or aline chart accordingly. On the
other hand, if a chart belongs to a specific class of charts, the knowledge of this class also
helps to extract the data markers.

Chart classification in our current work addresses two problems: one is dimension
classification to classify a chart into a 2-D chart or a 3-D chart, the other is type
classification to categorize a chart into one of the four types of 2-D charts. separated bar
charts, contiguous bar charts, single-line-series charts and multiple- line-series charts.
Chart segmentation is to obtain the value points of the abovementioned four types of 2-D
charts.

The topic of chart classification has not keen very much researched in the area of
chart recognition. Currently reported research works in [121, 126] all assumed that the
type of the recognizing chart is aready known such as a bar chart. Even with this
assumption, the algorithm they proposed could only apply on a single-bar-series chart
with separated bars. The algorithm by Y okokura and Wantanabe[121] could achieve the
claimed accuracy only on hollow or solid bar patterns but not on textured bar patterns.
The strict underlying assumption on the chert type restricts the use of their algorithms in
recognizing different types of charts which is aso the bottleneck in constructing a
practical chart recognition system. Chart classification is the solution for the bottleneck
and is a key procedure for a sound chart recognition framework. In this chapter, we
propose a novel approach for chart classification and chart segmentation by statistical
modeling.

Before we explore the topic of statistical modeling for charts, we address the problem

of dimension classification by using the information from axes detection.
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5.1 Dimension Classification of Charts

After axes detection, the processed chart can be classified into a 2-D chart, a 3-D chart or
a chart of other category in terms of the axes information since we have obtained the
parametric information about the coordinate system.

Some of the axesin 3-D charts cannot be detected correctly by analyzing the result of
axes detection and only two axes are detected for these 3-D charts. If we simply use the
number of axes to discriminate the dimension of a chart, the error caused by axes
detection will mislead dimension classification. Therefore, we apply the angle constraint
to further discriminate the dimensional type of charts. We classify those charts in which
three axes are found or two axes are found but their internal angle a as shown in figure
4.3 of chapter 4 is greater than 100° as 3-D charts. Other charts with more than or equal
to one axis found are categorized into 2D charts. Those charts with no axis found are
classified as other category which possibly includes pie charts, etc. The result of

dimensional classification of chartsisillustrated in section 5.5.1.

5.2 Framework of Chart Statistical Modeling

Charts can be classified by extracting graphics primitives such as axes or data markers
using image processing plus heuristic searching with the geometric knowledge of the
primitives. That means chart classfication follows chart segmentation. For
comparatively stable graphics primitives like axes, primitive-extraction method for chart

classification is advisable since the parameters for they are not too complex and are
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tractable. Yet the data markers are versatile and need complex multi-parametric
heuristics to segment which makes tuning of the entire system difficult. It is aso the
reason why currently reported works in [121, 126] can only recognize charts of very
strict types. In our work, we propose a new chart classification and segmentation

approach based on dtatistica modeling. Figure 5.1 illustrates the structure of the

framework.
Chart image signals
Feature
Extraction
Chart observation sequenci Principal variant features
Chart Models Chart Model
Construction [Chart modas Matching
112 K Optimal sequences
d probabilities
Type
Chart Classification Chart Type
e Knowledge
Classificatior
Chart Optimal model
Segmentatior The mos Sequence v £
probable typd
Chart
\4 Segmentation

Number of

data series an

value points

Figure 5.1: Framework of statistical modeling for chart classification and segmentation
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Feature Extraction

Unlike the primitive-extraction-based approach, the proposed statistical-model based
approach need not explicitly extract data markers in order to classify a chart. An
unknown type chart image is converted by a feature extraction processor into a sequence

of image observation vectorsO = 0,,0,,...,0; , Where each of these vectors is a compact

representation of the short-span image spectrum which contains the necessary image
information for recognition. Principal variant feature vectors which record the locations
and detailed information for each observation vector are aso extracted for later chart

segmentation or chart understanding.

Chart Models Construction

The Hidden Markov Model (HMM) is a doubly stochastic process, in which one kind of
the variables is hidden, and the other kind of random variables is observable. The HMM
has been successfully used in speech processing and recognition and handwritten
character recognition in document image analysis domain. Appendix B in the dissertation
introduces some basic knowledge about the HMM. The classification and segmentation
of graphics symbols in charts stage area have many similarities as compared to
handwritten character recognition. They both involve processing of noisy symbols with
considerable variations in symbol appearance. The sequence of presentation symbols for
charts also share the similarity of time sequence if we view the dimension of X-axis as
the dimension of time sequence. We are the first to use the HMM to mode the semantic

knowledge of graphics symbols in the chart stage area. The repetition of graphics
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symbols are also modeled in the HMM by assigning cyclic arcs between state nodes.

Each type of chart is modeled by one HMM in which the states may signify the primitive
labels of the graphics symbol such as atick mark, aleft side of a bar pattern, or the right
side of a bar pattern. The training feature vectors are extracted from the trained images
by the feature extraction procedure. The parameters of the models are estimated by a
segmental K- means agorithm with Baum-Welch re-estimation formulas using maximum

likelihood optimization criteria.

Chart Model Matching

The task for chart model matching is to compute the probability of the most probable
chart model sequence, C, =, ,Cy ,...,Cy » given the observed chart image sequence
0=0,,0,,...,0; for each particular chart model |, which is denoted P(C, ,O|l ),

using Viterbi algorithm based on dynamic programming. The optimal state sequence for

each model is also obtained by this algorithm.

Type Classification

The optimal chart model |, in K chart models with the highest probability is selected as
the chart typein which | , is calculated using the following equation.

|, =argmax P(C, ,O|! ) (5.1)

1EKEK

Chart Segmentation

The optimal state sequence C, = ¢, ,Cyy ,..,Cy fOF the detected chart type model |, is

combined with principle variant features from feature extraction and heuristic rules from
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chart type knowledge to segment the number of the data series and data markers in a
chart. In our chart segmentation problem, we also discuss the primitive-extraction
approach with heuristic rules to segment data markers.

The framework of statistic modeling can be divided into two main parts. model-based
chart classification and chart segmentation. In the next section, we will address model-

based chart classification.

5.3 Modd-based Chart Classification

As illustrated in the previous section, model-based chart classification comprises of
feature extraction, chart models construction, chart model matching and type
classification. Features are selected first before performing the chart type classification.

The next section explores the aspect of feature extraction.

5.3.1 FeatureExtraction

Extracting appropriate features from charts plays an important role for a robust chart
classification and segmentation. Features at the feature points compact the geometrical
information. These feature points include the corner points of line segments and
rectangles and junction points on the axes. After segmenting the feature points, features
are computed to compose an observation vector. These observation vectors are then used

in training and testing. We first investigate the problem of feature point detection.
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Featur e Points Segmentation

To extract the geometrical features, the line which is perpendicular to the X-axis for each

pixel adong the X-axis is extracted for further processing. Let PX.(Xpegins Yoegin)

and PX ., (Xaq» Yeng) denote the two end points of the X-axis. Pixels along the X-axis are

end?

denoted as PX, (x;,Y;), wherex,;, £ X; £ X, . We adopt the following slope-intercept

parameterization to represent alinel .

ix=b vertical lines
N ) . (5.2
1y =kx+b non- vertical lines

A line which is perpendicular to the X-axis at a crossing point PX, (X;,Y;) , denoted asl,

Is also paralel to the Y-axis whose slope can be computed by the following equation

with aknownq. Since the parameters of theline |, are obtained, the pixel values on it can

be extracted for further geometric feature extraction.

_ cosq
snq

k = (5.3)

The feature points we define in our chart classification are the two pixel points on
each visited perpendicular linel,. One is the crossing point lying on both the X-axis and
the extracted perpendicular linel,, denoted as pixel p,. The other is the pixel point p,

lying on the extracted perpendicular line |, which is farthest from the pixel p, .

Featur es Selection
The shapes of these feature points are classified into four groups: T-shape, right-
L-shape, left-L-shape and line-end-shape. Start from the center of a feature point and

search the boundary of a 10x10 bounding box in four directions: north, south, east and

74



west as illustrate in figure 5.2. A four-tuple [N, E, S, W] represents the pixel extension
distribution. Search each direction, if there is pixel extension, then mark the variable in
that direction as 1. If the pixel extension distribution for the feature point is equal to
[1,1,0,1] or [0,1,1,1], we name the shape of the point as T-shape. If the pixel extension
distribution for the feature point is equa to [0,1,1,0] or [1,1,0,0], we name the shape of
the point as left-L-shape which corresponds to the top corner shapes of the left side of a
bar. If the pixel extension distribution for the feature point is equa to [0,0,1,1] or
[1,0,0,1], we name the shape of the point as right-L-shape which corresponds to the top
corner shapes of the right side of a bar. If the pixel extension distribution for the feature

point is equal to [0,0,0,1] or [1,0,0,0], we name the shape of the point as line-end-shape.

fN

+ —>
0

Figure 5.2: Shape analysis for afeature point

4_

The topological and geometrical features are very useful in capturing spatial information
of the graphics area. We improve the features in our previous work [129] and present
four types of geometrical features. T-shape feature, L-shape feature, line-end-shape

feature and transition feature.
T-Shape Feature

T-shape feature describes the information whether or not the pixel p, is a T-shape

point. Let f,, represent the T-shape feature. It is computed using the following equation.
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_10 non- T - shape

= 5.4
711 T- shape G4

f

L-Shape Feature

The attribute of L-shape for the pixel p, is extracted as L-shape feature, denoted f .

It is calculated as follows:

i0 non- L - shape
f.={05 right- L- shape (5.5)
11 left- L - shape

Line-End-Shape Feature

Line-end-shape feature contains the informetion as to whether or not the pixel p,is
an end-point of aline. Let f,, represent the line-end-shape feature. It is computed using

the following equation.

10 non- line - end - shape

es _i . (56)
il line- end - shape

fi

Transtion Feature
The number of transitions from the foreground to the background for each
perpendicular line is aso selected as an important feature. The neighboring runs that
transition between black and white are merged if the distance between them is within a

specific threshold to avoid noise disturbance. The feature f, which represents the

number of the transitions is computed as follows:

i0 no transtion
:';0.25 one transition
t:!O.S two transitions (5.7)
:::0.75 three transitions
1 four or more
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Feature Vectors Generation

The graphical image that we have used to detect axes is aso used to generate feature
vectors for each chart. A feature vector is extracted at each feature column that is
perpendicular to the X-axis. Each chart image is represented by 30 feature vectors in the
training process regardless of the actual size of the image. If there exist points with T-
shape on the X-axis, the feature vectors at those positions are selected as parts of the
training feature vectors for a chart. The feature vectors at the intervals between those
positions are also selected with equal spacing to compose the remaining parts of the
training feature vectors for that chart. All these vectors are ordered along the X-axis.

The features in the observation sequence are normalized. Another feature vector
named the principal variant feature vector is used to record the exact information of the
feature points in each feature column. The exact information includes the location of the
corresponding observation feature vector in the image, the coordinates of the two feature
points and transition points which are the reference of value points, the number of
transitions and the shape information of each feature point. The principa variant feature

vectors will be used in high-level chart understanding.
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5.3.2 Chart Mode Construction

Chart model construction includes three aspects. chart model selection, topology of chart

models and training model parameters.

Chart Modée Sdlection

An HMM has two components, an underlying Markov chain having a finite number of
states and a finite set of output probability distributions, one of which is associated with
each state.

In an HMM, the observation sequence isO =0,,0,,...,0; and the chart state sequence

fromitisC =c,,c,,...,¢;. T isthe length of the observation sequence. N is the number of
states in an HMM. An HMM is normally represented with a compact parameter set
I =(AB,p)[91] where p isthe initial state distribution vector, e.g. p; is the probability
of state i at some arbitrary time, t=0. A is the state transition matrix, where A=[a;j], &; is
the probability of transiting to state j given the current statei. B is the output distribution
matrix, where B=[bj], bjk is the probability of observing symbol k given the current state
j-

In adiscrete HMM, the observation sequence O is required to be finite. The technique
of Vector Quantization (VQ) can be applied on the original observation sequence space.
An observation sequence is quantized by substituting it to the closest element from a
finite codebook of vectors. For most applications, the observations are continuous
sgnals. VQ of these continuous signals can degrade performance significantly.

Moreover, the codebooks generated by the quantization process are constructed using
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training data from all classes. When a new class of training data is added, we need to
reconstruct the codebook and retrain all the HMM. But if the observation densities are
continuous, we do not need to train the system from the beginning since there is no
codebook to be constructed, we only need to train the newly added class. Thus in our
work, we adopt continuous HMM with M-component Gaussian mixture to model charts.
In a continuous HMM, for each state j it is necessary to compute the probability b;(0)
for each observation vector o in a continuous space. The probability of each observation
vector for each state j with one-dimensional Gaussian of mean m and covariance Uj is

computed using equation (5.8).

(5.8)

where oy is the k™ feature of o, my is the mean of the distribution of the k™ feature of state
j and Uji is the variance of the k" feature of statej.

In our current work, we research into two main kinds of charts: bar charts and line
charts. The fill-in patterns of the bar charts can be of a large variety since we arbitrarily
collect the data set. The one-dimensional Gaussian distribution is not sufficient to model
the variation of the fill-in patterns of bar charts. Thus we adopt a more complicated
distribution function, i.e., M-component Gaussian mixtures. An M-component Gaussian

mixture is a linear combination of M Gaussian probability density function calculated by

the equation (5.9).
y y Hx 1 @imp-nod
blo)=a w,b"(0)=a w,iiO _expg-— & m”ﬂ:;i'/ (5.9)
m=1 m=1 TTkzl«/ZpUjk éZS Uik 2 o

where Wy, is the weight of mixture m.
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Topology of Chart Models

The left-to-right hidden Markov models are a commonly used topology in speech
recognition and handwritten character recognition because this topology is more suitable
to model constrained tempora order. In our processing, the chart sequence shows a
repetition characteristic. The ergodic topology can represent such characteristic better
than the left-to-right model. In such topology, it is possible to reach any state from any
other state.

In our work, we investigate two kinds of charts, bar charts and line charts, since they
are the most commonly used charts conveying both discrete and continuous trend
information.

Although the bar chart images we collected show diversity in the fill-in texture bar
patterns and difference in the number of bar series, they can be generally grouped into
two categories, separated bar charts and contiguous bar charts, according to the inter-bar
spacing. In a separated bar chart, the value of the inter-bar spacing is positive which
means each bar in it is not connected with each other. In a contiguous bar chart, there are
bars connecting with each other and the value of the inter-bars spacing between them is
not positive. Almost al the multiple-bar-series charts in our data set are contiguous bar
charts. People are used to represent a group of data comparison by a group of connected
bars and separate each group with a positive inter-group spacing. Most of the single-bar-
series charts in our collection are separated charts. But the contiguous single-bar-series
charts are also commonly used. The difference between a contiguous single-bar-series

chart and a contiguous multiple-bar-series chart is that there is no inter-group spacing in
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a contiguous single-bar-series chart. By combining with the semantic information of bar
charts, we construct two bar chart models based on HMM as shown in subfigure (a) and
(b) in figure 5.3. Figure 5.3 (a) is the separated bar chart model. And figure 5.3 (b) isthe
contiguous bar chart model. The number of the hidden states of the models is decided by
combining our experience on adjusting the HMM and the semantics in the chart stage
area. The states of the bar models have corresponding semantic meaning. State 1
signifies the Y-axis. State 2 represents the non-bar area. State 3 represents the left side of
a bar. State 4 signifies the inner bar area or the texture area of a bar. State 5 represents
theright side of abar.

We construct two line models for line charts. the single-line-series chart model and
the multiple-line-series chart model. Subfigure (c¢) and (d) in figure 5.3 show the
topologies of these two models. The semantic meaning for each state in the line models
is not as clear as that in the bar models. State 1 for both line models represents the Y-
axis. In the single-line-series model, state 2 nay represent the line area and state 3 the
non-line area. In the multiple- line-series model, state 2 may represent the line area, state

3 the nontline area and state 4 other area.
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q»@ SaNey
(d)

Figure 5.3: Topologies of HMM-based chart models. () Topology of the separated bar
chart model. (b) Topology of contiguous bar chart model. (c) Topology of single-line-
series model. (d) Topology of multiple- line-series mode.

82



Training Model Parameters
In order to train the parameters for each model, a segmental K-means algorithm with
Baum-Welch re-estimation formulas is used to re-estimate parameters of the models. We

assume diagonal covariance matrices for the Gaussian mixtures [80].

We first define two variables: the forward variablea, (i) and the backward variable

b, (i) using equations (5.10) and (5.11) and compute them using equations (5.12) to

(5.15) [91].
a,(i) = P(0,0,,..0,, Statei at timet /| ) (5.10)
b, (i) = P(0,,, O,,,...0; / Statei at timet, | ) (5.11)
a,(i)=pb(o,) (5.12)
20:()= 8 a0y, 0.,) (513
b, (i)=1 (5.14)
b,()= & ab,(0... )b, () 515)

1

The probability of an observation sequence for a given mode | is computed by
equation (5.16). The parameters of re-estimation model | such as the transition

probabilitya,,

ij

the probability distribution, b_Jk and the initial state probability p, are
caculated using the Baum-Welch re-estimation formulas of equations (5.17), (5.18) and
(5.19) respectively.

POI1) =4 a:() (5.16)
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T4
. aat(i)aijbj(0t+1)bt+1(j)
q; = = (5.17)

~ &am0)

b =2 (5.18)
a a (). (i)

P, :%al(i)bl(i) where P =P(O]1 ) (5.19)

Figure 5.4 illustrates the main procedures of the segmental K-means training algorithm.

1. Choose initia values for model parameters.

2. Refinetheinitia parameters using Baum-Welch re-estimation formulas.

3. Segment training sequence into N states.

4. Cluster the training vectors for each state into M clusters and calculate the
distribution of the Gaussian mixtures.

5. Update the model parameters from the newly segmented states and clusters.

6. Refine model parameters using Baum-Welch re-estimation formulas.

7. If the new model is not better than the old model, stop re-estimation, otherwise

go to step 3.

Figure 5.4: Segmental K-means training algorithm for chart models
We select the initial parameters empirically by considering common distribution
knowledge of graphics symbols in chart stage area. To segment the sequence into N

states, we use an optimal state sequence finding agorithm, Viterbi algorithm, which is



also used in type classification with chart model matching. The Viterbi algorithm will be
illustrated in detail in the next section. The number of hidden states for chart models is
known and fixed. The Gaussian mixture M for state 4 in the two bar models whose
semantics denotation is the fill-in texture of bar patterns varies from M=1to M=3. The

Gaussian mixtures for other states are set to M=1.

5.3.3 Type Classfication by Chart Mode Matching
A testing chart is processed to extract testing feature vectors as the observation sequence.
We have trained four chart models for four different chart classes! ,, wherel£k £ 4.

The typical solution for type classification use the probability of the observation vectors

given aknown model | , P(O]l k), to do classification.
In our work, the optimal state sequence is also used for chart segmentation. We name
the probability of the most probable chart model sequence, Ck* = clk*,CZk* ch*, given

the observed chart image sequence for each particular chart model |, , which is denoted

P(Ck*,Oll ), & the chart model matching score. Type classification is to classify a

chart into the model type that has the highest chart model matching score as in equation
(5.1). The Viterbi agorithm [91] is applied in chart type classification using a form of
dynamic programming and a trellis structure that efficiently implements the computation.

Let y , (i) denote the survivor terminating in state i, andd, (i) denote the survivor score

ini,, wherelEt£T1£i £ N. The Viterbi agorithm is shown in figure 5.5.
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The Viterbi algorithm consists of the following fours steps.

Step 1—Initiadization: for 1Ei £ N
d,(i)=p;b (0,) (5.20)
y,(i)=0 (5.21)

Step 2—Recursion: for 2EtE£T,2E£i1 £N

d, (i) = max[d,_, (i)a;]b (o) (5.22)
y (i) =argmax[d, , (i)a] (5.23)

Step 3—Termination:

P = max[d, (i)] (5.24)
¢ = argmax(d, ()] (5.25)
Step 4—Path backtracking:

Fort=T-1,T-2,..., 1

C =Y 1a(Cra) (5.26)

Figure 5.5: Viterbi algorithm for Hidden Markov Model




5.4 Chart Segmentation

After a chart is classified into its corresponding type, domain semantic knowledge for
this chart type can be used to segment the data markers and detect the value points for
further chart interpretation. The issue of detection of the number of data series in a chart
is aso aproblem in chart segmentation so as to extract correct positions of value points.
Low-level heuristic searching method is the main approach to perform chart
segmentation. In our work, we also propose a new chart segmentation approach by
clustering and searching the optimal state path from chart classification. We first explore

the traditional low-level heuristic searching approach.

5.4.1 Chart Segmentation by L ow-L evel Heuristic Search

We apply this approach to segment bar patterns in a separated bar chart and detect the

number of data-series in a multiple-line-series line chart.

Bar pattern Segmentation
The genera idea to segment bar patterns is to detect the line segments from pixel
processing and then cluster the line segments to search the rectangles as bar pattern
candidates. Other domain knowledge about bar pattern such as spacing between bars can
be used to verify the bar pattern heuristically.

Our earlier works in [127, 128] endeavored in recognizing bar patterns starting from
the pixel level. We had not addressed the problems of plot area detection and axes
detection during that time. The underlying assumptions for the earlier works are that

what we process is a 2-D bar chart in which the bars are separated and distributed along
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the axes with equal space. Two bar pattern detection algorithms were proposed for
reconstructing the bar patterns. The first one is called hypothesis-testing bar pattern
searching agorithm which searches the Hough space for bar patterns. It first applies the
standard Hough transform on the chart image to obtain the accumulator map. The
accumulated map is enhanced by a butterfly filter proposed by Leavers [66]. Hypothesis
on the Y-axis and X-axis candidates is generated according to the number of the peak
points in each thresholded Hough division. Line segments in the image space are
reconstructed to verify the axes. Consecutive parallel line segmentsin the Y-axis area are
grouped as the bar candidates and top line segments of the bar patterns are reconstructed
to verify these bar patterns. The other approach to extract bar patterns is called Modified
Probabilistic Hough Transform algorithm (MPHT) [126]. Unlike the first approach in
which paralel line segments are detected by first voting all the foreground features into
the accumulator map and then verify the line peaks in the image space, MPHT votes part
of the pixels to get a line candidate and its parallel line candidates, and then extract the
pixels by verifying the line candidate and possible parallel line candidates in the image
space until no foreground features are left. After parallel lines are detected, they are
grouped into bar patterns sequentially using simple heuristics. The advantage of MPHT
is to cut the cost of voting by probabilistically selecting and minimizing the voting
features using dynamica line verification in the image space. Detailed illustration of
these algorithms and experiments can be found in [127, 128].

As in our low-level processing, we have already applied Hough transform in axes
detection. We have obtained the information of lines segments during the procedure of
axes detection which can be used in extracting bar patterrs. Thus no other independent

Hough transform is needed. Therefore the abovementioned two Hough-based bar pattern
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detection approaches are not used in current work. The pairs of neighboring paralle line
segments can be looked upon as both sides of bars. Yet the accuracy of bar pattern
detection based on this simple scheme will degrade a lot if one line segment in its
corresponding pair is missing. Thus the attributes like the length of the line segments are
useful to stabilize the bar pattern reconstruction In the previous axes detection process,
the line segment is calculated to see whether it is related with its neighboring paralel line
segments. A program using lines segments and their attributes detected in the low level

processing to extract bar patterns in single-bar-series chart is as follows:

1. Group those related neighboring line segments paralleling to the Y-axis as
side pairs of bars and mark them as visited.

2. Starting from an unvisited line segments closest to a detected bar, find its
unmarked neighboring line segments. If not found, mark it as visited and
go to step 3. If found, group it with its neighbor as the sides of a bar and
mark both line segments as visited.

3. Repeat step 3 until all the line segments are visited. The grouped bars are

the detected bar patterns.

Figure 5.6: Algorithm of bar pattern segmentation by primitive extraction

Detecting the Number of Line-Series
A smple program is developed to estimate the number of data series of multiple-line-

series charts. First, for each column along the X-axis, count the number of the runs which
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denote the transition between foreground and background. Second, histogram the run

numbers. The peak of the histogram is then selected as the number of the line series.

5.4.2 Chart Segmentation by Optimal Path Clustering

After chart classification, an optima state sequence of the categorized chart is
obtained. The hidden states of the chart models are closely related to the semantics of the
chart. We propose the idea of segmenting a chart by searching and clustering the optimal
state sequence. We apply the optimal path clustering approach to solve two problems.
The first is to segment bar pattern in separated bar charts. The other is to detect the

number of data seriesin a contiguous bar chart.

Bar Pattern Segmentation
The same consecutive states in the optimal state sequence are first clustered into one
state. The middle position of the state in the clustered states is assigned as the position of
the new state.

The algorithm of bar pattern segmentation by optimal path clustering is shown in

figure 5.7.
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1. Cluster the same consecutive states into one state.

2. Set the position of the first found state 3 in the unchecked sequence as a
start of a bar.

3. Check the next state. If no unchecked state is left, stop the program.

4. If the next state is state 3, set the position of it as a start of a bar, go to
step 3.

5. If the next state is state 5, set the position of it as the end of the bar.

6. Get the positional information for the start and end of a bar from the

principal variant feature vector to reconstruct the bar. Go to step 2.

Figure 5.7: Algorithm of bar pattern segmentation by optimal path clustering

Detecting the Number of Bar-Series
Figure 5.8 shows the procedure of detecting the number of bar-series by optimal path

clustering.

1. Cluster the same consecutive states into one state. Delete the first state if
it is state 1.

2. Find the positions of state 2 in the sequence.

3. Segment the sequence into bar groups at the positions of state 2.

4. For each bar grouyp, compute the number of state 4.

5. The maximum of the number is selected as the number of the bar series

Figure 5.8: Detecting the number of bar-series by optimal path clustering



5.5 Experimentsand Analysis

55.1 Experimentson Chart Classification

Chart classfication involves two problems. dimension classification and type
classification. In the experiments of chart classification, the precison means the
proportion of the correctly classified charts of a category to all classified charts of that
category. The recal measures the probability of the correctly classified charts of a

category to all existing charts of that category.

Results of Dimension Classification

Among the total 537 testing images, 493 images are two-dimensional charts while the
other 44 images are three-dimensional charts. After classification, 487 images are
recognized as two-dimensional charts and 45 images are classified as three-dimensional
charts. The remaining five charts are classified into other category. These five data charts
are misclassified into other category charts due to the incomplete plot area detected. The
axes are not included in the incomplete plot area because of the serious brokenness of the
axes. One two-dimensional chart is misclassified as a three-dimensional chart because
three axes are detected in the plot area. The following table evaluates the performance of

chart classification on dimension of the coordinate system.

Performancel Total Detected | Correct | Precision (%) Recall (%)

Categories
2-D charts 493 487 487 100% 98.78%
3-D charts 44 45 44 97.78% 100%

Table 5.1: Performance evaluation for dimension classification
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From the result of table 5.1, we can see that using the axes information from axes
detection to classify charts into 2-D charts or 3-D charts is robust. The dimension
classification can exclude the 3D charts so that we can process and interpret only 2-D

charts.

Results of Type Classification

We use about 75% of each category of charts to train the parameters of each model.
Since the charts used for training a particular model are not used to train other models,
we mix al the trained and untrained images as the test set for type classification. The
output of type classification is the number of its recognized type. Table 5.2 shows the

result of type classification on all the images.

Chart Type | Totd Classified Correct Precision Recall
Separated 87 100 83 83% 95.4%
bar chart

Contiguous | 98 85 81 95.29% 82.65%
bar chart

Single-line- | 55 71 52 73.23% 94.5%
series chart

Multiple- 142 126 123 97.62% 86.62%
line-series

chart

Table 5.2: Performance evaluation for type classification
The structures of the bar models and the line models differ alot. Thus the chart can be
correctly classified into two big categories. bar charts or line charts. But in each category,
due to the similar topology for each type, wrong classification occurs easily. Table 5.2
shows that the recalls of both separated bar charts and single-line-series line charts are

higher than those of their corresponding counterparts. While the precisions of them are
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lower than those of their corresponding counterparts. In some contiguous bar charts with
two-data-series, some data elements for a series are zero and no bar patterns are used to
represent zero. Thus some two-bar-series contiguous bar charts are misclassified as
separated bar charts. Some separated bar charts where the inter-bar spacing is small are
misclassified as contiguous bar charts. More charts are classified into single-line-series
line charts. The main reason for it is that line segments of the dashed lines are missing in
the graphic image used for feature extraction. The scarcity of training data in single-line-
series may also be the reason of low precison of the single-line-series charts.

Nevertheless, the result of type classification is still encouraging.

552 Experimentson Chart Segmentation

We address two problems in chart segmentation: detecting the number of data series and

bar pattern segmentation.

Detecting the Number of Data Series

In our collected data set of multiple-data-series charts, most of them are two-data-series
and three-data-series charts. Charts with higher order data series are scarce. Thus in the
following table 5.3, we report the results of detecting the number of the data series of the
following charts: two-bar-series charts, two-line-series charts and three- line-series charts.
The number of the data series for multiple-bar-series charts are detected by optimal path
finding and the number of the data series for multiple- line-series charts are detected by a
simple low level processing approach. The precision measures the proportion of the

correctly detected number of data series for a category to all detected number of data
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series for that category. The recall measures the proportion of the correctly detected

number of data series for a category to the ground truth for that category.

Data markers | Total Detected Correct Precision Recall
Two-bar- 78 74 63 85.1% 80.77%
series

Two-line- 58 50 39 78% 67.24%
series

Three-line- 34 36 28 77.8% 82.36%
series

Table 5.3: Results of detecting the number of data series of multiple-data-series charts

The fact that some bar charts with more than two bar series are misclassified as two-
bar-series charts pulls the precision rate down. While misclassification of a rea two-bar-
series chart into a separated bar chart makes the recall rate lower. We check the rea
graphical images that fails in the detection of the bar series and find that missing of bars
representing one data series may cause the behavior of the optimal state path uncertain in
its semantic meaning. In detecting the number of the line series, the problem of missing
of dashed line segments that lessen the performance of type classification is also the main
reason to deteriorate the performance of the data series detection. One possible solution
for it may be by adding a special dashed line segments analysis and restore them in the

graphical image for feature extraction.

Bar Pattern Segmentation

The procedure to segment bar patterns is to find the value point of the data markers. We
have proposed two approaches to segment bar patters on separated bar charts: low level
heuristic approach and optimal path finding. The outputs of bar pattern segmentation are

quadrilaterals that represent the detected bar patterns. The points on the top line of the
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bar pattern are the corresponding value points for that bar pattern. Figure 5.9 illustrates
an example of bar pattern segmentation with two approaches on a ssmple bar chart. Some
short bar patterns are not detected in the approach of low-level heuristic search. In this
example, al the bar patterns are segmented correctly by the optima path finding
approach. We selected 50 separated bar charts for testing from which we obtained a total
of 216 obvious bar patterns. The precision is the proportion of correct bar patterns to all
the detected bar patterns. The recall means the proportion of correct bar patterns to all
existing bar patterns. The following table 5.4 shows the results of two approaches in

segmenting bar patterns of separated bar charts.

Bars | Detected Correct Precision Recall
Metho
Low-leve 180 156 86.67% 72.22%
heuristic
search
Optimal- 187 142 75.94% 65.74%
path-finding

Table 5.4: Results of detecting bar patterns for separated bar charts

Table 5.4 shows the overall performance of the low-level heuristic search approach is
better than that of the optimal path finding approach. Although the states in the separated
bar model may correspond to some particular semantic meaning, the uncertainty of the
hidden states may be the reason of incorrect bar pattern segmentation. Most of the short
bar patterns cannot be detected by the low-level heuristic search approach. The reason for
it is due to the difficulty in adjustment for the threshold of the length of line segments. If
we lower the threshold to allow more short line segments, more spurious line segments
detected will also deteriorate the performance of the bar pattern segmentation. On the

other hand, the optimal path finding approach does not meet such a dilemma. Thusin the
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future work, it is promising to obtain higher performance by combining both approaches

appropriately.

100

80

60

40

20

% length group consumed

& 7 B8 9 10 11 12 13 14 15
Length group {cm)

@

100

80

60

40

20

% length group consumed

& 7 8 9 10 11 12 13 14 15
Length group {cm)

(b)
Figure 5.9. Results of bar pattern segmentation approaches on a separated bar chart. (a).
Result of the lowlevel heuristic search approach. (b). Result of optimal path finding
approach. Note: the red quadrilaterals represent the segmented bar patterns.
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56 Summary

A new framework for chart classification and segmentation based on statistical modeling
is proposed. Four chart models including separated bar model, contiguous bar model,
sngle-line-series line model and multiple-line-series line model are constructed and
trained using a segmental K-means algorithm to model the semantics of chart stage area.
Charts are classified by choosing the chart model with the largest posteriori probability.
The best state path for that model is obtained by applying Viterbi algorithm. Two kinds
of classifications, dimension classification and type classification, are addressed. A new
approach for chart segmentation using optimal path finding is proposed. Two chart
segmentation problems are addressed, including detecting the number of data series and
bar pattern segmentation.
The contributions of this chapter include:

1. We propose anew framework for chart classification and segmentation based on
statistical modeling.

2. We propose a model-based chart classification approach. This includes feature
extraction with feature point segmentation and analysis, construction and training
of HMM-based chart models, type classification by chart model matching.

3. We propose a new approach for chart segmentation by optimal path clustering

and finding.
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Chapter 6

Text Primitive Analysisand Chart

|nterpretation

The characters insde a chart are distributed sparsely comparing with mostly-text
documents. Nevertheless, they are organized by a regular spatial relationship into
different levels of groups with highly meaningful logical meaning that is caled text
primitives in our work. Thus words ae one type of text primitives that has lower level
logical meaning, while the title of the chart is another type of text primitives with a
higher-level logical meaning. Text primitive analysis is to discover the formatting of the
text elements in a document image so as to derive the meaning associated with the
positional and functiona blocks in which the text is located. Text primitive analysis is
the main procedure of page layout analysis in mostly-text documents. Besides labeling
the text areas and associating logical meaning such as paragraphs with them, page layout
analysis also labels the areas of halftones and line drawings in a document image. In
mostly- graphics document images such as engineering drawings, diagrams and charts,

efc, text primitive analysis can use orientation results from graphics primitive recognition
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and accordingly provide helpful feedbacks for graphics primitive recognition, and by
being correlated with the result from graphics primitive recognition, provide semantic
understanding of a chart or adiagram, i.e., chart interpretation.

The X-Y tree structure proposed by Nagy and Seth [83] is widely used to represent the
hierarchical structure of a page layout. The X-Y tree is a nested decomposition that
hierarchically subdivides a document page by recursive X-Y (X-horizontal and Y-
vertical) cuts. At each level of the X-Y tree, subdivision in only one direction, either
horizontal or vertical, is considered. Thus a well-ordered examination sequence starting
from the root node of an XY tree is established. Traditional X-Y tree or its variations
take the whole document image as the root node for starting decomposition. Such
decomposition can represent amost all the Manhattan structure of document pages. But
the classical X-Y tree decomposition can hardly be applied on non-Manhattan structure
of document pages.

Texts in charts or diagrams are sparsely distributed but structurally arranged. For
example, the tick names for the Y-axes are arranged in the same column and aligned in
one of the three types. centered, flush left or flush right. For most of the 2D charts
without serious skew, the texts are in a Manhattan format. Hence the X-Y tree is a good
choice to represent the hierarchical structure of the texts inside a chart. But the textsin
many skewed 2-D charts and 3-D charts cannot be represented by the classical X-Y tree
structure since they are not in a Manhattan format. In this dissertation, we propose a
zoned directional X-Y tree structure which uses known directions from graphics symbol
recognition to direct awell-ordered sequential decomposition. The zoned directional X-Y
tree we proposed can be viewed as a generalized version of the classical X-Y tree. We

describe it in the next section.
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6.1 Zoned Directional X-Y Tree Structure

Figure 6.1 illustrates the structure of zoned directional X-Y tree which hierarchicaly
represents the structural relationship of text elements in a mostly- graphics document. The
root node is the entire document image with only text elements. There are two aspects
related with the proposed tree structure: zoned and directional.

Normally, traditional recursive X-Y cut segmentation is applied on the whole area of
mostly-text documents such as newspapers or book chapters but will fail if applied
directly on mostly-graphics document images. For mostly- graphics documents such as
maps, engineer drawings, or charts, text elements are distributed with a close relation
with its corresponding graphical zone. For instance, text elements are distributed
regularly in different areas of a chart, such as in the stage area or in the axes major area
By text/graphic separation, the relation between the texts and their corresponding
graphical zone is also removed. Therefore the XY trees generated from the document
image that contains only text elements cannot reflect the correct structural relationship of
texts for the mostly- graphic documents. In our processing, the entire document image is
divided into different independent areas by graphical processing. Every segmented area
IS then inserted under the root node as a sub-root node which is also called the zone node.
These zone nodes contain the orientation information from the graphical processing.
Further directional X-Y decomposition starts from every sub-root node.

Suppose a document is divided into N zones each having a zone angleq, as shown in
figure 6.1. Unlike classical recursive X-Y cuts where X represents horizontal direction

and Y represents vertical direction, the X direction g, and the Y direction g, ina

directional X-Y tree whose zone angle is q; are calculated as follows:
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_‘Iqi 0 £q, <90

U =1 . . . . (6.1)
(@, +90°)mod 180 90° £q, <180

i, 90" £q, <180
Ay =1 . ) . (6.2)
fq, +90 0" £q¢, <90

The classical X-Y tree is a specia case of the directional X-Y tree where g, =0°.

Each node in the direction X-Y represents a rectangle lying in its X or Y direction. The

children of a node are obtained by subdividing the directional rectangle of the parent

node either in q, direction or in g, direction, with the two directiona cuts being

alternately applied on successive levels of the tree. The leaves are the nodes of
inseparable directiona rectangles.

The directional X-Y tree keeps the main properties of the original X-Y tree. At each
level, only one directional cutting must be considered and the directional cutting in the
successive level aternates strictly. Only directiona rectangles are generated which
allows identical processing at every level. Since the subdivided rectangles are directional,
the format of the document layout need not be in a Manhattan format. Thus the
directional XY tree structure can be viewed as a generalized version of classical X-Y
tree.

We use a zoned directional X-Y treeto hierarchicaly represent the spatial relationship
of the text primitives in charts. It can also be applied to other categories of diagrams to
represent the textual relationship in graphical documents. For example, in a map, the
street names or labels along a street can be represented into a street label X-Y tree if the

direction of the street is known.
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Figure 6.1: Structure overview of a zoned directional X-Y tree. D: the root node which
represents the entire document with only text elements. Z,..Z,..Z, : N sub-root zone

nodes each with an angleq, , wherel£i £ N .
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6.2 Zoned Directional X-Y Tree Generation

We use the projection profile of bounding boxes instead of traditional pixel projection to
generate the zoned directional X-Y tree. Ha et al. [42] also proposed the similar idea of
using bounding box projection profile. We discuss the differences of the two approaches
in the section 6.2.2. If the direction of the zone is not horizontal or vertical, directional

transforms are first applied on al the bounding boxes inside the zone.

6.2.1 Directional Transform for the Bounding Boxes

The directional transform we propose is to transform the bounding boxes lying in a non
orthogonal orientation in the image space into the bounding boxes lying in an orthogonal

orientation in a space that we name as r -space as illustrated in the figure 6.2.
Suppose we are given a bounding box b in a directional zone whose X direction

and Y direction are ¢, andq respectively. The bounding box b encloses aregion Rin the
image space as shown in figure 6.2 (a), where

R ={(XY) Xpn £ XE X a1 Yy £ YE Yoy } (6.3)
Its directional transformed bounding box b encloses aregion R in the r -space as shown

in figure 6.2 (b), where
R ={(rx,ry) IrX,, EXXErxand ry. . Ery£ry.. } (6.4)

We use the polar form to represent a straight line. The r-space is named because it

actually representsther distributionin the X and Y directions.
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Figure 6.2: lllustration of directional transform on a bounding box. (a): a bounding box b
in a zone whose X direction and Y direction are g, andq,respectively. The dashed
rectangle enclosing the bounding box b is the transformed bounding box shown in the
image space. (b): atransformed bounding boxb'in the r -space.

Four straight lines on the transformed bounding box shown in the figure 6.2 (a) as the

dashed rectangle can be calculated by the following four equations:

['Y1 = Xpin €OSQ, + Y, SNQ, (6.5
'Y, = X €OSQ, + Y, SNQ, (6.6)
rX, = X, €osq, + Y., 9na, (6.7)
' X, = Xy COSO, + Vi SNQ, (6.8)

Thus the transformed bounding box b'in the r-space can be computed using the

following equations (6.9) to (6.12).

I Xpin = MIN{T X, I X} (6.9
M X = MAX{T X, 1 X,} (6.10)
MYoin = MIN{TYy,,rYy,} (6.11)
MY = MAX{TY,, 1y,} (6.12)
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The algorithm of directional transform of bounding boxes is shown in the following

figure 6.3.

1. For a directiona zone, calculate q,andq, by using equation (6.1) and

(6.2).

2. Ligt al the bounding boxesin this zone.

3. For each bounding box, apply directional transform on it by using the eight
equations from (6.5) to (6.12).

4. Repeat step 3 until all the bounding boxes are transformed.

Figure 6.3: Algorithm of directional transform for the bounding boxes.

6.2.2 Recursive X-Y Cut by the Bounding Boxes

In a zoned directional X-Y tree, the root node is not the starting point to do
decomposition. Decomposition is performed in every divided zone starting from every
aub-root node. Recursive XY cut segmentation algorithm is usually used to segment
documents with Manhattan layout in the area of document layout analysis. Our
generation algorithm for the directional X-Y trees starting from the zone nodes is also
based on recursive XY cut segmentation method, but has maor differences from the
traditional recursive X-Y cut segmentation algorithm.

Unlike traditional recursive X-Y cut algorithm [83] using the projectionprofile of
image pixels, our recursive X-Y cut segmentation method uses the projection profile of

the bounding boxes. Ha et al. [42] also proposed the similar idea of using bounding box
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projection profile in the recursive X-Y cut agorithm. One main difference between our
algorithm and the algorithm of Ha et al. is that the bounding boxes they adopted are just
the bounding boxes in the image space. In our work, the bounding boxes for projecting
can be the bounding boxes of the character-like connected components if the orientation
of the zone is horizontal or vertical, or the directional transformed ones in the r -space if
the orientation of the zone is neither horizontal nor vertical. Another main difference is
the different definition of the vertical and horizontal projection functions for the
bounding boxes.

Suppose we are given a set of bounding boxes B={b,,b,»%,} where each

b, encloses the region

R =W)X, EXEX, and y,  £yEY, | (613)

where i =1;:::,N . Unlike the algorithm of Ha et al. using two scalar functions to define
the horizontal and vertical projections, we define two variable functions for the

horizontal and the vertical projections. The horizontal projection function, Hy, (x,y)is

defined by

Ix-%, _+1 if 'y £y£fy,
_I_ mln- ‘min 'max

Hy 5V =1% 0 1T Y2 Yo (6.14)
}o if y£yh1min

Likewise, V, (X,Y), the vertical projection function, is defined by

;\I; y- yh:min +1 if Xt%:min ExE thm

ax

Vq(X’Y)?{Yq,max T X3 % (6.15)
%o if x£x

B min
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Two projection tables are created based on the above two projection functions. The

horizontal projection table H 4 (x,y) is calculated by
3
He(x y)=a Hy (x,y) (6.16)
i=1
Likewise, the vertical projection table V, (x, y) is calculated by
J
Va(x y)= @ Vy (% y) (6.17)
i=1

For a particular zone Z, suppose {xl(Z),yl(Z)} and {xz(Z),yz(Z)} are the
coordinates of the upper-left and low-right points of the zone. The horizontal and vertical

projection files of the zone Z, H, (i) adV,(j), can be computed by the following

equations respectively.
H,(i)= Hg(%(2).i)- He(x(2).i), vi(2)£i£y,(2) (6.18)
V, (1) =Va(is ¥2(2))- Ve (1, 2(2)), %(2) £ ] £ %,(2) (6.19)

The advantage of our projection functions over Ha et al.’s projection functions is
that the projection information of an arbitrary zone can be computed using the equation
6.18 and 6.19 deduced from our projection functions. Thus the procedure of projection
calculation is separated from the recursive cut procedure. Hence our projection functions
can speed up the whole agorithm.

Figure 6.4 outlines the steps of the proposed algorithm of the recursive X-Y cut
by the bounding boxes. In the zoned directional X-Y trees generation algorithm for chart
images, the starting projection direction for different zones may be different according to
the structure relationship of a chart. For instance, the starting directions for the zones of

the Y-axis major area and the Y-axis minor area are vertical. While the starting directions
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for the zones of the X-axis major area and the X-axis minor area are horizontal. The

threshold T, for areas with vertical direction asthe Y-axis areain 2-D charts and the Z-

axisareain 3-D chartsis equal to half of the median width of the bounding boxes in that

area. Thethreshold T, for other areasis empirically selected asT ,, = 2.

1. Generate vertical and horizontal projection tables, Vg (x,y) and H,(x,y), from
agiven set of bounding boxes B using equations (6.14), (6.15), (6.16), (6.17).

2. Sdlect the sub-root node as the parent node. Select a starting projection
direction.

3. Calculate vertical or horizontal projection file H, (i) andV, (i) using equations
(6.18) or (6.19) for the parent node in a specified direction.

4. Split the projection profile into smaller segments at large gaps that exceed a
certain thresholdT . Generate child nodes based on the segments and insert
the child nodes under the parent node.

5. Set achild node as a parent node, and aternate the projection direction.

6. Do step 3 to step 5 recursively until there is no splitting needed.

Figure 6.4: Algorithm of Recursive X-Y Cut by the Bounding Boxes
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6.2.3 Linking Bounding Boxeswith the Zoned Directional X-Y Tree

The leaves of the zoned X-Y tree are usually the bounding boxes or their directional
transformed ones of the character-like elements we obtained from connected component
classification during pre-processing. But not all the cases satisfy it. For example, there
are three bounding boxes for the letter of “%”. But these three bounding boxes cannot be
found in the zoned X-Y tree due to the intersection between them. Thus insert operations
should be applied on the zoned XY tree to reflect the correct structural relationship.
After ecursive X-Y cut procedure, the structural relationship between the bounding
boxes and their corresponding location in a document image can be established by
linking the bounding boxes with the XY tree. Figure 6.5 illustrates the algorithm of

linking bounding boxes with the zoned directional X-Y tree.

1. For each set of bounding boxes, find its corresponding sub-root node. Then
do step 2 to step 4.

2. For each bounding box, set the sub-root node as the parent node.

3. Search the children nodes of the parent node to find the node that includes
or equals to the bounding box. If an equal node is found, link the bounding
box with the node, go to step 5. Otherwise, set the found node as the parent
node, go to step 3. If no node is found, go to step 4.

4. Generate a new node for the bounding box and insert it under the parent
node. Link the bounding box with the new node.

5. Repesat stepl until no unlinked bounding box is left.

Figure 6.5: Algorithm of linking bounding boxes with the zoned directional X-Y tree
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6.2.4 Algorithm of Zoned Directional X-Y Tree Generation

In this section, we summarize the algorithm of zoned directional X-Y tree generation.
The whole document image with character-like components is first decomposed into
different zones by area separation procedure. In our chart graphical processing, the
detected axes can be used as the criterion for area £gmentation. Most of our testing
charts are 2-D charts. We decompose the 2-D chart image into five zones: the stage area,
the X-axis mgjor area, the X-axis minor area, the Y-axis major area and the Y-axis minor
area. Since most of our scanned 2-D charts are not skewed seriously, the area
segmentation for these charts is simple according to the position of the detected axes. For
skewed 2-D charts and 3-D charts, we label the defined areas by hand. A complex area
segmentation agorithm with known axes will be one of our future works. The text
elements are then categorized into different zones according to their positions.
Figure 6.6 outlines the main processing steps of the whole zoned directional X-Y

tree generation algorithm.

111



Decompose the entire image into different zones and insert the zone nodes
under the root node.

. Categorize the text elements into different zones according to their
positions.

If the orientation of the zone is not horizontal or vertical, apply directiona
transforms on all the bounding boxes for every zone.

. Starting from a zone node, if the orientation of the zone is not horizontal or
vertical, perform recursive X-Y cut agorithm using the transformed
bounding boxes, otherwise use the origina bounding boxes.

Repeat step 4 until there is no zone node | eft.

Link the projected bounding boxes with the zoned directional X-Y tree.

Figure 6.6: Algorithm of zoned directional X-Y tree generation.
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6.3 Text Primitives Labeling

After the zoned directional X-Y tree is generated for the text primitives, a scheme
combining X-Y tree searching and traversing with structural analysisis proposed to label
the text primitives in a chart. The axes tick labels and titles are the essential elements to

change data from a chart representation to a tabular representation.

6.3.1 Extracting Axes Tick Labels

The axes tick labels indicating the measurement for the categories and data values are
one of the key elements in interpreting a chart.

The axes tick labels are in the axes mgjor areas. Therefore, starting from the root node
of the zoned directional XY tree, select the zone node representing a particular axis
major area to extract the axes tick labels of a particular axis. Set the zone node as the
parent node. The child node whose distance to the axis is the shortest is the area of tick
labels for the axis. Set this node as the current processing node. The median height and
the median width of the bounding boxes in the area of tick labels are computed. If the
median height is greater than the median width, the printing direction for words is in the
horizontal direction. Otherwise, the printing direction is in the vertical direction. The
axes tick labels are classified into three types: vertical axes tick labels, horizontal axes
tick labels and directional axes tick labels. The X-axis tick labels and the Y-axis tick
labels in 3-D charts are the directional axes tick labels. Different procedures are applied

to extract these three types of tick labels.

113



Vertical Axes Tick Labels Extraction

The Y-axis tick labels in 2D charts and the Z-axis tick labels in 3D charts are the
vertical axes tick labels. If the detected axis is in the vertical direction, the X-Y tree of
this axis magjor area is generated by the bounding boxes in the image space. The Y-axis
tick labels in skewed 2-D charts are dant-vertical axes tick labels. The directional X-Y
tree for them is constructed from directional transformed bounding boxes. Yet the
extraction procedures for both vertical and dant-vertical axestick labels are same. In our
processing, the printing direction of the vertical axes ticks is in the horizontal direction.
Thus if the printing direction of the tick label area is in the horizontal direction, the
children of the node corresponding to the area of tick labels are the vertical or sant-

vertical axestick labels.

Horizontal Axes Tick Labels Extraction

The X-axis tick labels in 2-D charts are the horizontal axes tick labels. Likewise, the X-
axis tick labels in skewed 2-D charts are dant-horizontal axes tick labels. The extraction
procedures for both horizontal and dant-horizontal axes tick labels are same. The

bounding boxes are represented by the equation (6.13). Sort all the bounding boxes by
ordering X, . in ascending order. The distance between two neighboring bounding
boxes b, and b,,; iscaculated using the following equation.

DI = Xt%l'min = wamax (6.20)

There are two spacings, the inter-character spacing and the inter-word spacing for

most of the horizontal axes tick labels. But some horizontal axes tick labels have one
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spacing, the inter-word spacing. Let D, and D,,, denote the largest distance and the

smallest distance respectively. If the following criterion in (6.21) satisfies, then there is
one spacing in the horizontal axes tick labels. The children of the node corresponding to

the area of tick labels are horizontal or slant-horizontal axes tick labels.

Dma( - Dmin
Dmin

Otherwise, the distance distribution of the bounding boxes is bi-moda. One mode

<1 (6.22)

represents the inter-character spacings within words. The other mode represents the inter-
word spacings within the line. A threshold can be chosen in the valley between the two

peak modes. We use the thresholding technique proposed by Otsu [87] to find an

optimum threshold value D__,. The bounding boxes whose neighboring distances are less

opt *

than the optimum threshold D_, are grouped into the horizontal or dant-horizontal axes

opt

tick labels.

Directional Axes Tick Labels Extraction

The extraction of the X-axis tick labels or the Y-axistick labelsin a 3-D chart belongs to
this category. Although the directions of the inter-tick-label are along the axes, the
direction of the inter-character is in the horizontal direction. The zoned directional X-Y
tree for this category is generated based on directional transformed bounding boxes.
Starting from the current processing node corresponding to the area d the axes tick
labels, extract al the leave nodes by traversing the sub-tree. The original bounding

boxes in the image space for the leave nodes are used to extract horizontal lines.
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Sort the bounding boxes ordering Y, . inascending order. Cut the sorted bounding

boxes into different groups of axes tick labels at the positions where Y,

i+1'min

is greater

than Y, I The output groups are the axes tick labels.

6.3.2 Extracting Titles

Two kinds of titles are extracted in our work: the axes titles and the figure title. Most the
axes titles are parallel and close to corresponding axes tick labels. Yet some axes titles
for the vertical axes are arranged above the vertical axes.

Starting from the zone node of axis major areas, the child node whose distance to the
axis is the second shortest is the title for the axis. If such child node for a vertica axisis
not found, search the axes minor area to find the node sharp above the vertical axis as the
title of the vertical axis. Most of the figure titles with a large spacing with the axis titles
are under the plot area. Starting from the zone node, other nonclassified child nodes are
the candidates of the figure title. The candidate in the area below the stage area has the
highest probability as the title of figure. If the figure title is not found in that area, the

candidate in the area above the stage area is considered as the title of the figure.

6.4 Chart Interpretation

The labeled text primitives such as axes tick labels and titles are fed into OCR to obtain
textual information. Chart interpretation is to uncover the tabular data from which a chart
is generated. In this chapter, we propose a chart interpretation by correlating value points

with the axes tick labels.
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6.4.1 Chart Interpretation by Correating Value Pointswith Tick

Labels

Tick labels of the Y-axis normally indicate the value dimension. Tick labels of the X-axis
indicate the category dimension. Vaue points are points that convey the vaue
information of the data marker on a particular position. The horizontal value of the value
point indicates the category that the data marker belongs to. The vertical value of the
value point indicates the value that the data marker represents.

There may be multiple value points for a data marker at a particular position. For
instance, the points on the top line of a bar pattern are the value points of the bar pattern.
These value points indicate one unique value of the bar pattern. These value points are
named unique-meaning value pointsin our work. Some value points related with a data
marker may indicate severa values of the data marker. For example, in a high-low-close
stock chart, the value points at the high, middle and low position of the line segments
represent different value aspects of the high-low-close pattern. These value points are
called multiple-meaning value points

In our work, we interpret two kinds of 2D charts: bar charts and line charts. The
value points of these two categories are unique-meaning value points. Since the bar
charts represent p comparison and line charts represent trends, the category dimension is
discrete for a bar chart and continuous for aline chart.

After chart segmentation, we have segmented bar patterns for bar charts. The
transition point farthest to the X-axis of the left side of a bar pattern is the value point of

that bar. For aline chart, the transition points for every select feature vector are the value
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points. The coordinate positions for both categories of transition points are recorded in
the principal variant vectors.

After text primitive analysis, axis tick labels are extracted and bounded by rectangles.
The centers of the rectangles in the image represent the coordinate positions of these tick
labels. The extracted bounding boxes of tick labels are then passed to Optical Character
Recognition (OCR) module to obtain their textual information.

Let C,... C represent the textual meaning of N category tick labels and V, ... V,, the
textual meaning of M value tick labels. The coordinate positions of the category tick

labels and the value tick labels are C,(x), C,(y) and V,,(X),V,,(y) respectively, where

1£n£ Nand 1£ m£ M . Given a value point P, its coordinate positions in horizontal
and vertical direction are P(x)and P(y) respectively. Figure 6.7 illustrates relationship

between the value point and tick labels.
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Figure 6.7: Illustration of relationship between a value point and tick labels. P is a
value point. Tick labels are represented with bounding boxes.

The task of chart interpretation is to calculate the value of the vaue point, V(P), and
the category of the value point, C(P). Suppose the closest range of C(x)for P(X) is
between C_(x)and C_,(X), and the closest range of V(y)for P(y) is between
V. (y)and V,,,(y). The V(P) iscalculated using equation (6.22).

V.., -V
V(P) =V i” o (p(y) - V. (Y)), d V. (y)EP(Y) £V...(y) (622
(P) n+Vn+1(Y)'Vn(Y) (P(Y) - Vo(y)), an (y) £ P(y) (y) (622

The C(P) in aline chart is calculated using the similar equation (6.23).

Cra-Cn . (P(X)- C..(x)), and C_(X)EPX)EC,_.,(X (6.23)

C(P)=C,+
Crai(X¥)- C,(X)

The C(P) in abar chart is calculated using equation (6.24).
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iC P(x)- C.I<C,.., - P(X
iC Otherwise

m+l

Figure 6.8 outlines the steps of chart interpretation by correlating the value points

with the tick labdls.

1. Extract the value points from the principa variant feature vectors.

2. For each value point, search its closest ranges in both horizontal and
vertical directions.

3. Compute V (P) using equation (6.22).

4. If the chart is a line chart, calculate C(P) using equation (6.23). If it is a
bar chart, calculate C(P) using equation (6.24).

5. Repeat step 2 until al the value points are interpreted.

6. Arrangethe V(P)and C(P) into two lines and output the tabular data.

Figure 6.8: Chart interpretation by correlating the value points with the tick |abels.
The output of chart interpretation is the tabular form of the data. Figure 6.9 shows the
interface of the tabular output of chart interpretation. The up corner area of the interface

Is the display area of the tabular data
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6.5 Experimentsand Analysis

The occurrence of the identical layouts of text primitives is frequent in our testing
images. We select one text primitive layout among al identical layouts so as to avoid the
bias caused by preferring to text primitives layouts with a high performance. The text
primitive layouts of 231 2-D images and 16 3-D images are used in our test. The outputs
of text primitive labeling are rectangles that represent the smallest area embracing all the

text elements in the group.

Figure 6.10 shows the result of extraction and labeling three kinds of text primitives
ina3-D chart including the axes tick labels, the axes titles and the figure title. The figure
title is first extracted since it is not in the plot area. After we obtain the axes information
from axes detection, the areas along the axes are labeled manualy. In each area, apply
directional X-Y segmentation and establish a directional X-Y tree for each area. The axes
tick labels and axes titles are segmented in subfigures (c) and (d) of figure 6.10

respectively.

Experiments on extraction axes tick labels and titles are reported in the following
sections. The precision is defined as the proportion of detected text primitives that is
actually correct. The recall measures the probability of correct detected text primitives

on existing text primitives.
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Figure 6.10. The results of text primitive labeling in a 3-D chart. (a). The original 3-D
charts. (b) The output of figure title. (c). The output of axes tick labels including vertica
and directional axestick labels. (d). The output of axestitle.
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6.5.1 Experimentson AxesTick Labels Extraction

Three kinds of tick labels are extracted including vertical tick label, horizontal tick label
and directional axestick label. X-axis and Y-axis tick |abels with slant orientation in 2-D
charts are categorized as directional axes tick labels. The extraction vertical and
horizontal axes tick labels uses the original bounding boxes in the recursive XY cut

algorithm. Table 6.1 shows the result of these two classes of axestick label extraction.

Axestick Total Detected Correct Precision Recall
labels

Vertical 859 843 772 91.58% 89.87%
Horizontal 962 918 884 96.3% 91.9%

Table 6.1: Results of vertical and horizontal axes tick |abels extraction

In most of our testing 2D charts, the distribution of the axes labels in the axes is
gparse and the axes labels can be easily extracted. But in some charts, the axes labels are

very close to the axes titles or even overlap with the axes title by some characters such as

“y”, "g", etc or by the subscripts and superscripts in the axestitle suchas“x“ =d ", “c,

", etc. Most of such situations can be found in the area around the vertical axes where the
characters in the tick labels are arranged in a horizontal direction while the characters in
the axes title are arranged in a vertical direction. Thus the overall performance of the
vertical axes tick label extraction is worse than that of the horizontal axes tick label

extraction.

The directional axes labels that include X-axis and Y-axis tick labels with slant

orientation in some 2D charts and directional axes labels in 3D charts are extracted
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using directiona transformed bounding boxes in our work. The extraction using the
original bounding boxes without directional transform cannot be applied to detect those
directional axes labels because it cannot correctly group the area of the directional axes

labels. Table 6.2 reports the performance of experiments on directional axes tick labels

extraction.
Axestick labds Total Detected | Correct | Precision| Recall
Directional axestick labels | 126 113 93 82.30% | 73.81%

Table 6.2: Results of directional axes tick labels extraction.

From table 6.2, we can see that the directional axes tick labels can be extracted by
using directional X-Y tree segmentation with transformed bounding boxes. Some failed
extractions are due to the overlapping structure in the alternating directions. Although the
directional X-Y tree is a generalized version of the original X-Y tree structure, like the
original XY tree structure, the directional X-Y tree also requires drict tiling of text
blocks in different orientations. In the future work, the domain knowledge such as the
structural relationship for specific type of charts or the language knowledge such as the
result of OCR can be use to post-process the results from the directiona X-Y

segmentation in order to achieve a higher accuracy.

6.5.2 Experimentson Titles Extraction

The axes titles including the X-axis and the Y-axistitlesin 2-D charts and the X-axis, the

Y-axis and the Zaxis titles in 3-D charts are extracted. Not all the testing charts have

125



figure title or axes titles. The results are reported in table 6.3. The extraction of the figure

titlesis also reported in table 6.3.

Titles Total Detected Correct Precision Recall
Axestitles 348 316 291 92.09% 83.62%
Figuretitles | 186 176 171 97.16% 91.93%

Table 6.3: Results of axestitles and figure titles extraction

Most of the figure title can be extracted correctly. Some figure titles are positioned in
the area other than axis-mgor areas such as the stage areas, etc. These figure titles are
misclassified as other labels such as legends, data values, etc. The positional variation
for the axes titles is usually around the axis. But axes title extraction is normally
influenced by the results of the axes tick label extraction that are closer to the axes titles
comparing with the figure title. Yet in most charts, these text primitives are exclusive,
i.e., if one primitive is labeled as the figure title then the other primitive cannot be
labeled as the figure title either. The language knowledge such as a chart dictionary with
common chart words such as “%”, “Fig.”, etc, can be a good help to improve the overal

performance of the text primitive extraction.
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6.6 Summary

A zoned directional XY tree structure is proposed to hierarchically represent the text
primitives in charts. An agorithm of generating the zoned directional X-Y tree is
presented. The algorithm includes three procedures. directiona transformation of the
bounding boxes, recursive X-Y cut by the bounding boxes and linking the bounding
boxes with the X-Y tree. A scheme combining XY tree searching and traversing with
structural analysisis proposed to label the text primitivesin achart. Three kinds of axes
tick labels are extracted: vertical axes tick labels, horizontal axes tick labels and
directional axes tick labels. The extraction of the axes titles and the figure titles is aso
presented. Experiments and anaysis for extraction axes tick labels and titles are
presented. A simple method by correlating the value points with the tick labels in
interpreting bar charts and line charts is proposed. The fina output for chart
interpretation is a text file or an Excel file that illustrates the value and category of data
markers and other chart information.

The contributions for this chapter are as follows:

1. We propose a zoned directional X-Y tree structure to hierarchicaly represent the
text in graphical documents. The proposed zoned directional X-Y tree is a
generalized version of the classical X-Y tree which considers only orientations in
the vertical and the horizontal directions.

2. A method of directiona transforming the bounding boxes in the image space to

ther -space is proposed.
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3. A recursive X-Y cut segmentation algorithm using original and transformed
bounding boxes is proposed to generate the zoned directional XY tree for text
primitives.

4. We present an approach of combining XY tree searching and traversing with
structural analysis to label the text primitives in a chart. Detailed procedures to
extract axes tick labels and titles are illustrated.

5. We propose an approach to interpret chart by correlating the value points with the

tick labdls.
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Chapter 7

Future Directions and Conclusion

In this final chapter, we conclude the dissertation with a discussion of the future work

relating with chart recognition.

7.1 Future Directions

7.1.1 Broadening Chart Typesfor Model-based Chart Classification

In this dissertation, we have constructed four general chart models for bar charts and line
charts in the proposed framework of model-based chart classification. Although bar and
line charts are the most commonly used chart representations to present discrete
comparison and continuous trend, other types of charts such pie charts, data charts and
stock charts are also very commonly used. Future efforts should focus especialy on the
stock charts, the most frequently used charts in the stock markets. Combination charts
where two or more chart types are mixed together or color charts where color conveys
important discrimination information are also the future focus in model-based chart
classification. How to construct a model-based chart classification that can discriminate a

wide range of different chart types?

129



One of the solutions for it is to develop a more sophisticated feature extraction
scheme. We may expand the feature points by investigating the domain knowledge of
different charts. More features capturing essential discriminate information may be added
in the feature vector, such as color feature. More coarse-to-fine procedures may be
needed to segment appropriate feature points and features.

Another solution for it lies in the chart model construction. How to select an
appropriate chart model and topology to represent a chart type is important in chart

model construction.

7.1.2 MorelLabd Typesin Text Primitive Labeling

In this dissertation, we have constructed a zoned directional X-Y tree to organize the text
primitives in a chart. Three types of labels, axis tick mark labels, axis titles and figure
titles, are recognized by traversing the established X-Y tree in text primitive labeling.
While these three types are essential elements in chart interpretation, other labels such as

legends, also convey important information for chart understanding and interpretation.

7.1.3 Integrating Low-Level Heuristic Search with Optimal Path

Finding for Chart Segmentation

Both low-level heuristic search approach and optimal path finding approach are proposed
for chart segmentation in our dissertation. Each has its own advantages and limitations.
While low-level heuristic search can provide precise loca information from
uncomplicated chart images, the performance of it may deteriorate a lot in complicated

chart images such as charts with textured patterns or patterns with 3-D effect. Optimal
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path finding approach is a statistica method trained on a large amount of data. The
underlying optimal path may not represent the precise local information in chart
segmentation. Thus it can be promising if we can combine the low-leve heuristic

features into optimal path finding appropriately.

7.1.4 Exploring Complex Feedback M echanism

In our work, the text processing and graphics processing are comparatively independent
of each other although the text processing does utilize the orientation information
provided by the graphics processing. Exploring complex feedback mechanism to refine
the result of both processing procedures without contradiction with the argument of
comparative independence will be instrumental in improving the robustness of the chart

recognition system.

7.1.5 Integrating More Knowledge Sourcesfor Chart Recognition and

| nter pretation

In the dissertation, we have integrated some geometric knowledge and domain
knowledge when we detect the axes in a chart, extract features for model-based
classification, segment the chart by low-level heuristic search and interpret a bar chart or
aline chart.

If more types of chart are to be recognized, the domain knowledge about those charts
can be helpful in chart recognition and interpretation. For instance, the high point, the
low point and the middle point of a high-low-close bar represent three different levels of

value for high-low-close chart recognition.

131



Other examples of knowledge sources include:
Syntactical constraints.
The structural organization of chart labels follows some syntactical constraints.
For example, if both axistitle and figure title exist in a chart, the axis title is closer
to its corresponding axis.
Perceptual knowledge. For example, the continuity of a line may be helpful in
separating multiple lines at the crossing point.
Language knowledge. For example, chart dictionary including words such as “%”,

“Fig.”, can be helpful in discriminating different text labels.

7.2 Concluson

In this dissertation, we have investigated four problem domains in chart recognition:
chart recognition system, chart graphic symbol extraction, chart classification and
segmentation, text primitive analysis and chart interpretation. The following are our
contributions in these four problem domains, in answer to the targets of contribution set
out in chapter 1.

Chart recognition system: We proposed a hierarchical statistical- model-based
framework for scientific chart recognition system. In order to support the rationality of
the proposed framework, first, the knowledge of chart generation software has been
explored and notation conventions of a scientific chart from both a generation point of
view and recognition point of view have been defined. Second, investigation in
psychological aspect and human visual perception on charts deduces three arguments that

are the principles and backbone of proposed framework. The main parts of our chart
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recognition system include preprocessing, chart graphics symbol recognition, chart
classification and segmentation, text primitive analysis and chart interpretation. Our
testing data is constructed with more than 500 chart images from technical journals that

are scanned at 300 dpi.

Chart graphic symbol extraction: Preprocessing includes common procedures such
as noise removal, connected component analysis and component classification. Chart
graphics symbol recognition of current work includes plot area detection and axis
detection. We proposed an improved projection-based plot area detection method which
shows the highest recall rate by comparing with our previous method and others
method. For axis detection, we present a Hough-based axis detection algorithm to
discriminate X-axis, Y-axis and Zaxis. Experiments show our method is more accurate
in extracting axes and their position information comparing with other projection-based
axes detection method.

Chart classification and segmentation: We proposed a new approach for chart
classification and segmentation based on statistical modeling. Four chart models
including separated bar model, contiguous bar model, single-line-series line model and
multiple- line-series line model are constructed and trained using a segmental K- means
agorithm to model the semantics of chart stage area. Charts are classified by choosing
the chart model with the largest posteriori probability. The best state path for that model
is also obtained by applying Viterbi algorithm. Two kinds of classifications, dimension
classification and type classification, are addressed. We also proposed a new approach
for chart segmentation using optimal path finding. Two chart segmentation problems are

addressed, including detecting the number of data series and bar pattern segmentation.
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Text primitive analysis and chart interpretation: We proposed a zoned directional
X-Y tree structure to hierarchically represent the text primitives in charts. An agorithm
of generating the zoned directional X-Y tree is presented. The agorithm includes three
procedures: directional transformation of the bounding boxes, recursive X-Y cut by the
bounding boxes and linking the bounding boxes with the X-Y tree. A scheme combining
X-Y tree searching and traversing with structural analysis is proposed to label the text
primitives in a chart. Three kinds of axes tick labels are extracted: vertical axes tick
labels, horizontal axes tick labels and directional axes tick labels. The extraction of the
axes titles and the figure titles is also presented. Experiments and analysis for extraction
axes tick labels and titles are presented.

Finally, both results from graphics processing and text primitive analysis are
correlated for chart interpretation. The final output for chart interpretation is a text file or
an Exced file that illustrate the value and category of data markers and other chart

information after the text primitives are recognized by OCR.

134



Appendices

A Hough Transform

The principle of the Hough transform is to detect geometric shapes by utilizing a voting
mechanism to estimate parameters which represent different shape such as line, circle,
etc. Let us consider this approach for finding a straight line. The following polar form is

normally adopted to represent a straight line.

r =xcosqg +ysnq (A1)

Unlike the slope-intercept parameterization, this parameterization gives a bounded
parameter space. Figure A-1 illustrates the mechanism of Hough transform. Each point
in the parameter space is a line in the feature space. Each point in the feature space is a
curve in the parameter space. The value of each point in the parameter space indicates the
number of points lying on the line. Hough transform is a mature technique for shape
detection. The agorithm of standard Hough transform can be found in many image
processing or computer vision books such as [52]. Unlike the explanation of the
algorithm mentioned in [52] which focuses on the implementation of the algorithm, we

propose our explanation for this algorithm by using algebra as follows.
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Bothr andq need to be quantized in order to construct a two-dimensional

accumulator array in the r -q plane. Supposether-q spacefor - REr £ER0£q £p is

quantized into an r~ c accumulator array. The increment (Dq ) in the angle q is”. The
C

increment (Dr )inr isE. The accumulator image H (i, j) is defined over Y, where
r

Y=KrM%Yri=0~?ZE,qj=igﬁ£i£n 0f£j£c} (A2
r C

Suppose there are N feature pixels in a source image. For a random feature

pixel (X,,Y,) , itsaccumulator image function h(i, j), iscomputed as

{1 iflri-(xkcog]j-yks.nqj)|<%

h(i, D =i (A3)
10 otherwise
Thus the accumulator image is computed by
J
H@.j)=a hd, j)« (A4)
k=1

The Hough transform can be generalized to detect arbitrary shapes which can be
described by multiple parameters. More considerations on the topic of generalized Hough

transform can be found in [52, 66].
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Figure A.1. The mechanism of Hough transform: (&): two points (x,,Y,) and (x,,Y,) are
on the same line in the image space K-Y). (b): the points(x,,y,) and (X,,Y,)are
transformed into two curves in the parameter space (r -q). The coordinates of the
crossing point of the curves are the parameters of the line.
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B Hidden Markov Models

A hidden Markov model is a two-stochastic-variable process, in which one of the

variables is hidden, and the other random variable is observable. The hidden random

variable X represents the states, in a modd that is a collection of states connected by

transitions. O, denotes the observation variable. Most of the notation and material

presented in this section are adapted from Rabiner [91, 92]. We denote the following

model notation for a discrete first order hidden Markov Model.

T Length of the observation sequence.

N Number of states in the model.

M Number of observation symbols.

S {S, S, ... S} dates.

Q { X, X, ... % }, State sequence.

Vv {vy, Vs, ..., vV }, discrete emitting symbol set of possible observation.
X, State visited at time't.

A {4a,}, state trangition probability distribution.

B { b;(k)}, output observation probability distribution.

p {p,;}, initia state distribution.

The state sequence includes an initia state x, and afinal state x; . Each state has two sets

of probabilities:
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The Output Observation Probability

It provides the conditiona probability that being in a particular state, a symbol is

generated from a finite set of symbols. The probability of emitting symbol v, being in

date Sattimet is:

b, (k) =P(O, =v, % =8) (B.1)

where x, = S means the Markov chain wasin state S at time #, and O, = v, means the

output symbol at time # was v, .

The Transition Probability
It defines the probability of taking the transition from a particular state to another state

or itsdlf. It is calculated using the following equation:

a; = P(X,, = S, X, =S) (B.2)

where x = S means the Markov chain was in state Sat time 7, and x,, =S; means the

Markov chain wasin state S; at time ¢+ 1.
Theinitia state distribution probability is defined by
pi =P(} =S) (B.3)
Two assumptions are used in the first order hidden Markov Model. The first
assumption is that if the Markov model will be in a particular state S, at time 7+ 1, it
only depends on the present state S at time £, and not in the past states. The following

equation is satisfied.
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P(Xa =S 1% =8,..% =8) =P(X., =S [X = §) (B.4)
Another assumption is that an observed symbol v, only depends on the present state
a time #, and not in the past states or emitted observations. For a give
sequence0 =0,,0,,...,0; , the assumption can be expressed as the following equation.
PO, =v,10,; =V, 1,0, =V, % =S,..5 =) =P(0, =v, [ x =S ) (B.Y
The compact notation | = (A,B,p) is normally used to represent a Hidden Markov

Moddl.

There are three main problems to solve using Hidden Markov Models [91].

1. TheEvaluation Problem
Given a modell =(A,B,p), compute the probability that it will generate a
sequence0 =0,,0,,...,0; . A forward-backward procedure is usually applied on solving

problems in this category [91].

2. The Optimal-State Sequence Problem

Given amodel | =(A,B,p)and a sequence of observationsO =0,,0,,...,O; , infer
the most likely state sequence in the model that produced the observations. The Viterbi
algorithm [117] which is based on dynamic programming solves this category of

problems.
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3. ThelLearning Problem

Given a modell and a set of observations, how to train parameters of the model so
that the model has a high probability of generating the observations? The Baum-Welch
algorithm solves this category of problems [91].

More details on the solutions for the three problems can be found in [49, 91, 92, 117].
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