4,690 research outputs found

    Simple Tabulation, Fast Expanders, Double Tabulation, and High Independence

    Full text link
    Simple tabulation dates back to Zobrist in 1970. Keys are viewed as c characters from some alphabet A. We initialize c tables h_0, ..., h_{c-1} mapping characters to random hash values. A key x=(x_0, ..., x_{c-1}) is hashed to h_0[x_0] xor...xor h_{c-1}[x_{c-1}]. The scheme is extremely fast when the character hash tables h_i are in cache. Simple tabulation hashing is not 4-independent, but we show that if we apply it twice, then we get high independence. First we hash to intermediate keys that are 6 times longer than the original keys, and then we hash the intermediate keys to the final hash values. The intermediate keys have d=6c characters from A. We can view the hash function as a degree d bipartite graph with keys on one side, each with edges to d output characters. We show that this graph has nice expansion properties, and from that we get that with another level of simple tabulation on the intermediate keys, the composition is a highly independent hash function. The independence we get is |A|^{Omega(1/c)}. Our space is O(c|A|) and the hash function is evaluated in O(c) time. Siegel [FOCS'89, SICOMP'04] proved that with this space, if the hash function is evaluated in o(c) time, then the independence can only be o(c), so our evaluation time is best possible for Omega(c) independence---our independence is much higher if c=|A|^{o(1)}. Siegel used O(c)^c evaluation time to get the same independence with similar space. Siegel's main focus was c=O(1), but we are exponentially faster when c=omega(1). Applying our scheme recursively, we can increase our independence to |A|^{Omega(1)} with o(c^{log c}) evaluation time. Compared with Siegel's scheme this is both faster and higher independence. Our scheme is easy to implement, and it does provide realistic implementations of 100-independent hashing for, say, 32 and 64-bit keys

    Attacks on quantum key distribution protocols that employ non-ITS authentication

    Full text link
    We demonstrate how adversaries with unbounded computing resources can break Quantum Key Distribution (QKD) protocols which employ a particular message authentication code suggested previously. This authentication code, featuring low key consumption, is not Information-Theoretically Secure (ITS) since for each message the eavesdropper has intercepted she is able to send a different message from a set of messages that she can calculate by finding collisions of a cryptographic hash function. However, when this authentication code was introduced it was shown to prevent straightforward Man-In-The-Middle (MITM) attacks against QKD protocols. In this paper, we prove that the set of messages that collide with any given message under this authentication code contains with high probability a message that has small Hamming distance to any other given message. Based on this fact we present extended MITM attacks against different versions of BB84 QKD protocols using the addressed authentication code; for three protocols we describe every single action taken by the adversary. For all protocols the adversary can obtain complete knowledge of the key, and for most protocols her success probability in doing so approaches unity. Since the attacks work against all authentication methods which allow to calculate colliding messages, the underlying building blocks of the presented attacks expose the potential pitfalls arising as a consequence of non-ITS authentication in QKD-postprocessing. We propose countermeasures, increasing the eavesdroppers demand for computational power, and also prove necessary and sufficient conditions for upgrading the discussed authentication code to the ITS level.Comment: 34 page

    Key recycling in authentication

    Full text link
    In their seminal work on authentication, Wegman and Carter propose that to authenticate multiple messages, it is sufficient to reuse the same hash function as long as each tag is encrypted with a one-time pad. They argue that because the one-time pad is perfectly hiding, the hash function used remains completely unknown to the adversary. Since their proof is not composable, we revisit it using a composable security framework. It turns out that the above argument is insufficient: if the adversary learns whether a corrupted message was accepted or rejected, information about the hash function is leaked, and after a bounded finite amount of rounds it is completely known. We show however that this leak is very small: Wegman and Carter's protocol is still ϵ\epsilon-secure, if ϵ\epsilon-almost strongly universal2_2 hash functions are used. This implies that the secret key corresponding to the choice of hash function can be reused in the next round of authentication without any additional error than this ϵ\epsilon. We also show that if the players have a mild form of synchronization, namely that the receiver knows when a message should be received, the key can be recycled for any arbitrary task, not only new rounds of authentication.Comment: 17+3 pages. 11 figures. v3: Rewritten with AC instead of UC. Extended the main result to both synchronous and asynchronous networks. Matches published version up to layout and updated references. v2: updated introduction and reference

    On an almost-universal hash function family with applications to authentication and secrecy codes

    Get PDF
    Universal hashing, discovered by Carter and Wegman in 1979, has many important applications in computer science. MMH^*, which was shown to be Δ\Delta-universal by Halevi and Krawczyk in 1997, is a well-known universal hash function family. We introduce a variant of MMH^*, that we call GRDH, where we use an arbitrary integer n>1n>1 instead of prime pp and let the keys x=x1,,xkZnk\mathbf{x}=\langle x_1, \ldots, x_k \rangle \in \mathbb{Z}_n^k satisfy the conditions gcd(xi,n)=ti\gcd(x_i,n)=t_i (1ik1\leq i\leq k), where t1,,tkt_1,\ldots,t_k are given positive divisors of nn. Then via connecting the universal hashing problem to the number of solutions of restricted linear congruences, we prove that the family GRDH is an ε\varepsilon-almost-Δ\Delta-universal family of hash functions for some ε<1\varepsilon<1 if and only if nn is odd and gcd(xi,n)=ti=1\gcd(x_i,n)=t_i=1 (1ik)(1\leq i\leq k). Furthermore, if these conditions are satisfied then GRDH is 1p1\frac{1}{p-1}-almost-Δ\Delta-universal, where pp is the smallest prime divisor of nn. Finally, as an application of our results, we propose an authentication code with secrecy scheme which strongly generalizes the scheme studied by Alomair et al. [{\it J. Math. Cryptol.} {\bf 4} (2010), 121--148], and [{\it J.UCS} {\bf 15} (2009), 2937--2956].Comment: International Journal of Foundations of Computer Science, to appea

    PPP-Completeness with Connections to Cryptography

    Get PDF
    Polynomial Pigeonhole Principle (PPP) is an important subclass of TFNP with profound connections to the complexity of the fundamental cryptographic primitives: collision-resistant hash functions and one-way permutations. In contrast to most of the other subclasses of TFNP, no complete problem is known for PPP. Our work identifies the first PPP-complete problem without any circuit or Turing Machine given explicitly in the input, and thus we answer a longstanding open question from [Papadimitriou1994]. Specifically, we show that constrained-SIS (cSIS), a generalized version of the well-known Short Integer Solution problem (SIS) from lattice-based cryptography, is PPP-complete. In order to give intuition behind our reduction for constrained-SIS, we identify another PPP-complete problem with a circuit in the input but closely related to lattice problems. We call this problem BLICHFELDT and it is the computational problem associated with Blichfeldt's fundamental theorem in the theory of lattices. Building on the inherent connection of PPP with collision-resistant hash functions, we use our completeness result to construct the first natural hash function family that captures the hardness of all collision-resistant hash functions in a worst-case sense, i.e. it is natural and universal in the worst-case. The close resemblance of our hash function family with SIS, leads us to the first candidate collision-resistant hash function that is both natural and universal in an average-case sense. Finally, our results enrich our understanding of the connections between PPP, lattice problems and other concrete cryptographic assumptions, such as the discrete logarithm problem over general groups
    corecore