1,773 research outputs found

    Teaching embedded software development utilising QNX and Qt with an automotive-themed coursework application

    Get PDF

    The essence of component-based design and coordination

    Full text link
    Is there a characteristic of coordination languages that makes them qualitatively different from general programming languages and deserves special academic attention? This report proposes a nuanced answer in three parts. The first part highlights that coordination languages are the means by which composite software applications can be specified using components that are only available separately, or later in time, via standard interfacing mechanisms. The second part highlights that most currently used languages provide mechanisms to use externally provided components, and thus exhibit some elements of coordination. However not all do, and the availability of an external interface thus forms an objective and qualitative criterion that distinguishes coordination. The third part argues that despite the qualitative difference, the segregation of academic attention away from general language design and implementation has non-obvious cost trade-offs.Comment: 8 pages, 2 figures, 3 table

    Caching, crashing & concurrency - verification under adverse conditions

    Get PDF
    The formal development of large-scale software systems is a complex and time-consuming effort. Generally, its main goal is to prove the functional correctness of the resulting system. This goal becomes significantly harder to reach when the verification must be performed under adverse conditions. When aiming for a realistic system, the implementation must be compatible with the “real world”: it must work with existing system interfaces, cope with uncontrollable events such as power cuts, and offer competitive performance by using mechanisms like caching or concurrency. The Flashix project is an example of such a development, in which a fully verified file system for flash memory has been developed. The project is a long-term team effort and resulted in a sequential, functionally correct and crash-safe implementation after its first project phase. This thesis continues the work by performing modular extensions to the file system with performance-oriented mechanisms that mainly involve caching and concurrency, always considering crash-safety. As a first contribution, this thesis presents a modular verification methodology for destructive heap algorithms. The approach simplifies the verification by separating reasoning about specifics of heap implementations, like pointer aliasing, from the reasoning about conceptual correctness arguments. The second contribution of this thesis is a novel correctness criterion for crash-safe, cached, and concurrent file systems. A natural criterion for crash-safety is defined in terms of system histories, matching the behavior of fine-grained caches using complex synchronization mechanisms that reorder operations. The third contribution comprises methods for verifying functional correctness and crash-safety of caching mechanisms and concurrency in file systems. A reference implementation for crash-safe caches of high-level data structures is given, and a strategy for proving crash-safety is demonstrated and applied. A compatible concurrent implementation of the top layer of file systems is presented, using a mechanism for the efficient management of fine-grained file locking, and a concurrent version of garbage collection is realized. Both concurrency extensions are proven to be correct by applying atomicity refinement, a methodology for proving linearizability. Finally, this thesis contributes a new iteration of executable code for the Flashix file system. With the efficiency extensions introduced with this thesis, Flashix covers all performance-oriented concepts of realistic file system implementations and achieves competitiveness with state-of-the-art flash file systems

    Flashix: modular verification of a concurrent and crash-safe flash file system

    Get PDF
    The Flashix project has developed the first realistic verified file system for Flash memory. This paper gives an overview over the project and the theory used. Specification is based on modular components and subcomponents, which may have concurrent implementations connected via refinement. Functional correctness and crash-safety of each component is verified separately. We highlight some components that were recently added to improve efficiency, such as file caches and concurrent garbage collection. The project generates 18K of C code that runs under Linux. We evaluate how efficiency has improved and compare to UBIFS, the most recent flash file system implementation available for the Linux kernel

    The Scalable Commutativity Rule: Designing Scalable Software for Multicore Processors

    Get PDF
    What fundamental opportunities for scalability are latent in interfaces, such as system call APIs? Can scalability opportunities be identified even before any implementation exists, simply by considering interface specifications? To answer these questions this paper introduces the following rule: Whenever interface operations commute, they can be implemented in a way that scales. This rule aids developers in building more scalable software starting from interface design and carrying on through implementation, testing, and evaluation. To help developers apply the rule, a new tool named Commuter accepts high-level interface models and generates tests of operations that commute and hence could scale. Using these tests, Commuter can evaluate the scalability of an implementation. We apply Commuter to 18 POSIX calls and use the results to guide the implementation of a new research operating system kernel called sv6. Linux scales for 68% of the 13,664 tests generated by Commuter for these calls, and Commuter finds many problems that have been observed to limit application scalability. sv6 scales for 99% of the tests.Engineering and Applied Science
    • …
    corecore