3,344 research outputs found

    Comparison of Various Configuration of Wireless Power Transfer System

    Get PDF
    This article deals with mutual comparison of different resonant tank configurations of the wireless power transfer (WPT) systems. Tested compensation configurations are classified as series-series, series-parallel, parallel-series and parallel-parallel and all of them are operated with the input and output frequency converters and other supplementary electronics. As parameter we chose the transfer distance and load. The comparison is made according to changes in overall system efficiency and power delivered to the load along varying both the load and operational distance. All theoretical findings are experimentally verified and discussed in the conclusion section

    Fundamentals of Inductively Coupled Wireless Power Transfer Systems

    Get PDF
    The objective of this chapter is to study the fundamentals and operating principles of inductively coupled wireless power transfer (ICWPT) systems. This new technology can be used in various wireless power transfer applications with different specifications, necessities, and restrictions such as in electric vehicles and consumer electronics. A typical ICWPT system involves a loosely coupled magnetic coupling structure and power electronics circuitries as an integrated system. In this chapter, the emphasis is placed on the magnetic coupling structure, which is the most important part of the system. Although this technology has motivated considerable research and development in the past two decades, still there are several theoretical studies such as the level of the operating frequency, operating at high secondary circuit quality factor, coupling efficiency, etc., that need further investigation to fully develop the governing mathematical relationships of this technology

    Applications of Power Electronics:Volume 2

    Get PDF

    Miniaturised and reconfigurable planar filters for ultra-wideband applications

    Get PDF
    An increasing demand for electromagnetic spectrum has resulted from the emergence of feature-rich and faster throughputs wireless applications. This necessitates the developments of dynamic reconfigurable or multifunctional systems to better exploit the existing spectrum. Future wireless devices will be expected to communicate over several bands with various other devices in order to fine tune the services they provide to the user. Each band may require a separate RF transceiver and such modern wireless multi-band multi-mode communication systems call for high performance, highly integrated compact modules. Since the Federal Communications Commission (FCC) released the unlicensed frequency band 3.1-10.6 GHz for ultra-wideband (UWB) commercial communications, the development race for commercialising UWB technology has seen a dramatic increase around the world. The aim of this research is to develop reconfigurable planar microwave filters for ultrawideband applications. The project investigates some key design issues of reconfigurable filters, which are being observed constantly in the latest development and realisation of microwave filters. Both analytical and numerical methods are performed to construct a realistic and functional design. Two different types of frequency reconfigurability are investigated in this thesis: discrete (e.g. PIN diode, Optical switch) and continuous (e.g. varactor diode). Using the equivalent circuits and considering the direct coupled filter structure in most cases, several topologies with attractive features are developed for future communication systems. The proposed works may be broadly categorised into three sections as follows. The first section explores a square ring shape close loop resonator along with an opencircuited stub in the symmetry plane. To realise a reconfigurable frequency states within the same spectrum, an innovative approach is developed for this case. An optical or photoconductive switch, comprised of a silicon die activated using near infrared light is investigated as a substitute of PIN diode and performances are evaluated to compare the feasibilities. In addition, a in-band interference rejection technique via externally coupled Tshape resonator is shown. However, it is observed that both structures achieve significant size reductions by utilising the inner part of the resonators. To improve the filter selectivity, a convenient design approach generating a pair of transmission zeros between both passband edges and a single zero in the stop band for harmonic suppression is discussed in the second section. Moreover, the development of notched rejection bands are studied and several novel methods to create a single and multiple notched bands employing the square ring shape structure are proposed. On inspection, it is found that the notch structure can be implemented without deteriorating the filter performances. The discussions are supplemented with detailed design examples which are accompanied by theoretical, simulated and experimental results in order to illustrate the filter development process and showcase practical filter performance. The third section reveals a novel highly compact planar dual-mode resonator with sharp rejections characteristics for UWB applications. A bandwidth reconfiguring technique is demonstrated by splitting its even-mode resonance. Filter structure with the dual-mode resonator is shown to have a relatively wide tuning range, significantly low insertion loss and a constant selectivity along with frequency variations in comparison to similar published works. Finally, the earlier dual-mode structure are modified to realise a dual wideband behaviour. A detail analysis with comprehensive design procedures is outlined and a solution for controlling the frequency bandwidths independently according to the application interest is provided. In line with the previous section, experimental verification is presented to support and supplement the discussions

    DEVELOPMENT OF A SIMPLIFIED, MASS PRODUCIBLE HYBRIDIZED AMBIENT, LOW FREQUENCY, LOW INTENSITY VIBRATION ENERGY SCAVENGER (HALF-LIVES)

    Get PDF
    Scavenging energy from environmental sources is an active area of research to enable remote sensing and microsystems applications. Furthermore, as energy demands soar, there is a significant need to explore new sources and curb waste. Vibration energy scavenging is one environmental source for remote applications and a candidate for recouping energy wasted by mechanical sources that can be harnessed to monitor and optimize operation of critical infrastructure (e.g. Smart Grid). Current vibration scavengers are limited by volume and ancillary requirements for operation such as control circuitry overhead and battery sources. This dissertation, for the first time, reports a mass producible hybrid energy scavenger system that employs both piezoelectric and electrostatic transduction on a common MEMS device. The piezoelectric component provides an inherent feedback signal and pre-charge source that enables electrostatic scavenging operation while the electrostatic device provides the proof mass that enables low frequency operation. The piezoelectric beam forms the spring of the resonant mass-spring transducer for converting vibration excitation into an AC electrical output. A serially poled, composite shim, piezoelectric bimorph produces the highest output rectified voltage of over 3.3V and power output of 145uW using ¼ g vibration acceleration at 120Hz. Considering solely the volume of the piezoelectric beam and tungsten proof mass, the volume is 0.054cm3, resulting in a power density of 2.68mW/cm3. Incorporation of a simple parallel plate structure that provides the proof mass for low frequency resonant operation in addition to cogeneration via electrostatic energy scavenging provides a 19.82 to 35.29 percent increase in voltage beyond the piezoelectric generated DC rails. This corresponds to approximately 2.1nW additional power from the electrostatic scavenger component and demonstrates the first instance of hybrid energy scavenging using both piezoelectric and synchronous electrostatic transduction. Furthermore, it provides a complete system architecture and development platform for additional enhancements that will enable in excess of 100uW additional power from the electrostatic scavenger

    Frequency splitting elimination and cross-coupling rejection of wireless power transfer to multiple dynamic receivers

    Get PDF
    Simultaneous power transfer to multiple receiver (Rx) system is one of the key advantages of wireless power transfer (WPT) system using magnetic resonance. However, determining the optimal condition to uniformly transfer the power to a selected Rx at high efficiency is the challenging task under the dynamic environment. The cross-coupling and frequency splitting are the dominant issues present in the multiple Rx dynamic WPT system. The existing analysis is performed by considering any one issue present in the system; on the other hand, the cross coupling and frequency splitting issues are interrelated in dynamic Rx’s, which requires a comprehensive design strategy by considering both the problems. This paper proposes an optimal design of multiple Rx WPT system, which can eliminate cross coupling, frequency splitting issues and increase the power transfer efficiency (PTE) of selected Rx. The cross-coupling rejection, uniform power transfer is performed by adding an additional relay coil and independent resonance frequency tuning with capacitive compensation to each Rx unit. The frequency splitting phenomena are eliminated using non-identical transmitter (Tx) and Rx coil structure which can maintain the coupling between the coil under the critical coupling limit. The mathematical analysis of the compensation capacitance calculation and optimal Tx coil size identification is performed for the four Rx WPT system. Finite element analysis and experimental investigation are carried out for the proposed design in static and dynamic conditions

    A critical review of recent progress in mid-range wireless power transfer

    Get PDF
    Starting from Tesla’s principles of wireless power transfer a century ago, this critical review outlines recent magneto-inductive research activities on wireless power transfer with the transmission distance greater than the transmitter coil dimension. It summarizes the operating principles of a range of wireless power research into (i) the maximum power transfer and (ii) the maximum energy efficiency principles. The differences and the implications of these two approaches are explained in terms of their energy efficiency and transmission distance capabilities. The differences between the system energy efficiency and the transmission efficiency are also highlighted. The review covers the 2-coil systems, the 4-coil systems, the systems with relay resonators and the wireless domino-resonator systems. Related issues including human exposure issues and reduction of winding resistance are also addressed. The review suggests that the use of the maximum energy efficiency principle in the 2-coil systems is suitable for short-range rather than mid-range applications, the use of the maximum power transfer principle in the 4-coil systems is good for maximizing the transmission distance, but is under a restricted system energy efficiency (< 50%); the use of the maximum energy efficiency principle in relay or domino systems may offer a good compromise for good system energy efficiency and transmission distance on the condition that relay resonators can be placed between the power source and the load.published_or_final_versio
    corecore