2,398 research outputs found

    A Novel ILP Framework for Summarizing Content with High Lexical Variety

    Full text link
    Summarizing content contributed by individuals can be challenging, because people make different lexical choices even when describing the same events. However, there remains a significant need to summarize such content. Examples include the student responses to post-class reflective questions, product reviews, and news articles published by different news agencies related to the same events. High lexical diversity of these documents hinders the system's ability to effectively identify salient content and reduce summary redundancy. In this paper, we overcome this issue by introducing an integer linear programming-based summarization framework. It incorporates a low-rank approximation to the sentence-word co-occurrence matrix to intrinsically group semantically-similar lexical items. We conduct extensive experiments on datasets of student responses, product reviews, and news documents. Our approach compares favorably to a number of extractive baselines as well as a neural abstractive summarization system. The paper finally sheds light on when and why the proposed framework is effective at summarizing content with high lexical variety.Comment: Accepted for publication in the journal of Natural Language Engineering, 201

    TGSum: Build Tweet Guided Multi-Document Summarization Dataset

    Full text link
    The development of summarization research has been significantly hampered by the costly acquisition of reference summaries. This paper proposes an effective way to automatically collect large scales of news-related multi-document summaries with reference to social media's reactions. We utilize two types of social labels in tweets, i.e., hashtags and hyper-links. Hashtags are used to cluster documents into different topic sets. Also, a tweet with a hyper-link often highlights certain key points of the corresponding document. We synthesize a linked document cluster to form a reference summary which can cover most key points. To this aim, we adopt the ROUGE metrics to measure the coverage ratio, and develop an Integer Linear Programming solution to discover the sentence set reaching the upper bound of ROUGE. Since we allow summary sentences to be selected from both documents and high-quality tweets, the generated reference summaries could be abstractive. Both informativeness and readability of the collected summaries are verified by manual judgment. In addition, we train a Support Vector Regression summarizer on DUC generic multi-document summarization benchmarks. With the collected data as extra training resource, the performance of the summarizer improves a lot on all the test sets. We release this dataset for further research.Comment: 7 pages, 1 figure in AAAI 201

    Abstractive Multi-Document Summarization via Phrase Selection and Merging

    Full text link
    We propose an abstraction-based multi-document summarization framework that can construct new sentences by exploring more fine-grained syntactic units than sentences, namely, noun/verb phrases. Different from existing abstraction-based approaches, our method first constructs a pool of concepts and facts represented by phrases from the input documents. Then new sentences are generated by selecting and merging informative phrases to maximize the salience of phrases and meanwhile satisfy the sentence construction constraints. We employ integer linear optimization for conducting phrase selection and merging simultaneously in order to achieve the global optimal solution for a summary. Experimental results on the benchmark data set TAC 2011 show that our framework outperforms the state-of-the-art models under automated pyramid evaluation metric, and achieves reasonably well results on manual linguistic quality evaluation.Comment: 11 pages, 1 figure, accepted as a full paper at ACL 201

    Abstract Meaning Representation for Multi-Document Summarization

    Full text link
    Generating an abstract from a collection of documents is a desirable capability for many real-world applications. However, abstractive approaches to multi-document summarization have not been thoroughly investigated. This paper studies the feasibility of using Abstract Meaning Representation (AMR), a semantic representation of natural language grounded in linguistic theory, as a form of content representation. Our approach condenses source documents to a set of summary graphs following the AMR formalism. The summary graphs are then transformed to a set of summary sentences in a surface realization step. The framework is fully data-driven and flexible. Each component can be optimized independently using small-scale, in-domain training data. We perform experiments on benchmark summarization datasets and report promising results. We also describe opportunities and challenges for advancing this line of research.Comment: 13 page

    A Graph-Based Approach for the Summarization of Scientific Articles

    Get PDF
    Automatic text summarization is one of the eminent applications in the field of Natural Language Processing. Text summarization is the process of generating a gist from text documents. The task is to produce a summary which contains important, diverse and coherent information, i.e., a summary should be self-contained. The approaches for text summarization are conventionally extractive. The extractive approaches select a subset of sentences from an input document for a summary. In this thesis, we introduce a novel graph-based extractive summarization approach. With the progressive advancement of research in the various fields of science, the summarization of scientific articles has become an essential requirement for researchers. This is our prime motivation in selecting scientific articles as our dataset. This newly formed dataset contains scientific articles from the PLOS Medicine journal, which is a high impact journal in the field of biomedicine. The summarization of scientific articles is a single-document summarization task. It is a complex task due to various reasons, one of it being, the important information in the scientific article is scattered all over it and another reason being, scientific articles contain numerous redundant information. In our approach, we deal with the three important factors of summarization: importance, non-redundancy and coherence. To deal with these factors, we use graphs as they solve data sparsity problems and are computationally less complex. We employ bipartite graphical representation for the summarization task, exclusively. We represent input documents through a bipartite graph that consists of sentence nodes and entity nodes. This bipartite graph representation contains entity transition information which is beneficial for selecting the relevant sentences for a summary. We use a graph-based ranking algorithm to rank the sentences in a document. The ranks are considered as relevance scores of the sentences which are further used in our approach. Scientific articles contain reasonable amount of redundant information, for example, Introduction and Methodology sections contain similar information regarding the motivation and approach. In our approach, we ensure that the summary contains sentences which are non-redundant. Though the summary should contain important and non-redundant information of the input document, its sentences should be connected to one another such that it becomes coherent, understandable and simple to read. If we do not ensure that a summary is coherent, its sentences may not be properly connected. This leads to an obscure summary. Until now, only few summarization approaches take care of coherence. In our approach, we take care of coherence in two different ways: by using the graph measure and by using the structural information. We employ outdegree as the graph measure and coherence patterns for the structural information, in our approach. We use integer programming as an optimization technique, to select the best subset of sentences for a summary. The sentences are selected on the basis of relevance, diversity and coherence measure. The computation of these measures is tightly integrated and taken care of simultaneously. We use human judgements to evaluate coherence of summaries. We compare ROUGE scores and human judgements of different systems on the PLOS Medicine dataset. Our approach performs considerably better than other systems on this dataset. Also, we apply our approach on the standard DUC 2002 dataset to compare the results with the recent state-of-the-art systems. The results show that our graph-based approach outperforms other systems on DUC 2002. In conclusion, our approach is robust, i.e., it works on both scientific and news articles. Our approach has the further advantage of being semi-supervised

    Optimisation using Natural Language Processing: Personalized Tour Recommendation for Museums

    Full text link
    This paper proposes a new method to provide personalized tour recommendation for museum visits. It combines an optimization of preference criteria of visitors with an automatic extraction of artwork importance from museum information based on Natural Language Processing using textual energy. This project includes researchers from computer and social sciences. Some results are obtained with numerical experiments. They show that our model clearly improves the satisfaction of the visitor who follows the proposed tour. This work foreshadows some interesting outcomes and applications about on-demand personalized visit of museums in a very near future.Comment: 8 pages, 4 figures; Proceedings of the 2014 Federated Conference on Computer Science and Information Systems pp. 439-44
    corecore