25,879 research outputs found

    The energy scheduling problem: Industrial case-study and constraint propagation techniques

    Get PDF
    This paper deals with production scheduling involving energy constraints, typically electrical energy. We start by an industrial case-study for which we propose a two-step integer/constraint programming method. From the industrial problem we derive a generic problem,the Energy Scheduling Problem (EnSP). We propose an extension of specific resource constraint propagation techniques to efficiently prune the search space for EnSP solving. We also present a branching scheme to solve the problem via tree search.Finally,computational results are provided

    Parallel machine scheduling with precedence constraints and setup times

    Full text link
    This paper presents different methods for solving parallel machine scheduling problems with precedence constraints and setup times between the jobs. Limited discrepancy search methods mixed with local search principles, dominance conditions and specific lower bounds are proposed. The proposed methods are evaluated on a set of randomly generated instances and compared with previous results from the literature and those obtained with an efficient commercial solver. We conclude that our propositions are quite competitive and our results even outperform other approaches in most cases

    Dynamic resource constrained multi-project scheduling problem with weighted earliness/tardiness costs

    Get PDF
    In this study, a conceptual framework is given for the dynamic multi-project scheduling problem with weighted earliness/tardiness costs (DRCMPSPWET) and a mathematical programming formulation of the problem is provided. In DRCMPSPWET, a project arrives on top of an existing project portfolio and a due date has to be quoted for the new project while minimizing the costs of schedule changes. The objective function consists of the weighted earliness tardiness costs of the activities of the existing projects in the current baseline schedule plus a term that increases linearly with the anticipated completion time of the new project. An iterated local search based approach is developed for large instances of this problem. In order to analyze the performance and behavior of the proposed method, a new multi-project data set is created by controlling the total number of activities, the due date tightness, the due date range, the number of resource types, and the completion time factor in an instance. A series of computational experiments are carried out to test the performance of the local search approach. Exact solutions are provided for the small instances. The results indicate that the local search heuristic performs well in terms of both solution quality and solution time

    Solving the Resource Constrained Project Scheduling Problem with Generalized Precedences by Lazy Clause Generation

    Full text link
    The technical report presents a generic exact solution approach for minimizing the project duration of the resource-constrained project scheduling problem with generalized precedences (Rcpsp/max). The approach uses lazy clause generation, i.e., a hybrid of finite domain and Boolean satisfiability solving, in order to apply nogood learning and conflict-driven search on the solution generation. Our experiments show the benefit of lazy clause generation for finding an optimal solutions and proving its optimality in comparison to other state-of-the-art exact and non-exact methods. The method is highly robust: it matched or bettered the best known results on all of the 2340 instances we examined except 3, according to the currently available data on the PSPLib. Of the 631 open instances in this set it closed 573 and improved the bounds of 51 of the remaining 58 instances.Comment: 37 pages, 3 figures, 16 table

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP

    Time-constrained project scheduling with adjacent resources

    Get PDF
    We develop a decomposition method for the Time-Constrained Project Scheduling Problem (TCPSP) with Adjacent Resources. For adjacent resources the resource units are ordered and the units assigned to a job have to be adjacent. On top of that, adjacent resources are not required by single jobs, but by job groups. As soon as a job of such a group starts, the adjacent resource units are occupied, and they are not released before all jobs of that group are completed. The developed decomposition method separates the adjacent resource assignment from the rest of the scheduling problem. Test results demonstrate the applicability of the decomposition method. The presented decomposition forms a first promising approach for the TCPSP with adjacent resources and may form a good basis to develop more elaborated methods

    Time-constrained project scheduling

    Get PDF
    We study the Time-Constrained Project Scheduling Problem (TCPSP), in which the scheduling of activities is subject to strict deadlines. To be able to meet these deadlines, it is possible to work in overtime or hire additional capacity in regular time or overtime. For this problem, we develop a two stage heuristic. The key of our approach lies in the first stage in which we construct partial schedules with a randomized sampling technique. In these partial schedules, jobs may be scheduled for a shorter duration than required. The second stage uses an ILP formulation of the problem to turn a partial schedule into a feasible schedule, and to perform a neighbourhood search. The developed heuristic is quite flexible and, therefore, suitable for practice. We present experimental results on modified RCPSP benchmark instances. The two stage heuristic solves many instances to optimality, and if we substantially decrease the deadline, the rise in cost is only small

    A survey of variants and extensions of the resource-constrained project scheduling problem

    Get PDF
    The resource-constrained project scheduling problem (RCPSP) consists of activities that must be scheduled subject to precedence and resource constraints such that the makespan is minimized. It has become a well-known standard problem in the context of project scheduling which has attracted numerous researchers who developed both exact and heuristic scheduling procedures. However, it is a rather basic model with assumptions that are too restrictive for many practical applications. Consequently, various extensions of the basic RCPSP have been developed. This paper gives an overview over these extensions. The extensions are classified according to the structure of the RCPSP. We summarize generalizations of the activity concept, of the precedence relations and of the resource constraints. Alternative objectives and approaches for scheduling multiple projects are discussed as well. In addition to popular variants and extensions such as multiple modes, minimal and maximal time lags, and net present value-based objectives, the paper also provides a survey of many less known concepts. --project scheduling,modeling,resource constraints,temporal constraints,networks
    • …
    corecore