741 research outputs found

    ANALYTICAL MODEL FOR CHIP MULTIPROCESSOR MEMORY HIERARCHY DESIGN AND MAMAGEMENT

    Get PDF
    Continued advances in circuit integration technology has ushered in the era of chip multiprocessor (CMP) architectures as further scaling of the performance of conventional wide-issue superscalar processor architectures remains hard and costly. CMP architectures take advantageof Moore¡¯s Law by integrating more cores in a given chip area rather than a single fastyet larger core. They achieve higher performance with multithreaded workloads. However,CMP architectures pose many new memory hierarchy design and management problems thatmust be addressed. For example, how many cores and how much cache capacity must weintegrate in a single chip to obtain the best throughput possible? Which is more effective,allocating more cache capacity or memory bandwidth to a program?This thesis research develops simple yet powerful analytical models to study two newmemory hierarchy design and resource management problems for CMPs. First, we considerthe chip area allocation problem to maximize the chip throughput. Our model focuses onthe trade-off between the number of cores, cache capacity, and cache management strategies.We find that different cache management schemes demand different area allocation to coresand cache to achieve their maximum performance. Second, we analyze the effect of cachecapacity partitioning on the bandwidth requirement of a given program. Furthermore, ourmodel considers how bandwidth allocation to different co-scheduled programs will affect theindividual programs¡¯ performance. Since the CMP design space is large and simulating only one design point of the designspace under various workloads would be extremely time-consuming, the conventionalsimulation-based research approach quickly becomes ineffective. We anticipate that ouranalytical models will provide practical tools to CMP designers and correctly guide theirdesign efforts at an early design stage. Furthermore, our models will allow them to betterunderstand potentially complex interactions among key design parameters

    Scalable directoryless shared memory coherence using execution migration

    Get PDF
    We introduce the concept of deadlock-free migration-based coherent shared memory to the NUCA family of architectures. Migration-based architectures move threads among cores to guarantee sequential semantics in large multicores. Using a execution migration (EM) architecture, we achieve performance comparable to directory-based architectures without using directories: avoiding automatic data replication significantly reduces cache miss rates, while a fast network-level thread migration scheme takes advantage of shared data locality to reduce remote cache accesses that limit traditional NUCA performance. EM area and energy consumption are very competitive, and, on the average, it outperforms a directory-based MOESI baseline by 6.8% and a traditional S-NUCA design by 9.2%. We argue that with EM scaling performance has much lower cost and design complexity than in directory-based coherence and traditional NUCA architectures: by merely scaling network bandwidth from 128 to 256 (512) bit flits, the performance of our architecture improves by an additional 8% (12%), while the baselines show negligible improvement

    Interstellar: Using Halide's Scheduling Language to Analyze DNN Accelerators

    Full text link
    We show that DNN accelerator micro-architectures and their program mappings represent specific choices of loop order and hardware parallelism for computing the seven nested loops of DNNs, which enables us to create a formal taxonomy of all existing dense DNN accelerators. Surprisingly, the loop transformations needed to create these hardware variants can be precisely and concisely represented by Halide's scheduling language. By modifying the Halide compiler to generate hardware, we create a system that can fairly compare these prior accelerators. As long as proper loop blocking schemes are used, and the hardware can support mapping replicated loops, many different hardware dataflows yield similar energy efficiency with good performance. This is because the loop blocking can ensure that most data references stay on-chip with good locality and the processing units have high resource utilization. How resources are allocated, especially in the memory system, has a large impact on energy and performance. By optimizing hardware resource allocation while keeping throughput constant, we achieve up to 4.2X energy improvement for Convolutional Neural Networks (CNNs), 1.6X and 1.8X improvement for Long Short-Term Memories (LSTMs) and multi-layer perceptrons (MLPs), respectively.Comment: Published as a conference paper at ASPLOS 202

    Core Count vs Cache Size for Manycore Architectures in the Cloud

    Get PDF
    The number of cores which fit on a single chip is growing at an exponential rate while off-chip main memory bandwidth is growing at a linear rate at best. This core count to off-chip bandwidth disparity causes per-core memory bandwidth to decrease as process technology advances. Continuing per-core off-chip bandwidth reduction will cause multicore and manycore chip architects to rethink the optimal grain size of a core and the on-chip cache configuration in order to save main memory bandwidth. This work introduces an analytic model to study the tradeoffs of utilizing increased chip area for larger caches versus more cores. We focus this study on constructing manycore architectures well suited for the emerging application space of cloud computing where many independent applications are consolidated onto a single chip. This cloud computing application mix favors small, power-efficient cores. The model is exhaustively evaluated across a large range of cache and core-count configurations utilizing SPEC Int 2000 miss rates and CACTI timing and area models to determine the optimal cache configurations and the number of cores across four process nodes. The model maximizes aggregate computational throughput and is applied to SRAM and logic process DRAM caches. As an example, our study demonstrates that the optimal manycore configuration in the 32nm node for a 200 mm^2 die uses on the order of 158 cores, with each core containing a 64KB L1I cache, a 16KB L1D cache, and a 1MB L2 embedded-DRAM cache. This study finds that the optimal cache size will continue to grow as process technology advances, but the tradeoff between more cores and larger caches is a complex tradeoff in the face of limited off-chip bandwidth and the non-linearities of cache miss rates and memory controller queuing delay

    Performance analysis and optimization of automotive GPUs

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Advanced Driver Assistance Systems (ADAS) and Autonomous Driving (AD) have drastically increased the performance demands of automotive systems. Suitable highperformance platforms building upon Graphic Processing Units (GPUs) have been developed to respond to this demand, being NVIDIA Jetson TX2 a relevant representative. However, whether high-performance GPU configurations are appropriate for automotive setups remains as an open question. This paper aims at providing light on this question by modelling an automotive GPU (Jetson TX2), analyzing its microarchitectural parameters against relevant benchmarks, and identifying specific configurations able to meaningfully increase performance within similar cost envelopes, or to decrease costs preserving original performance levels. Overall, our analysis opens the door to the optimization of automotive GPUs for further system efficiency.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P, the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 772773) and the HiPEAC Network of Excellence. Pedro Benedicte and Jaume Abella have been partially supported by the MINECO under FPU15/01394 grant and Ramon y Cajal postdoctoral fellowship number RYC-2013-14717 respectively and Leonidas Kosmidis under Juan de la Cierva-Formacin postdoctoral fellowship (FJCI-2017-34095).Peer ReviewedPostprint (author's final draft

    A Tight Holistic Memory Latency Bound Through Coordinated Management of Memory Resources

    Get PDF
    • …
    corecore