1,885 research outputs found

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    RDF Querying

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    Desirable properties for XML update mechanisms

    Get PDF
    The adoption of XML as the default data interchange format and the standardisation of the XPath and XQuery languages has resulted in significant research in the development and implementation of XML databases capable of processing queries efficiently. The ever-increasing deployment of XML in industry and the real-world requirement to support efficient updates to XML documents has more recently prompted research in dynamic XML labelling schemes. In this paper, we provide an overview of the recent research in dynamic XML labelling schemes. Our motivation is to define a set of properties that represent a more holistic dynamic labelling scheme and present our findings through an evaluation matrix for most of the existing schemes that provide update functionality

    Order based labeling scheme for dynamic XML (extensible markup language) query processing

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2012Includes bibliographical references (leaves: 43-46)Text in English; Abstract: Turkish and Englishix, 55 leavesNeed for robust and high performance XML database systems increased due to growing XML data produced by today’s applications. Like indexes in relational databases, XML labeling is the key to XML querying. Assigning unique labels to nodes of a dynamic XML tree in which the labels encode all structural relationships between the nodes is a challenging problem. Early labeling schemes designed for static XML document generate short labels; however, their performance degrades in update intensive environments due to the need for relabeling. On the other hand, dynamic labeling schemes achieve dynamicity at the cost of large label size or complexity which results in poor query performance. This thesis presents OrderBased labeling scheme which is dynamic, simple and compact yet able to identify structural relationships among nodes. A set of performance tests show promising labeling, querying, update performance and optimum label size

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    IMAX: incremental maintenance of schema-based XML statistics

    Get PDF
    Journal ArticleCurrent approaches for estimating the cardinality of XML queries are applicable to a static scenario wherein the underlying XML data does not change subsequent to the collection of statistics on the repository. However, in practice, many XML-based applications are dynamic and involve frequent updates to the data. In this paper, we investigate efficient strategies for incrementally maintaining statistical summaries as and when updates are applied to the data. Specifically, we propose algorithms that handle both the addition of new documents as well as random insertions in the existing document trees. We also show, through a detailed performance evaluation, that our incremental techniques are significantly faster than the naive recomputation approach; and that estimation accuracy can be maintained even with a fixed memory budget
    corecore