252,340 research outputs found

    A Methodology and Supporting Tools for the Development of Component-Based Embedded Systems.

    Get PDF
    International audienceThe paper presents a methodology and supporting tools for developing component-based embedded systems running on resource- limited hardware platforms. The methodology combines two complementary component frameworks in an integrated tool chain: BIP and Think. BIP is a framework for model-based development including a language for the description of heterogeneous systems, as well as associated simulation and verification tools. Think is a software component framework for the generation of small-footprint embedded systems. The tool chain allows generation, from system models described in BIP, of a set of func tionally equivalent Think components. From these and libraries including OS services for a given hardware platform, a minimal system can be generated. We illustrate the results by modeling and implementing a software MPEG encoder on an iPod

    A methodology and supporting tools for the development of component-based embedded systems

    Get PDF
    The paper presents a methodology and supporting tools for developing component-based embedded systems running on resource-limited hardware platforms. The methodology combines two complementary component frameworks in an integrated tool chain: BIP and Think. BIP is a framework for model-based development including a language for the description of heterogeneous systems, as well as associated simulation and verification tools. Think is a software component framework for the generation of small-footprint embedded systems. The tool chain allows generation, from system models described in BIP, of a set of functionally equivalent Think components. From these and libraries including OS services for a given hardware platform, a minimal system can be generated. We illustrate the results by modeling and implementing a software MPEG encoder on an iPod

    A Methodology and Supporting Tools for the Development of Component-Based Embedded Systems.

    Get PDF
    International audienceThe paper presents a methodology and supporting tools for developing component-based embedded systems running on resource- limited hardware platforms. The methodology combines two complementary component frameworks in an integrated tool chain: BIP and Think. BIP is a framework for model-based development including a language for the description of heterogeneous systems, as well as associated simulation and verification tools. Think is a software component framework for the generation of small-footprint embedded systems. The tool chain allows generation, from system models described in BIP, of a set of func tionally equivalent Think components. From these and libraries including OS services for a given hardware platform, a minimal system can be generated. We illustrate the results by modeling and implementing a software MPEG encoder on an iPod

    Attribute based component design: Supporting model driven development in CbSE

    Get PDF
    In analysing the evolution of Software Engineering, the scale of the components has increased, the requirements for different domains become complex and a variety of different component frameworks and their associated models have emerged. Many modern component frameworks provide enterprise level facilities and services, such as instance management, and component container support, that allow developers to apply if needed to manage scale and complexity. Although the services provided by these frameworks are common, they have different models and implementation. Accordingly, the main problem is, when developing a component based application using a component framework, the design of the components becomes tightly integrated with the framework implementation and the framework model is embedded in the component functionality, and hence reduces reusability. Another problem arose is, the designers must have in-depth knowledge of the implementation of a component framework to be able to model, design and implement the components and take advantages of the services provided. To address these problems, this research proposes the Attribute based Component Design (AbCD) approach which allows developers to model software using logical and abstract components at the specification level. The components encapsulate the provided functionality, as well as the required services, runtime requirements and interaction models using a set of attributes. These attributes are systemically derived by grouping common features and services from light weight component frameworks and heavy weight component frameworks that are available in the literature. The AbCD approach consists of the AbCD Meta-model, which is an extension of the บML meta-model, and the Component Design Guidelines (CDG) that includes core Component based Software Engineering principles to assist the modelling process for designers. To support the AbCD approach, an implementation has been developed as a set of plug-ins, called the AbCD tool suite, for Eclipse IDE. An evaluation of the AbCD approach is conducted by using the tool suite with two case studies. The first case study focuses on abstraction achieved by the AbCD approach and the second focuses on reusability of the components. The evaluation shows that the artefacts produced using the approach provide an alternative architectural view to the design and help to re-factor the design based on aspects. At the same time the evaluation process identified possible improvements in the AbCD meta-model and the tool suite constructed. This research provides a non-invasive approach for designing component based software using model driven development

    Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Full text link
    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596
    corecore