18 research outputs found

    Book reports

    Get PDF

    Quantum Optimization Problems

    Full text link
    Krentel [J. Comput. System. Sci., 36, pp.490--509] presented a framework for an NP optimization problem that searches an optimal value among exponentially-many outcomes of polynomial-time computations. This paper expands his framework to a quantum optimization problem using polynomial-time quantum computations and introduces the notion of an ``universal'' quantum optimization problem similar to a classical ``complete'' optimization problem. We exhibit a canonical quantum optimization problem that is universal for the class of polynomial-time quantum optimization problems. We show in a certain relativized world that all quantum optimization problems cannot be approximated closely by quantum polynomial-time computations. We also study the complexity of quantum optimization problems in connection to well-known complexity classes.Comment: date change

    Simple characterizations of P(#P) and complete problems

    Get PDF
    In this paper, P(#P) and PF(#P) are characterized in terms of a largely different computation structure, where P(#P) (resp., PF(#P)) is the class of sets (resp., functions) that are polynomial-time Turing reducible to #P functions. Let MidP be the class of functions that give the medians in the outputs of metric Turing machines, where a metric Turing machine is a polynomial-time bounded nondeterministic Turing machine such that each branch writes a binary number on an output tape. Then it is shown that every function in PF(#P) is polynomial-time one-Turing reducible to a function in MidP and MidP ⊆ PF (#P); that is, PF(#P) = PF(MidP[1]). Furthermore, it is shown that for all sets L, L is in P(#P) if and only if there is a function F ∈ MidP, such that for every string x, x ∈ L, iff F(x) is odd. Thus the problem of computing medians in the outputs of metric Turing machines captures the computational complexity of P(#P) and PF(#P). As applications of the results, several natural polynomial-time many-one complete problems for P(#P) are shown, for example, given an undirected graph with integer edge weights, checking that the parity of the middle cost among all the simple circuits is complete for P(#P)

    Reducing the Number of Solutions of NP Functions

    Get PDF
    AbstractWe study whether one can prune solutions from NP functions. Though it is known that, unless surprising complexity class collapses occur, one cannot reduce the number of accepting paths of NP machines, we nonetheless show that it often is possible to reduce the number of solutions of NP functions. For finite cardinality types, we give a sufficient condition for such solution reduction. We also give absolute and conditional necessary conditions for solution reduction, and in particular we show that in many cases solution reduction is impossible unless the polynomial hierarchy collapses

    Descriptive Complexity for Counting Complexity Classes

    Full text link
    Descriptive Complexity has been very successful in characterizing complexity classes of decision problems in terms of the properties definable in some logics. However, descriptive complexity for counting complexity classes, such as FP and #P, has not been systematically studied, and it is not as developed as its decision counterpart. In this paper, we propose a framework based on Weighted Logics to address this issue. Specifically, by focusing on the natural numbers we obtain a logic called Quantitative Second Order Logics (QSO), and show how some of its fragments can be used to capture fundamental counting complexity classes such as FP, #P and FPSPACE, among others. We also use QSO to define a hierarchy inside #P, identifying counting complexity classes with good closure and approximation properties, and which admit natural complete problems. Finally, we add recursion to QSO, and show how this extension naturally captures lower counting complexity classes such as #L

    LWPP and WPP are not uniformly gap-definable

    Get PDF
    AbstractResolving an issue open since Fenner, Fortnow, and Kurtz raised it in [S. Fenner, L. Fortnow, S. Kurtz, Gap-definable counting classes, J. Comput. System Sci. 48 (1) (1994) 116–148], we prove that LWPP is not uniformly gap-definable and that WPP is not uniformly gap-definable. We do so in the context of a broader investigation, via the polynomial degree bound technique, of the lowness, Turing hardness, and inclusion relationships of counting and other central complexity classes

    Power of Counting by Nonuniform Families of Polynomial-Size Finite Automata

    Full text link
    Lately, there have been intensive studies on strengths and limitations of nonuniform families of promise decision problems solvable by various types of polynomial-size finite automata families, where "polynomial-size" refers to the polynomially-bounded state complexity of a finite automata family. In this line of study, we further expand the scope of these studies to families of partial counting and gap functions, defined in terms of nonuniform families of polynomial-size nondeterministic finite automata, and their relevant families of promise decision problems. Counting functions have an ability of counting the number of accepting computation paths produced by nondeterministic finite automata. With no unproven hardness assumption, we show numerous separations and collapses of complexity classes of those partial counting and gap function families and their induced promise decision problem families. We also investigate their relationships to pushdown automata families of polynomial stack-state complexity.Comment: (A4, 10pt, 21 pages) This paper corrects and extends a preliminary report published in the Proceedings of the 24th International Symposium on Fundamentals of Computation Theory (FCT 2023), Trier, Germany, September 18-24, 2023, Lecture Notes in Computer Science, vol. 14292, pp. 421-435, Springer Cham, 202
    corecore