8,982 research outputs found

    Towards Efficient Abstractions for Concurrent Consensus

    Full text link
    Consensus is an often occurring problem in concurrent and distributed programming. We present a programming language with simple semantics and build-in support for consensus in the form of communicating transactions. We motivate the need for such a construct with a characteristic example of generalized consensus which can be naturally encoded in our language. We then focus on the challenges in achieving an implementation that can efficiently run such programs. We setup an architecture to evaluate different implementation alternatives and use it to experimentally evaluate runtime heuristics. This is the basis for a research project on realistic programming language support for consensus.Comment: 15 pages, 5 figures, symposium: TFP 201

    Correctness of an STM Haskell implementation

    Get PDF
    A concurrent implementation of software transactional memory in Concurrent Haskell using a call-by-need functional language with processes and futures is given. The description of the small-step operational semantics is precise and explicit, and employs an early abort of conflicting transactions. A proof of correctness of the implementation is given for a contextual semantics with may- and should-convergence. This implies that our implementation is a correct evaluator for an abstract specification equipped with a big-step semantics

    Open Transactions on Shared Memory

    Full text link
    Transactional memory has arisen as a good way for solving many of the issues of lock-based programming. However, most implementations admit isolated transactions only, which are not adequate when we have to coordinate communicating processes. To this end, in this paper we present OCTM, an Haskell-like language with open transactions over shared transactional memory: processes can join transactions at runtime just by accessing to shared variables. Thus a transaction can co-operate with the environment through shared variables, but if it is rolled-back, also all its effects on the environment are retracted. For proving the expressive power of TCCS we give an implementation of TCCS, a CCS-like calculus with open transactions

    A Logical Verification Methodology for Service-Oriented Computing

    Get PDF
    We introduce a logical verification methodology for checking behavioural properties of service-oriented computing systems. Service properties are described by means of SocL, a branching-time temporal logic that we have specifically designed to express in an effective way distinctive aspects of services, such as, e.g., acceptance of a request, provision of a response, and correlation among service requests and responses. Our approach allows service properties to be expressed in such a way that they can be independent of service domains and specifications. We show an instantiation of our general methodology that uses the formal language COWS to conveniently specify services and the expressly developed software tool CMC to assist the user in the task of verifying SocL formulae over service specifications. We demonstrate feasibility and effectiveness of our methodology by means of the specification and the analysis of a case study in the automotive domain

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Linear-Logic Based Analysis of Constraint Handling Rules with Disjunction

    Full text link
    Constraint Handling Rules (CHR) is a declarative committed-choice programming language with a strong relationship to linear logic. Its generalization CHR with Disjunction (CHRv) is a multi-paradigm declarative programming language that allows the embedding of horn programs. We analyse the assets and the limitations of the classical declarative semantics of CHR before we motivate and develop a linear-logic declarative semantics for CHR and CHRv. We show how to apply the linear-logic semantics to decide program properties and to prove operational equivalence of CHRv programs across the boundaries of language paradigms

    Programming in logic without logic programming

    Get PDF
    In previous work, we proposed a logic-based framework in which computation is the execution of actions in an attempt to make reactive rules of the form if antecedent then consequent true in a canonical model of a logic program determined by an initial state, sequence of events, and the resulting sequence of subsequent states. In this model-theoretic semantics, reactive rules are the driving force, and logic programs play only a supporting role. In the canonical model, states, actions and other events are represented with timestamps. But in the operational semantics, for the sake of efficiency, timestamps are omitted and only the current state is maintained. State transitions are performed reactively by executing actions to make the consequents of rules true whenever the antecedents become true. This operational semantics is sound, but incomplete. It cannot make reactive rules true by preventing their antecedents from becoming true, or by proactively making their consequents true before their antecedents become true. In this paper, we characterize the notion of reactive model, and prove that the operational semantics can generate all and only such models. In order to focus on the main issues, we omit the logic programming component of the framework.Comment: Under consideration in Theory and Practice of Logic Programming (TPLP
    • ā€¦
    corecore