208 research outputs found

    A Review of Modeling and Diagnostic Techniques for Eccentricity Fault in Electric Machines

    Get PDF
    Research on the modeling and fault diagnosis of rotor eccentricities has been conducted during the past two decades. A variety of diagnostic theories and methods have been proposed based on different mechanisms, and there are reviews following either one type of electric machines or one type of eccentricity. Nonetheless, the research routes of modeling and diagnosis are common, regardless of machine or eccentricity types. This article tends to review all the possible modeling and diagnostic approaches for all common types of electric machines with eccentricities and provide suggestions on future research roadmap. The paper indicates that a reliable low-cost non-intrusive real-time online visualized diagnostic method is the trend. Observer-based diagnostic strategies are thought promising for the continued research

    Noise in Electric Motors: A Comprehensive Review

    Get PDF
    Electric machines are important devices that convert electrical energy into mechanical energy and are extensively used in a wide range of applications. Recent years have seen an increase in applications where electric motors are used. The frequent use of electric motors in noise-sensitive environments increases the requirements placed on electric motors intended for these applications, especially when compared to electric motors commonly used in industrial applications. This paper provides a comprehensive review of electric motor noise. Firstly, a brief introduction to noise is given. Then, the sources of electromagnetic noise and vibration in electric machines, including mechanical, aerodynamic and electromagnetic factors, are presented. Different methods such as analytical, numerical and semi-analytical for calculating electromagnetic force, natural frequencies and noise are also analyzed. Various methods for noise reduction are presented, including skewing, stator and rotor notching and slot opening width. Finally, noise measurement standards and procedures are described.This work received financial support from the Basque Government through the Bikaintek program (Grant no. 016-B2/2021)

    Magnetic Flux Analysis for the Condition Monitoring of Electric Machines: A Review

    Full text link
    [EN] Magnetic flux analysis is a condition monitoring technique that is drawing the interest of many researchers and motor manufacturers. The great enhancements and reduction in the costs and dimensions of the required sensors, the development of advanced signal processing techniques that are suitable for flux data analysis, along with other inherent advantages provided by this technology are relevant aspects that have allowed the proliferation of flux-based techniques. This paper reviews the most recent scientific contributions related to the development and application of flux-based methods for the monitoring of rotating electric machines. Particularly, aspects related to the main sensors used to acquire magnetic flux signals as well as the leading signal processing and classification techniques are commented. The discussion is focused on the diagnosis of different types of faults in the most common rotating electric machines used in industry, namely: squirrel cage induction machines (SCIM), wound rotor induction machines (WRIM), permanent magnet machines (PMM) and wound field synchronous machines (WFSM). A critical insight of the techniques developed in the area is provided and several open challenges are also discussed.This work was supported by the Spanish 'Ministerio de Ciencia Innovación y Universidades' and FEDER program in the framework of the "Proyectos de I+D de Generación de Conocimiento del Programa Estatal de Generación de Conocimiento y Fortalecimiento Científico y Tecnologico del Sistema de I+D+i, Subprograma Estatal de Generacion de Conocimiento" reference PGC2018-095747-B-I00 and by the Consejo Nacional de Ciencia y Tecnología under CONACyT Scholarship with key code 2019-000037-02NACF. Paper no. TII-20-5308.Zamudio-Ramírez, I.; Osornio-Rios, RA.; Antonino-Daviu, J.; Razik, H.; Romero-Troncoso, RDJ. (2022). Magnetic Flux Analysis for the Condition Monitoring of Electric Machines: A Review. IEEE Transactions on Industrial Informatics. 18(5):2895-2908. https://doi.org/10.1109/TII.2021.30705812895290818

    Analysis of Ball Bearing Defects in Synchronous Machines using Electrical Measurements

    Get PDF
    Rolling element bearings are used in most electrical machines, especially for small and medium size applications. Under non-ideal operating conditions, ball bearing condition degrades by fatigue, ambient vibration, misalignment, overloading, contamination, corrosion from water or chemicals, improper lubrication, shaft currents and residual stress left from the bearing manufacturing process. All of these conditions eventually lead to increased vibration and acoustic noise during machine operation which at some point in time results in unexpected bearing failure. Over the years, a great number of publications have been devoted to the detection of mechanical faults, including rolling element bearing defects and torsional defects, in electrical machines based on Electrical Signature Analysis (ESA). It has been observed that these faults can affect either the stator to rotor air-gap distribution or the running speed of the machine, which can be reflected in the signature of the electrical signals. However, the physical link between the mechanical degradation and the electrical signature is still not explained well. A multi-physics model is developed by joining the detailed mechanical model of a rotor bearing system and the electrical model of a synchronous machine in this research. This combined model is capable of describing the transmission of information originating from bearing faults and their impact on the variations of the measured electrical signals. The electrical machine model is developed based on winding function approach and its validity is demonstrated by a more accurate Finite Element Method (FEM) model. The mechanical model consists of a high fidelity rotor-bearing system with detailed nonlinear ball bearing model and a flexible finite element shaft model. It is validated using the housing vibration data collected from some experiments. Generalized roughness bearing anomalies are linked to load torque ripples and airgap variations, while being related to current signature by phase and amplitude modulation. Considering that the induced characteristic signatures are usually subtle broadband changes in the current spectra, these signatures are easily affected by input power quality variations, machine manufacturing imperfections and environmental noise. In this research, a new algorithm is proposed to isolate the influence of the external disturbances of power quality, machine manufacturing imperfections and environmental noise, and to improve the effectiveness of applying the ESA for generalized roughness bearing defects. The results show that the proposed method is effective in analyzing the generalized roughness bearing anomaly in synchronous machines. Furthermore, the electrical signatures are analyzed in a synchronous machine with bearing defects. The proposed fault detection method employs a Zoomed Fast Fourier Transform (ZFFT) and Principal Component Analysis (PCA) and it is also tested on the available experimental data. The results show that amplitude induced electrical harmonics are related to the level of vibration, and the electrical signatures are affected heavily by other variables, such as power quality and load fluctuation. The proposed method is shown to be effective on detecting generalized roughness bearing defects in synchronous machines

    Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods

    Full text link
    (c) 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] In the induction motor predictive maintenance area, there is a continuous search for new techniques and methods that can provide additional information for a more reliable determination of the motor condition. In this context, the analysis of the stray flux has drawn the interest of many researchers. The simplicity, low cost and potential of this technique makes it attractive for complementing the diagnosis provided by other well-established methods. More specifically, the study of this quantity under the starting has been recently proposed as a valuable tool for the diagnosis of certain electromechanical faults. Despite this fact, the research in this approach is still incipient and the employed signal processing tools must be still optimized for a better visualization of the fault components. Moreover, the development of advanced algorithms that enable the automatic identification of the resulting transient patterns is another crucial target within this area. This article presents an advanced algorithm based on the combined application of MUSIC and neural networks that enables the automatic identification of the time-frequency patterns created by the stray flux fault components under starting as well as the subsequent determination of the fault severity level. Two faults are considered in the work: rotor problems and misalignments. Also, different positions of the external coil sensor are studied. The results prove the potential of the intelligent algorithm for the reliable diagnosis of electromechanical faults.This work was supported in part by the Spanish "Ministerio de Ciencia Innovacion y Universidades" and in part by FEDER program in the "Proyectos de I+D de Generacion de Conocimiento del Programa Estatal de Generacion de Conocimiento y Fortalecimiento Cientifico y Tecnologico del Sistema de I+D+i, Subprograma Estatal de Generacion de Conocimiento" (PGC2018-095747-B-I00).Zamudio-Ramírez, I.; Ramirez-Núñez, JA.; Antonino Daviu, JA.; Osornio-Rios, RA.; Quijano-Lopez, A.; Razik, H.; Romero-Troncoso, RDJ. (2020). Automatic diagnosis of electromechanical faults in induction motors based on the transient analysis of the stray flux via MUSIC methods. IEEE Transactions on Industry Applications. 56(4):3604-3613. https://doi.org/10.1109/TIA.2020.2988002S3604361356

    Modelling and detection of faults in axial-flux permanent magnet machines

    Get PDF
    The development of various topologies and configurations of axial-flux permanent magnet machine has spurred its use for electromechanical energy conversion in several applications. As it becomes increasingly deployed, effective condition monitoring built on reliable and accurate fault detection techniques is needed to ensure its engineering integrity. Unlike induction machine which has been rigorously investigated for faults, axial-flux permanent magnet machine has not. Thus in this thesis, axial-flux permanent magnet machine is investigated under faulty conditions. Common faults associated with it namely; static eccentricity and interturn short circuit are modelled, and detection techniques are established. The modelling forms a basis for; developing a platform for precise fault replication on a developed experimental test-rig, predicting and analysing fault signatures using both finite element analysis and experimental analysis. In the detection, the motor current signature analysis, vibration analysis and electrical impedance spectroscopy are applied. Attention is paid to fault-feature extraction and fault discrimination. Using both frequency and time-frequency techniques, features are tracked in the line current under steady-state and transient conditions respectively. Results obtained provide rich information on the pattern of fault harmonics. Parametric spectral estimation is also explored as an alternative to the Fourier transform in the steady-state analysis of faulty conditions. It is found to be as effective as the Fourier transform and more amenable to short signal-measurement duration. Vibration analysis is applied in the detection of eccentricities; its efficacy in fault detection is hinged on proper determination of vibratory frequencies and quantification of corresponding tones. This is achieved using analytical formulations and signal processing techniques. Furthermore, the developed fault model is used to assess the influence of cogging torque minimization techniques and rotor topologies in axial-flux permanent magnet machine on current signal in the presence of static eccentricity. The double-sided topology is found to be tolerant to the presence of static eccentricity unlike the single-sided topology due to the opposing effect of the resulting asymmetrical properties of the airgap. The cogging torque minimization techniques do not impair on the established fault detection technique in the single-sided topology. By applying electrical broadband impedance spectroscopy, interturn faults are diagnosed; a high frequency winding model is developed to analyse the impedance-frequency response obtained

    Sources of vibration and their treatment in hydro power stations-A review

    Get PDF
    AbstractVibration condition monitoring (VCM) enhances the performance of Hydro Generating Equipment (HGE) by minimizing the damage and break down chances, so that equipment stay available for a longer time. The execution of VCM and diagnosing the system of an HPS includes theoretical and experimental exploitation. Various studies have made their contribution to find out the vibration failure mechanism and incipient failures in HPS. This paper gives a review on VCM of electrical and mechanical equipment used in the HPS along with a brief explanation of vibration related faults considering past literature of around 30years. Causes of the vibrations on rotating and non-rotating equipment of HPS have been discussed along with the standards for vibration measurements. Future prospectus of VCM is also discussed

    Development of an induction motor condition monitoring test rig And fault detection strategies

    Get PDF
    Includes bibliographical references.This thesis sets out to develop an induction motor condition monitoring test rig to experimentally simulate the common faults associated with induction motors and to develop strategies for detecting these faults that employ signal processing techniques. Literature on basic concepts of induction motors and inverter drives, the phenomena of common faults associated with induction motors, the condition monitoring systems were intensively reviewed

    Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art

    Full text link
    © 2015 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Recently, research concerning electrical machines and drives condition monitoring and fault diagnosis has experienced extraordinarily dynamic activity. The increasing importance of these energy conversion devices and their widespread use in uncountable applications have motivated significant research efforts. This paper presents an analysis of the state of the art in this field. The analyzed contributions were published in most relevant journals and magazines or presented in either specific conferences in the area or more broadly scoped events.Riera-Guasp, M.; Antonino-Daviu, J.; Capolino, G. (2015). Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art. IEEE Transactions on Industrial Electronics. 62(3):1746-1759. doi:10.1109/TIE.2014.2375853S1746175962
    • …
    corecore