
311

⁄
0022-0000/02 $35.00

© 2002 Elsevier Science (USA)
All rights reserved.

Journal of Computer and System Sciences 64, 311–328 (2002)
doi:10.1006/jcss.2001.1815, available online at http://www.idealibrary.com on

Reducing the Number of Solutions of
NP Functions1

1 Supported in part by Grants DARPA-F30602-98-2-0133, NSF-CCR-9322513, NSF-CCR-9701911,
NSF-INT-9726724, NSF-INT-9815095/DAAD-315-PPP-gü-ab, NSF-DUE-9980943, NIH-R01-
AG18231, and NIH-P30-AG18254. Work done in part while the first author was visiting Friedrich-
Schiller-Universität Jena and Julius-Maximilians-Universität Würzburg, and while the third author was
visiting RIT.

Lane A. Hemaspaandra and Mitsunori Ogihara

Department of Computer Science, University of Rochester, Rochester, New York 14627
E-mail: lane@cs.rochester.edu, ogihara@cs.rochester.edu

and

Gerd Wechsung

Institut für Informatik, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
E-mail: wechsung@informatik.uni-jena.de

Received March 24, 2000; revised October 10, 2001

We study whether one can prune solutions from NP functions. Though it is
known that, unless surprising complexity class collapses occur, one cannot
reduce the number of accepting paths of NP machines, we nonetheless show
that it often is possible to reduce the number of solutions of NP functions.
For finite cardinality types, we give a sufficient condition for such solution
reduction. We also give absolute and conditional necessary conditions for
solution reduction, and in particular we show that in many cases solution
reduction is impossible unless the polynomial hierarchy collapses. © 2002

Elsevier Science (USA)

Key Words: reducing solutions; solution-pruning algorithms; NP functions;
multivalued functions; NPMV; function refinement; cardinality types; the
Narrowing-Gap Condition; semi-feasible computation; selectivity theory;
computational complexity.

1. INTRODUCTION AND DISCUSSION

Let NPN
+V denote the set of all (possibly partial, possibly multivalued) functions

computable by nondeterministic polynomial-time Turing machines. That is, such a
function f will map from strings x to the set {z | some accepting path of M(x) has

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82803259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

z as its output (i.e., as a solution)}. NPN
+V functions, known in the literature as

NPMV (nondeterministic polynomial-time (potentially) multivalued) functions,
have been extensively studied since they were introduced in the 1970s by Book et al.
([1, 2], see also the excellent survey by Selman [25]).

Much of this study has recently focused on the issue of whether even NP func-
tions can prune solutions away from NP functions. As Naik et al. [20] have
elegantly pointed out, the motivation for this is multifold: in the broadest sense this
addresses the central complexity-theoretic notion of measuring how resources (such
as allowed output cardinality) enable computation, more specifically this addresses
the power of nondeterminism, and more specifically still this issue is deeply tied
([15, 26], see also [9, 14]) to NP-search functions and the complexity of function
inversion. Also worth contrasting with this paper’s proof that number of solutions
of NP functions can be reduced in various ways is the fact, due to Ogiwara and
Hemachandra [22], that (unless surprising complexity class collapses occur) one
cannot in general reduce even by one (proper decrement) the number of accepting
paths of NP machines.

To discuss rigorously whether NP functions can prune solutions from NP func-
tions, we need a formal way to capture this. The notion of refinement exactly cap-
tures this, and is used in the literature for exactly this purpose. Given (possibly
partial, possibly multivalued) functions f and fŒ, we say that fŒ is a refinement (see
for example the excellent survey by Selman [26]) of f if for each x ¥ Sg,

1. fŒ(x) has at least one solution iff f(x) has at least one solution, and

2. each solution of fŒ(x) is a solution of f(x).

Given any two function classes C1 and C2, we say that C1 ıc C2 (‘‘C1 functions
always have C2 refinements’’) if for each function f ¥ C1 there is a function fŒ ¥ C2
such that fŒ is a refinement of f.

For any A ıN+, NPAV denotes the class of all NPN
+V functions f satisfying

(-x ¥ Sg) [the number of solutions of f(x) is an element of {0} 2 A].
Surprisingly, for the first 20 years after the classes NPN

+V and NP{1}V (referred
to in the literature respectively as NPMV and NPSV: nondeterministic polynomial-
time {multivalued, single-valued} functions) were defined, there was no evidence
against the dramatic possibility that NPN

+V ıc NP{1}V, i.e., that all multivalued
NP functions have single-valued NP refinements. (This is known to be equivalent to
the claim that there is an NP function that on each satisfiable boolean formula as
input finds exactly one satisfying assignment.) In the 1990s, Hemaspaandra, Naik,
Ogihara, and Selman [13] finally gave concrete evidence against this by proving the
following result.2

2 Regarding both Theorems 1.1 and 1.2, the actual proofs of Hemaspaandra et al. [13] obtain the
ZPPNP conclusion via proving that the hypothesis implies NP ı (NP 5 coNP)/poly, which itself by a
result of Köbler and Watanabe [17] implies that PH=ZPPNP. Let S2 denote the symmetric alternation
class of Canetti [7] and Russell and Sundaram [23]. We mention in passing that new work of Cai et al.
[5], which builds on the work of Cai [4], shows that NP ı (NP 5 coNP)/poly implies PH=S2 NP 5 coNP

and also shows that S2 NP 5 coNP ı ZPPNP. Thus, for both Theorems 1.1 and 1.2, one can in fact reach the
stronger conclusion that PH=S2 NP 5 coNP.

Theorem 1.1 [13]. If NPN
+V ıc NP{1}V then PH=ZPPNP.

312 HEMASPAANDRA, OGIHARA, AND WECHSUNG

Thus, if the polynomial hierarchy does not collapse, the following remarkable
state holds: NP functions can find all satisfying assignments of boolean formulas
but cannot find (exactly) one satisfying assignment to boolean formulas [13].
(Though it would be impossible for such a claim to hold for deterministic com-
putation, as there finding one solution is provably no harder than finding all
solutions, for nondeterministic computation this state is neither impossible nor
paradoxical, though the fact that finding all solutions is simpler than finding one
solution may at first be disconcerting.)

In fact, Hemaspaandra et al. proved something a bit stronger than Theorem 1.1.

Theorem 1.2 [13]. NP{1, 2}V ıc NP{1}V only if PH=ZPPNP.

Building on this, Ogihara [21] and Naik et al. [20] showed that from weaker
hypotheses one could reach weaker conclusions that nonetheless are strong enough
to cast strong doubt on their hypotheses.

Theorem 1.3 [21]. For each a, 0 < a < 1, it holds that if NPN
+V ıc

NP{1, ..., max{1, NnaM}}V (where n represents the length of the input) then PH=NPNP.

Theorem 1.4 [20]. For each k \ 1, if NP{1, ..., k+1}V ıc NP{1, ..., k}V then
PH=NPNP.

Theorems 1.1, 1.2, 1.3, and 1.4 say that, for the cases they cover, one cannot
prune solutions unless the polynomial hierarchy collapses.

However, note that all these theorems cover cases in which the allowed nonzero
solution cardinalities form a (finite or infinite) prefix of {1,2,3, ... }. That is, the
theorems deal just with the following question: Given any NP function having on
each input at most a solutions (a is either . or an element of N+) will it always be
the case that there exists another NP function that is a refinement of the first func-
tion and that on each input has at most aŒ solutions (aŒ, aŒ < a, is an element of N+)?
In fact, prior to the present paper only such ‘‘left-prefix-of-N+’’-cardinality sets had
been studied.

We introduce the notion NPAV and propose as natural the following general
challenge.

Challenge 1.1. Completely characterize, perhaps under some complexity-
theoretic assumption, the sets A ıN+ and B ıN+ such that NPAV ıc NPBV.

This question captures far more fully the issue of what types of cardinality
reduction are generally possible via refinement of NP functions. Further, this also
parallels the way language classes have been defined in complexity theory. There,
notions of ‘‘acceptance types’’ and ‘‘promises about numbers of accepting paths’’
are natural. In fact, a language notion ‘‘NPA’’ can be found in the literature [6],
and unifies many notions of counting-based acceptance (and see more generally the
notion of leaf languages [3, 27]). In our function case, we view the A of NPAV as a
cardinality type since it specifies the allowed nonzero numbers of solutions.

REDUCING SOLUTIONS OF NP FUNCTIONS 313

Challenge 1.1 is very broad and ambitious, as it goes well beyond the cases con-
sidered in Theorems 1.1, 1.2, 1.3, and 1.4. The present paper focuses on the case of
finite cardinality types—NPAV for sets A ıN+ satisfying ||A|| <.. Section 2 pre-
sents a condition, for sets A, B ıN+, ||A|| <., ||B|| <., sufficient to ensure
NPAV ıc NPBV. This condition is not a complexity-theoretic assumption but rather
is a simple statement about the sets A and B. Thus, we will see that in many cases
solution reduction is possible for NP functions, in contrast to Theorems 1.1, 1.2, 1.3,
and 1.4 and in contrast to the known result [22] that unless shocking complexity class
collapses occur accepting-path-cardinality reduction is not in general possible for NP
machines.

We conjecture that for finite cardinality types our sufficient condition is neces-
sary unless the polynomial hierarchy collapses. Though we cannot prove that, Sec-
tion 3 establishes broad necessary conditions for solution reduction under the
assumption that the polynomial hierarchy does not collapse. These conditions
subsume the previously known cases obtained in Hemaspaandra et al. and Naik et
al. We also prove an absolute necessary condition, but we show that proving any
sufficiently broad absolute necessary condition would immediately yield a proof
that NP] coNP.

Section 4 revisits Theorem 1.4, which says that NP{1, ..., k+1}V ıc NP{1, ..., k}V
implies PH=NPNP. Of course, most complexity researchers, deep down, believe
that NP{1, ..., k+1}V łc NP{1, ..., k}V. If this belief is a correct guess about the state of
the world, then Theorem 1.4 tells us nothing, as it is of the form ‘‘false 2 · · · .’’
Intuitively, one would hope that Theorem 1.4 is a reflection of some structural
simplicity property of sets. Section 4 proves that this is indeed the case, via
showing, along with an even broader result, that all NP sets that are
(k+1)-selective via NP{1, ..., k}V functions in fact belong to the second level of
Schöning’s low hierarchy [24]. Section 5 provides a more unified strengthening.

2. A SUFFICIENT CONDITION

We now state our sufficient condition. Intuitively, one can think of this as a
‘‘narrowing-gap’’ condition as it says that the gaps3 between the cardinalities in A

3 ‘‘Gap’’ is used here in its common-language sense of differences between integers (that here happen
to represent cardinalities of outputs) rather than in its term-of-art complexity-theoretic sense of differ-
ences between integers representing cardinalities of accepting paths. Also, the ‘‘0 < b1 < · · · < bm’’ is
explicitly stated in Theorem 2.1 only for clarity; even if left out it would have to hold were the condition
to be satisfied.

and certain of the cardinalities in B have to form a (perhaps nonstrictly) decreasing
sequence.

Theorem 2.1. For each pair of finite sets A ıN+ and B ıN+, A={a1, ..., am}
with a1 < a2 < · · · < am, we have NPAV ıc NPBV if

||A||=0 or

(,b1, ..., bm : 0 < b1 < · · · < bm)[{b1, ..., bm} ı B and

a1−b1 \ · · · \ am−bm \ 0].

314 HEMASPAANDRA, OGIHARA, AND WECHSUNG

Proof. All the functions in NP”V are undefined everywhere so they belong to
NPBV for all B ıN+. Let m \ 1 and let A={a1, ..., am} and B ` {b1, ..., bm} be as
in the hypothesis of the theorem. Let f be a function in NPAV and let M be a
polynomial-time nondeterministic Turing machine M witnessing that f ¥ NPAV.
Throughout this paper we follow the standard convention that only accepting
computation paths are considered to have outputs; rejecting paths are never said to
have outputs (this makes it possible for machines to have no outputs on some
inputs). Let N be a nondeterministic Turing machine that, given x ¥ Sg as input,
behaves as follows:

Step 1. N nondeterministically chooses an integer k, 1 [k [m.

Step 2. N nondeterministically simulates M on x ak times. If on at least one
simulationM fails to produce an output, N rejects x.

Step 3. For each i, 1 [i [ak, let yi be the output of M on x obtained in the
ith simulation. If yj=yjŒ for some 1 [j < jŒ [ak, N rejects x.

Step 4. N nondeterministically chooses an integer j, 1 [j [bk, and outputs
the jth smallest element of {y1, ..., yak}.

Since A is finite and fixed, the machine N runs in nondeterministic polynomial time.
Let x ¥ Sg be arbitrary. Clearly, if f(x) is undefined (i.e., has no outputs) then N
on x does not have an output. Suppose f(x) has precisely at distinct values for
some t, 1 [t [m. Let z1, ..., zat be the outputs of f(x) enumerated in increasing
order. Then a computation path of N on input x arrives at Step 4 if and only if the
number k chosen by N in Step 1 is at most t and N in Step 2 obtained ak distinct
output values of N on x. Furthermore, in Step 4, the largest ak−bk of the obtained
outputs of f(x) will be trashed. So,

• if k > t, then N on x has no outputs,

• if k=t, then N on x outputs precisely z1, ..., zbt , and

• if k < t, then N on x outputs no string other than zi’s and never outputs
zat −(ak −bk)+1, ..., zat .

Since a1−b1 \ · · · \ at−bt \ 0, the last condition implies that

• If k < t, then N on x outputs no string other than zi’s and never outputs
zbt+1, ..., zat .

Thus, the outputs of N on x are precisely z1, ..., zbt . This implies that f ¥ NPBV.
Hence, as f was an arbitrary NPAV function, NPAV ıc NPBV. L

3. NECESSARY CONDITIONS

We conjecture that for finite cardinality types the narrowing-gap sufficient con-
dition from Theorem 2.1 is in fact necessary unless the polynomial hierarchy
collapses.

REDUCING SOLUTIONS OF NP FUNCTIONS 315

Narrowing-Gap Conjecture. For each pair of finite sets A ıN+ and B ıN+ that
do not satisfy the condition of Theorem 2.1, we have:

NPAV ıc NPBV 2 PH=NPNP.

Why did we not make an even stronger version of the conjecture that asserts that
for finite cardinality types the condition of Theorem 2.1 is (unconditionally) neces-
sary? After all, certain finite cardinality types violating the condition of
Theorem 2.1 trivially do not allow solution reduction, as the following result shows.

Proposition 3.1. Let A ıN+, B ıN+, A]”, and B]”. If min{i | i ¥ A} <
min{i | i ¥ B} then NPAV łc NPBV.

Proof. Let A and B be as in the hypothesis. Let m=min{i | i ¥ A}. Let f be the
function that maps from each x ¥ Sg to the numbers {1, ..., m}. Clearly, f ¥ NPAV.
Since f has exactly m outputs on each input, for any function g to be a refinement
of f, g(x) has to have output cardinality between 1 and m for every x ¥ Sg.
However, this is not possible for any function in NPBV since min{i | i ¥ B} > m. L

Nonetheless, unconditionally showing that the condition of Theorem 2.1 is nec-
essary for finite accepting types seems out of reach. The reason is that, due to the
following result, showing the condition to be necessary would in fact prove that
NP] coNP.

Theorem 3.1. If NP=coNP then for any set A ıN+ it holds that NPAV
ıc NP{1}V.

In contrast, the Narrowing-Gap Conjecture does not seem to imply NP] coNP,
or any other unexpected fact, in any obvious way. We suggest that the Narrowing-
Gap Conjecture is a plausible long-term goal.

The following result shows that, if PH] NPNP, then a wide range of cardinality
types A and B do not have solution reduction.

Theorem 3.2. Let A, B ıN+ be nonempty. Suppose there exist four integers
c > 0, d > 0, e \ 0, and d \ 0 satisfying the following conditions:

• d [c [2d and d < 2d−c,

• c, 2d+e ¥ A,

• c−d [min{i | i ¥ B} [c, and

• 2d−(2d+1) \ max{i ¥ B | i [2d+e}.

Then NPAV ıc NPBV implies PH=NPNP.

The statement of Theorem 3.2 is not simple. So, we give an informal explanation
of what the theorem is expressing.

Let A, B ıN+ be finite, let f be any function in NPAV, and let g ¥ NPBV be a
refinement of f. Let x be an input to f and g on which f has at least one output.
Suppose the output cardinality of f(x), say a, is not a member of B (of course, by
definition, a ¥ A). Since g is a refinement of f, g(x) has to have some output values,

316 HEMASPAANDRA, OGIHARA, AND WECHSUNG

which must be selected from those of f(x). Then a ¨ B indicates that g has to
exclude some of the output values of f(x) from its output list. How many does g(x)
have to exclude? Let m=max{i ¥ B | i [a}. Then the number of output values g(x)
has to exclude is at least a−m. On the other hand, suppose the output cardinality of
f(x) is equal to aŒ < a and let n=min(B). Then the maximum number of output
values that g(x) can legally exclude, if necessary at all, is at most aŒ− n. In
Theorem 2.1 we observed that such reduction in the number of output values is
essentially possible if aŒ− n is at least a−m (and this holds for all the other combi-
nations of a and aŒ in A). Now we ask: What if aŒ− n < a−m? Theorem 3.2 essen-
tially shows that, with some additional requirements, if 2(aŒ− n) < a−m, then NPAV
being refined to NPBV collapses the polynomial hierarchy.

We will prove this theorem in Section 5.
Theorem 3.2 is a rather complex necessary4 condition, as it is loaded with degrees

4 Recall that by this somewhat unusual use of ‘‘necessary,’’ and the later uses in the same way, we
mean exactly what was discussed at the start of this section; i.e., we are dealing with theorems that move
toward the issue of, for finite cardinality types, whether the narrowing-gap sufficient condition from
Theorem 2.1 is in fact necessary unless the polynomial hierarchy collapses.

of freedom to let it be broad. Nonetheless, there are some cases it misses, for
example due to the fact that the d [c [2d clause can limit us when dealing with
certain cardinality types with widely varying values. For example, regarding cardi-
nality-2 cardinality types, Theorem 3.2 yields as a corollary result 3.1 below.
However, we can also prove Theorem 3.3, which is another necessary-condition
theorem and which seemingly does not follow (in any obvious way) from
Theorem 3.2. We will prove Theorem 3.3 in Section 5.

Corollary 3.1. For any integers k > 0, kŒ > 0, kŒ \ k, we have the following: If
NP{k−1, kŒ}V ıc NP{k−1}V then PH=NPNP.

Theorem 3.3. Let k \ 2 and d, 1 [d [k−1, be integers. Let A, B ıN+ be such
that (k−1k−d) ¥ A, (

k
k−d) ¥ A, and max{i | i ¥ B and i [(kk−d)} [Kkd L−1. Then NPAV ıc

NPBV implies PH=NPNP.

In fact, Theorem 3.3, a necessary-condition theorem quite different from
Theorem 3.2, has some very useful corollaries. For example, the necessary condition
of Naik et al. (Theorem 1.4) follows immediately from Theorem 3.3 by plugging
d=1 into the above; in fact, doing so gives the statement

(aa) For each k \ 1, if NP{1, k+1}V ıc NP{1, ..., k}V then PH=NPNP,

which is even stronger than the Naik et al. result. However, we note that if one
closely examines the proof of Naik et al. one can in fact see that their proof
establishes (aa).

Theorem 3.3 yields other interesting necessary conditions. As an example, from
the d=2 case we can certainly conclude the following result.

Corollary 3.2. For each k > 2, if NP{k−1, (k2)}V ıc NP{1, ..., Kk/2L−1}V then PH
=NPNP.

REDUCING SOLUTIONS OF NP FUNCTIONS 317

Here we give another example of using Theorem 3.2 to prove necessary condi-
tions. Setting the d and c of Theorem 3.2 to k, the d to d, and the e to 0, we obtain
the following.

Corollary 3.3. Let k and d be integers such that k \ 1 and 0 [d [k−1. Let
A, B ıN+ be nonempty sets such that {k, 2k} ı A, min{i ¥ B | i [2k}=k−d, and
max{i ¥ B | i [2k} [2k−2d−1. Then NPAV ıc NPBV implies PH=NPNP.

4. LOWNESS RESULTS

We now prove another strengthening of the result of Naik et al. [20] stated here
as Theorem 1.4. Namely, we show a lowness result—a general result about the
simpleness of sets having certain properties—from which Naik et al.’s Theorem 1.4
is a consequence. Informally, lowness captures the level of the polynomial
hierarchy, if any, at which a given NP set becomes worthless as an oracle—the level
at which it gives that level no more additional information than would the empty
set. Of interest to us will be the class of sets for which this level is two.

Definition 4.1 [20]. For any integer k > 0 and any function class FC we say
that a set A is FC-k-selective if there is a function f ¥FC such that for every k
distinct strings b1, ..., bk,

1. every output of f(b1, ..., bk) is a cardinality k−1 subset of {b1, ..., bk} and

2. if ||{b1, ..., bk} 5 A|| \ k−1, then f(b1, ..., bk) has at least one output and
each set output by f(b1, ..., bk) is a subset of A.

Definition 4.2 [24]. Low2={A ¥ NP |NPNP
A
=NPNP}.

Theorem 4.1. For each k ¥ {2, 3, ...}, it holds that every NP{1, ..., k−1}V-k-selective
NP set belongs to Low2.

We will postpone proving this theorem until Section 5.
Theorem 1.4 certainly follows from Theorem 4.1. In fact, recall the stronger form

of Theorem 1.4 that we noted in Section 3 (marked (aa)). Since SAT is NP{1, ..., k−1}V-
k-selective and even NP{1, k−1}V-k-selective [20], even this stronger form of
Theorem 1.4 follows immediately from Theorem 4.1. In fact, note that Theorem 4.1
establishes, for example, the simpleness of NP’s NP{1, ..., k−1}V-k-selective sets.

5. A UNIFIED STRENGTHENING

Note that in the previous sections we have stated extensions of the work of Naik
et al. (Theorem 1.4) in two incomparable ways, namely providing as Theorem 3.3 a
broader necessary condition and as Theorem 4.1 a general lowness theorem that
implied the Naik et al. result. It is very natural to ask whether our two results can
be unified, via proving a lowness result that itself implies not just Theorem 1.4 but
all the necessary conditions we identify in this paper. In fact, the answer is yes. We
have the following result, which provides exactly such a unification.

Definition 5.1. Let k \ 2 be an integer. A parameter tuple for input size k is a
k+3 tuple L=Oa0, ..., ak−1, a, b, cP of nonnegative integers such that

318 HEMASPAANDRA, OGIHARA, AND WECHSUNG

• at least one of a1, ..., ak−1 is positive,

• 0 [a [; 1 [i [k−1 (
k−1
i)ai,

• 0 [b [; 1 [i [k−1 ((
k
i)−(

k−1
i))ai, and

• 0 [c [a0.

Definition 5.2. Let k \ 2 be an integer. Let L be a parameter tuple for
input size k. Let FC be a class of multivalued functions. A language A is
FC-(k, L)-selective if there is some f ¥FC such that, for every set X of k distinct
strings x1, ..., xk, the following properties hold:

1. Each output value of f(X) belongs to the union of the following three
classes of strings:

Class A {Oi, j, WP | 1 [i [k−1 and 1 [j [ai and W is a cardinality i
subset of X 5 A};

Class B {Oi, j, WP | 1 [i [k−1 and 1 [j [ai and W is a cardinality i
subset of X containing at least one member of Ā}; and

Class C {O0, jP | 0 [j [a0};

2. If ||X 5 A||=k−1, then f(X) should output no more than a Class A
strings, no more than b Class B strings, and no more than c Class C strings.

Definition 5.3. Let k \ 2 and L=Oa0, ..., ak−1, a, b, cP be a parameter tuple
for input size k. Let B ıN+ be nonempty and finite. Define the predicate

Q(k, L, B)=[a+b+c \ min{i | i ¥ B} and kD < C
1 [i [k−1

(k−i) ti],

where D and t1, ..., tk−1 are defined as follows:

• sk=0, s
−

k=0, and for each d, 1 [d [k−1, sd=; d [i [k−1 (
k−1
i)ai and

s −d=; d [i [k−1 (
k
i)ai.

• D=(s1+b+c)−min{i | i ¥ B}.

• DŒ=max{0, s −1−max{i ¥ B | i [s −1+a0}}.

• For each d, 1 [d [k−1, td=max{0, min{DŒ−s −d+1, s
−

d−s
−

d+1}}.

Note that in the above definition the max{i ¥ B | i [s −1+a0}, which is used to
define the second conjunct of Q, is well-defined conditionally upon the first
conjunct holding, as in that case we have min{i | i ¥ B} [b+c [(; 1 [i [k−1 ((

k
i)−

(k−1i))ai)+a0 [s
−

1+a0.

Theorem 5.1. Let k \ 2 be an integer, let L be a parameter tuple for input size k,
and let B be a nonempty finite set of positive integers such that Q(k, L, B) holds. Then
every NPBV-(k, L)-selective set in NP belongs to Low2.

Here we give a brief, informal overview of the proof of Theorem 5.1. Let k, L,
and B be as in the hypothesis of the theorem. Let L be an NP set that is
NPBV-(k, L)-selective. Let f be an NPBV-(k, L)-selector for L. Let X be a
(k+1)-tuple consisting of k+1 distinct strings w1, ..., wk+1. Suppose that all these

REDUCING SOLUTIONS OF NP FUNCTIONS 319

w’s are members of L. Since the property Q(k, L, B) holds there are some Class A
or Class B strings that f(X) does not output. Let U be the set of all such strings.
For each i, 1 [i [k+1, and each u=OW, jP that f(X) does not output, we say
that u misses wi if wi ¨W. For each i, 1 [i [k+1, we count the number of strings
in U that miss wi. Then we show that by the Pigeonhole Principle there is some i,
1 [i [k+1, such that more than D strings in U miss wi.

On the other hand, suppose that exactly k of the k+1 strings in X are members
of L. Let us say that w1 is not a member. The property Q(k, L, B) guarantees that
for no i, 2 [i [k+1, is it the case that the number of strings in U that miss wi is
greater than D.

By these two properties we establish that if w1, ... , wk+1 are k+1 distinct strings,
w2, ... , wk+1 are members of L, and the number of strings in U that miss w1 is at
most D, then w1 belongs to L (see Claims 5.1, 5.2, and 5.4). We use a divide-and-
conquer argument (inspired by the work of Ko [16]) to show that for each n there
is a polynomial collection of strings in L [n with which membership of all strings
having length at most n can be tested by a coNP language (see Claim 5.3). Now the
Sp2 -lowness of L can be shown using this observation (Claim 5.5).

Proof of Theorem 5.1. Let k, L=Oa0, ..., ak−1, a, b, cP, and B be as in the
hypothesis of the theorem. We henceforth view them as fixed so, for example,
we will not explicitly parametrize Tloser below with k. Let D, DŒ, s1, ..., sk, sŒ1, ..., sŒk,
and t1, ..., tk−1 be as given in Definition 5.3. Let A ¥ NP be an arbitrary
NPBV-(k, L)-selective NP set and let M be a polynomial-time nondeterministic
Turing machine accepting A. Let f ¥ NPBV be a function witnessing the
NPBV-(k, L)-selectivity of A. Let Y be a set of k−1 distinct strings and let z be a
string not in Y. Let u=Oi, j, WP be an output value of f(Y 2 {z}), where
1 [i [k−1, 1 [j [ai,W ı Y 2 {z}, and ||W||=i. We say that u hits z if z ¥W and
misses z otherwise. For every Class C output u of f(Y 2 {z}), we say that u neither
hits nor misses z. We say that z loses to Y if out of all possible output strings of
f(Y 2 {z}) that miss z, there are more than D such strings that are not outputs of
f(Y 2 {z}). Define Tloser={Oz, YP | z ¥ Sg, ||Y||=k−1, and either z ¥ Y or (z ¨ Y
and z loses to Y)}.

Claim 5.1. Let Y be a cardinality k−1 subset of A and z be a member of Ā.
Then z does not lose to Y.

Proof of Claim 5.1. Let Y and z be as in the hypothesis of the claim. Since z ¥ Ā,
z ¨ Y. Let X=Y 2 {z}. By Property 2 of Definition 5.2, there are at most s1 Class
A output strings of f(X), at most b Class B output strings of f(X), and at most c
Class C output strings of f(X). Since D=s1+b+c−min{i | i ¥ B}, f(X) has at
least s1+b+c−D output values. So, it has at least s1−D Class A output strings.
Since only Class A output strings of f(X) miss z, the number of potential output
strings of f(X) missing z that are not outputs of f(X) is at most D. Then, by defi-
nition, z does not lose to Y. L

Claim 5.2. Let X be a set of k distinct strings in A. Then there exists an element
z ¥X such that z loses to X−{z}.

320 HEMASPAANDRA, OGIHARA, AND WECHSUNG

Proof of Claim 5.2. Let X={x1, ..., xk} be a set of k distinct strings in A. Let R
be the set of all possible Class A strings that f(X) does not output. Since X ı A,
there are no Class B outputs of f(X), so there are s −1+a0 potential output strings of
f(X), out of which a0 are Class C strings. Since DŒ=max{0, s −1−max{i ¥ B | i [
s −1+a0}}, there are at least DŒ Class A strings that f(X) does not output, and thus,
||R|| \ DŒ. For each i, 1 [i [k, let hi be the number of strings in R that miss xi.
Then the statement of the claim we are proving is equivalent to:

max{h1, ..., hk} > D.

By the Pigeonhole Principle, it suffices to show that:

C
1 [i [k

hi > kD.

In other words, the total number of ‘‘misses’’ (with multiple counting) in the set R
is more than kD.

Let u=Oi, j, WP be an arbitrary Class A output string of f(X). Since ||W||=i,
there are precisely k−i elements that u misses. Then the total number of misses
(with multiple counting) in R is minimized by selecting R’s elements Oi, j, WP

greedily from the pool of potential Class A output strings without replacement; i.e.,
we will always select an output string with the largest first component amongst all
the remaining output strings in the pool. For every i, 1 [i [k−1, there are exactly
(kk−i)ak−i output strings in R with exactly i misses. So, for every d, 1 [d [k−1, s −d
is the number of output strings in R with at most k−d misses. Noting that we need
to put DŒ elements in R, we observe that, with the above greedy strategy, for every
d, 1 [d [k−1, the total number of output strings that are selected whose number
of misses is precisely k−d is determined as follows:

• If DŒ \ s −d+1, then the number of output strings whose number of misses is
less than k−d is at least DŒ, so there is no need to put elements in R whose number
of misses is \ k−d. Thus, the number in question is 0.

• If DŒ < s −d+1, then the number of output strings whose number of misses is
less than k−d is smaller than DŒ, so at least one output string whose number of
misses is precisely k−d has to be put into R. The exact number of such output
strings is s −d−s

−

d+1 if DŒ \ s −d and DŒ−s −d+1 otherwise.

Combining the above two we observe that, for every d, 1 [d [k−1, the total
number of output strings that are put in R whose number of misses is precisely
k−d is max{0, min{s −d−s

−

d+1, DŒ−s
−

d+1}}, and thus is equal to td. Hence, the total
number of misses (with multiple counting) is ; 1 [i [k−1 (k−i) ti, and by our sup-
position this amount is greater than kD. This proves the claim. L

Claim 5.3. Tloser ¥ coNP.

Proof of Claim 5.3. Define T −loser to be the set of all tuples Oz, Y, u1, ..., uD+1P
such that

REDUCING SOLUTIONS OF NP FUNCTIONS 321

• z ¥ Sg,

• ||Y||=k−1,

• u1, ..., uD+1 are distinct strings, each of the form Oi, j, WP, for some
1 [i [k−1, 1 [j [ai, ||W||=i, andW ı Y, and

• f(Y 2 {z}) outputs none of u1, ..., uD+1.

Then T −loser is in coNP. Since there are only a constant number of possible outputs
of f(Y 2 {z}), Tloser is polynomial-time disjunctive reducible to T −loser—namely, via a
machine that rejects if ||Y||] k−1, else accepts if z ¥ Y, else it brute-force disjunc-
tively reduces to T −loser. So, Tloser ¥ coNP. L

Claim 5.4. {z | (,Y ı A)[||Y||=k−1 and z loses to Y]} ı A.

Proof of Claim 5.4. Let Y be an arbitrary cardinality k−1 subset of A and z be
an arbitrary string. If z ¥ Y, clearly z ¥ A. If z ¨ Y and z loses to Y, then by
Claim 5.1, z ¥ A. L

Recall that we throughout this paper use S [n as a shorthand for (Sg) [n. Let n0
be the smallest n such that A 5 S [n has at least k−1 elements. For each n \ n0, we
say that a stringW is a valid advice string for S [n ifW is of the form

OOZ1, ..., ZmP, Op1, 1, ... , p1, k−1, ... , pm, 1, ... , pm, k−1 PP,

where (a) m \ 1, (b) for every i, 1 [i [m, ||Zi ||=k−1, and (c) for every i,
1 [i [m, and every j, 1 [j [k−1, pij is an accepting computation path of M on
the jth element of Zi. Whether W is a valid advice string for S [n can be tested in
time polynomial in |W|+n. Furthermore, we say that W is a good advice string for
S [n if W is a valid advice string and for every x ¥ A of length at most n, there is
some i, 1 [i [m, such that Ox, ZiP ¥ Tloser, where OZ1, ..., Zm P is the Z-component
ofW.

Claim 5.5.

1. There exists a polynomial q such that, for every n \ n0, there is a good
advice string for S [n of length at most q(n).

2. The set Tgood={O0n, WP | W is a good advice string for S [n} belongs to
coNP.

Proof of Claim 5.5. We first prove part 1. Let Y be any subset of A of cardi-
nality at least k. By Claim 5.2, for each cardinality k subset X of Y, there is at least
one y ¥X such that y loses to X−{y}. There are (||Y||k) cardinality k subsets of Y
and there are (||Y||k−1) cardinality k−1 subsets of Y. By standard counting (namely, a
version of the Pigeonhole Principle) there is some Z ı Y of cardinality k−1 such
that at least ||Y||−k+1k \ ||Y||

k −1 members of Y lose to Z.
Let n \ n0. Let Y0=A 5 S [n. Define the sequences Z1, ..., Zm and Y1, ..., Ym as

follows with the variable i being 0 at the beginning:

Step 1. If ||Yi ||=0, then set m to i and quit the loop.

Step 2. Otherwise, if 1 [||Yi || [k−2, then set m to i+1, set Zm to any subset
of Y0 of cardinality k−1 that includesWi, set Ym to”, and quit the loop.

322 HEMASPAANDRA, OGIHARA, AND WECHSUNG

Step 3. Otherwise, set Zi+1 to a Z ı Yi of cardinality k−1 that maximizes
||{z ¥ Yi−Z | z loses to Z}|| and set Yi+1 to {z ¥ Yi−Zi+1 | z does not lose to Zi+1}.
Increment i by 1 and go back to Step 1.

By definition, for every x ¥ Y0, if x ¨ Z1 2 · · · 2 Zm, then there is some i,
1 [i [m, such that x loses to Zi. Thus, Y0 ı {x | |x| [n and, for some i, 1 [i [m,
Ox, ZiP ¥ Tloser}. On the other hand if x ¨ Y0, then x ¨ Z1 2 · · · 2 Zm and, by
Claim 5.4, x cannot lose to any of Z1, ..., Zm. So, Y0 is actually {x | |x| [n and, for
some i, 1 [i [m, Ox, ZiP ¥ Tloser}.

For every i, 1[i[m, ||Yi ||[||Yi−1 ||−((||Yi−1 ||/k)−1)−||Zi ||=||Yi−1 ||−((||Yi−1 ||/
k)−1)−(k−1) [k−1

k ||Yi−1 ||, so ||Yi ||/||Yi−1 || <
k−1
k . Since ||Y0 || [2n+1, m [cn for

some constant c > 0. Since A ¥ NP via M, for each i, 1 [i [m, and each j,
1 [j [k−1, there is an accepting computation path ofM on zij, where zij is the jth
element of Zi. So, for each i, 1 [i [m, and j, 1 [j [k−1, pick an accepting
computation path pij. By appending Op1, 1, ... , p1, k−1, ... , pm, 1, ... , pm, k−1 P to the
Z-part we get a valid advice string. Since M is polynomial time-bounded—let pA
denote that polynomial—and m [cn, the total length of the advice string will be
bounded by cŒnpA(n) for some constant cŒ > 0. So, let q(n)=cŒnpA(n). So, part 1 of
our claim holds.

Now we prove part 2. For each n \ n0 and each valid advice stringW for S [n, let
R(n, W) be the set of all strings x ¥ S [n such that Ox, ZiP ¥ Tloser for some i,
1 [i [m, where OZ1, ..., ZmP is the Z-part of W. If W is not a valid advice string
for S [n, R(n, W)=”. By Claim 5.3, then R(n, W) ı A. So, W is a good advice
string for S [n if and only if R(n, W) 2 Ā ` S [n. Since Tloser ¥ coNP and Ā ¥ coNP,
the latter condition can be tested in coNP. Thus, part 2 holds. This proves the
claim. L

Now suppose L ¥ NPNP
A

via a pair of nondeterministic polynomial-time Turing
machines N1 and N2 such that L=L(NL(N

A
2)

1). Let p1 and p2 be the polynomials
bounding the running times of N1 and N2, respectively. Let D be the set of all
strings O0h, W, yP satisfying the following conditions:

1. h=p2(p1(n)) for some n.

2. W is a valid advice string for S [h.

3. |y| [p1(n).

4. There is an accepting computation path r of N2 on input y such that for
each query v made and the answer b obtained for v along r, it holds that:

(i) if b=1 (the query is a member of the oracle), then v ¥ A; and

(ii) if b=0 (the query is not a member of the oracle), then v ¨ R(h, W).

Since A ¥ NP and R is a coNP-predicate, D is in NP. Furthermore, for every n such
that h=p2(p1(n)) \ n0, every good advice string W for S [h, and every y ¥ S [p1(n),
the condition y ¥ L(N2) is equivalent to O0h, W, yP ¥ D. This is because S [h is par-
titioned between A and R(0h, W) ifW is a good advice string.

Now consider the following machine S that, on input x ¥ Sg of length at least n0,
behaves as follows:

REDUCING SOLUTIONS OF NP FUNCTIONS 323

Step 1. Let h=p2(p1(|x|)). S guesses a string W of length at most q(h) and
asks its oracle whether O0h, WP ¨ Tgood. If the answer is affirmative, S rejects imme-
diately.

Step 2. Let Z1, ..., Zm be the Z-part of W. S simulates N1 on input x, except
S replaces each query y of N1 by the query O0h, W, yP ¥ D.

Note that S is simulating N1 and so S accepts exactly if N1 accepts.
We observed in the above that if O0h, WP ¥ Tgood then for every string y of length

at most p1(|x|), y ¥ L(N1) if and only if O0h, W, yP ¥ D. Thus, S correctly accepts L
nondeterministically with two oracles, Tgood and D. Since Tgood ¥ coNP and D ¥ NP,
we can replace the two oracles by a single oracle E={0w | w ¨ Tgood} 2 {1w | w ¥ D},
which is in NP. It is clear that S runs in nondeterministic polynomial time. Thus,
L ¥ NPNP. Hence, A is in Low2. This concludes the proof of Theorem 5.1. L

Proposition 5.1. Let k \ 2 be an integer and L=Oa0, ..., ak−1, a, b, cP be a
parameter tuple for input size k. Let H …N+ be any finite set such that
{a+b+c ,; 0 [i [k−1 (

k
i)ai} ıH. Then every language A ¥ NP is NPHV-(k, L)-

selective.

Proof. Let k, L=Oa0, ..., ak−1, a, b, cP, s, and H be as in the hypothesis. Set
s=; 0 [i [k−1 (

k
i)ai. Let A be any language in NP. Define f to be the function

defined by the procedure that works as follows on an input X ¥ Sg:

1. If either X is not a k-tuple or X is a k-tuple but some elements are equal to
each other, then reject X. Nondeterministically select and execute one of
Steps 2 and 3 below.

2. (i) Nondeterministically select a size k−1 subset Y of X.

(ii) Nondeterministically verify, for all elements y of Y, that y ¥ A. If
unsuccessful, reject X.

(iii) Nondeterministically select and execute one of the following three
tasks:

(I) Nondeterministically select an integer j between 1 and a, and
output O0, jP.

(II) Nondeterministically select an integer j between 1 and b, and
output the jth smallest string (in the lexicographic order) in {Oi, j, WP | 1 [i [k−1
and 1 [j [ai and ||W||=i andW ı Y}.

(III) Nondeterministically select an integer j between 1 and c, and output
the jth smallest string (in the lexicographic order) in {Oi, j, WP | 1 [i [k−1 and
1 [j [ai and ||W||=i andW ł Y andW ıX}.

3. (i) Nondeterministically verify, for all elements y of X, that y ¥ A. If
unsuccessful, reject X.

(ii) Nondeterministically select and execute one of the following two tasks:

(I) Nondeterministically select an integer j between 1 and a0, and
output O0, jP.

(II) Nondeterministically select an element u from {Oi, j, WP | 1 [
i [k−1 and 1 [j [ai and ||W||=i andW ıX} and output u.

324 HEMASPAANDRA, OGIHARA, AND WECHSUNG

Note that Step 3 will produce no outputs in the case when the input X has at most
k−1 strings in A, and that the strings output in Step 2 will also be output in Step 3
when X is a k-tuple of distinct strings in A. There are exactly a+b+c strings that
can be output in Step 2 and s many such in Step 3. Thus A is NPHV-(k, L)-
selective. L

From Theorem 5.1 and Proposition 5.1, we have the following corollary.

Corollary 5.1. Let k \ 2 be an integer and L=Oa0, ..., ak−1, a, b, cP a param-
eter tuple for input size k. Let H …N+ be any finite set such that {a+b+c,
; 0 [i [k−1 (

k
i) ai} ıH. Let B be a finite set of positive integers such that Q(k, L, B)

holds and such that min{i | i ¥ B} [min{i | i ¥H}. Then NPHV ıc NPBV implies
PH=Sp2 .

Now we turn to proving Theorems 3.2, 3.3, and 4.1 using the unified lowness
theorem (Theorem 5.1).

Proof of Theorem 3.2. Let A, B, c, d, e, and d be as in the hypothesis of the
theorem. Let k=2 and define a parameter tuple for size 2, L=Oa0, a1, a, b, cP by:

• a0=e, a1=d,

• a=d, b=c−d, and c=0.

Let L be an arbitrary language in NP. By Proposition 5.1, L is NPAV-(2, L)-
selective. Now suppose NPAV ıc NPBV. Then s1=a and c=a+b+c. Since
c−d [min{i | i ¥ B}, D [d. Also, 2d+e=s −1+a0. Thus, 2d−(2d+1) \ max{i ¥
B | i [2d+e} implies DŒ \ 2d+1. Thus, t1=DŒ. So, we have ; 1 [i [k ti (k−i)=
t1 · 1=t1=DŒ > 2d \ 2D, and so, Q(2, L, B) holds. Hence, L is Low2. Since L is an
arbitrary NP language, this implies PH=NPNP.

Proof of Theorem 3.3. Let k, d, A, and B be as in the hypothesis of the theorem.
By Proposition 3.1, we can assume that min{i | i ¥ B} [(k−1k−d); otherwise, the state-
ment of the theorem is falseS PH=NPNP. Define a parameter tuple for size k,
L=Oa0, ..., ak−1, a, b, cP by:

• a0=·· ·=ak−d−1=ak−d+1=·· ·=ak−1=0, ak−d=1,

• a=(k−1k−d), and b=c=0.

Let L be an arbitrary language in NP. By Proposition 5.1, L is NPAV-(k, L)-
selective. Now NPAV ıc NPBV implies D [(k−1k−d)−1 and DŒ \ (kk−d)− K

k
d L+1. Since

DŒ < (kk−d) and ai] 0 holds only for i=k−d, we have that tk−d=DŒ and that, for
every i, 0 [i [k−1, such that i] k−d, ti=0. So, ; 0 [i [k−i ti (k−i)=kDŒ \
d((kk−d)− K

k
d L+1) > d((

k
k−d)−

k
d)=k((

k−1
k−d)−1)=kD. This implies that Q(k, L, B)

holds, so by Theorem 5.1 L is in Low2. Since L is an arbitrary NP set, this implies
PH=NPNP.

Proof of Theorem 4.1. Let k \ 2. Define a parameter tuple for size k,
L=Oa0, ..., ak−1, a, b, cP by:

• a0=·· ·=ak−2=0, ak−1=1,

• a=(k−1k−1)=1, and b=c=0.

REDUCING SOLUTIONS OF NP FUNCTIONS 325

Let B={1, ..., k−1}. The family of all NPBV-k-selective sets is precisely that of all
NPBV-(k, L)-selective sets. Since a+b+c=1, D is necessarily 0. On the other hand,
the hypothesis of the theorem implies DŒ > 0. So, Q holds. The rest of the proof is
the same.

Here we give another example of the use of Theorem 5.1.

Corollary 5.2. Let k \ 4. LetA, B ıN+be nonempty sets such that {3k, 2k2−k}
ı A, min{i ¥ B | i [2k2−k}=2k and max{i ¥ B | i [2k2−k} [k2−k−1. Then
NPAV ıc NPBV implies PH=NPNP.

Proof. Let k \ 4. Define a0=2, a1=·· ·=ak−3=0, ak−2=2, ak−1=k, a=
3k−2, b=0, and c=2. Then s1=k(

k−1
k−1)+2(

k−1
k−2)=3k−2 and s −1=k(

k
k−1)+2(

k
k−2)

=2k2−k. Also, D=(3k−2)+0+2−2k=k and DŒ \ (2k2−k)−(k2−k−1)=k2

+1. Then tk−1=k2 and tk−2 \ 1. Thus, ; 0 [i [k−1 (k−i) ti \ k2+2 > kD. This
implies that Q(k, L, B) holds. The rest of the proof is the same as before. L

Although Theorem 5.1 is relatively broad, there exist cases to which the theorem
does not speak. For example, let k \ 2 and d, 1 [d [k−1, be integers. Let
A, B ıN+ be nonempty sets such that {k, 2k} ı A, max{i ¥ B | i [2k} \ 2k−2d,
and min{i ¥ B | i [2k} [k−d. Theorem 5.1 does not speak to, for this case, the
issue of whether NPAV ıc NPBV.

6. CONCLUSION

In this paper we gave a condition that we conjecture is, assuming that the poly-
nomial hierarchy does not collapse, necessary and sufficient for determining for
finite cardinality types A and B whether NPAV ıc NPBV, i.e., informally, for
determining the ways in which solution cardinality can be pruned. We proved our
condition to be (unconditionally) sufficient. We also established a necessary con-
dition assuming that the polynomial hierarchy does not collapse. However, our
necessary-condition theorem is not yet strong enough to match our sufficient
condition.

Nonetheless, we hope that in time this will be established and we recommend as
an interesting open problem the issue of proving the Narrowing-Gap Conjecture.
Certainly, there are many similar cases in the literature where similar complete
characterizations have been completed or interestingly posed. Hemaspaandra et al.
[12] have under the assumption that the polynomial hierarchy does not collapse,
completely characterized (for pairs of levels of the boolean hierarchy) when ‘‘query
order’’ (see [10, 12], see also [11, 28]) matters. Kosub and Wagner [19] have posed,
and made powerful progress toward, a complete characterization regarding their
boolean hierarchy of NP-partitions. Also, Kosub [18] has proven that for each
cardinality-type pair A and B violating the Narrowing-Gap Conjecture, there is an
oracle W(A, B) such that NPAVW(A, B) łc NPBVW(A, B). Finally, we commend to the
reader’s attention the work—which in contrast to the work of this paper is about
accepting-path counts rather than solution cardinalities—of Ogiwara and
Hemachandra [22] and Durand et al. [8].

326 HEMASPAANDRA, OGIHARA, AND WECHSUNG

ACKNOWLEDGMENTS

We are grateful to the anonymous referees for their helpful comments, and we thank A. Durand,
M. Hermann, P. Kolaitis, S. Kosub, and K. Wagner for many enjoyable conversations and emails.

REFERENCES

1. R. Book, T. Long, and A. Selman, Quantitative relativizations of complexity classes, SIAM J.
Comput. 13 (1984), 461–487.

2. R. Book, T. Long, and A. Selman, Qualitative relativizations of complexity classes. J. Comput.
System Sci. 30 (1985), 395–413.

3. D. Bovet, P. Crescenzi, and R. Silvestri, A uniform approach to define complexity classes, Theoret.
Comput. Sci. 104 (1992), 263–283.

4. J. Cai, Sp2 ı ZPPNP, in ‘‘Proceedings of the 42nd IEEE Symposium on Foundations of Computer
Science,’’ pp. 620–628, IEEE Comput. Soc. Press, Los Alamitos, CA, 2001.

5. J. Cai, V. Chakaravarthy, L. Hemaspaandra, and M. Ogihara, ‘‘Some Karp–Lipton Type Theorems
Based on S2,’’ Technical Report TR759, Department of Computer Science, University of Rochester,
Rochester, NY, September 2001.

6. J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wagner, and G. Wechsung,
The boolean hierarchy I: Structural properties, SIAM J. Comput. 17 (1988), 1232–1252.

7. R. Canetti, More on BPP and the polynomial-time hierarchy, Inform. Process. Lett. 57 (1996),
237–241.

8. A. Durand, M. Hermann, and P. Kolaitis, Subtractive reductions and complete problems for count-
ing complexity classes, in ‘‘Proceedings of the 25th International Symposium on Mathematical
Foundations of Computer Science,’’ Lecture Notes in Computer Science, Vol. 1893, pp. 323–332,
Springer-Verlag, Berlin/New York, August/September 2000.

9. S. Fenner, L. Fortnow, A. Naik, and J. Rogers, Inverting onto functions, in ‘‘Proceedings of the
11th Annual IEEE Conference on Computational Complexity,’’ pp. 213–222, IEEE Comput. Soc.
Press, Los Alamitos, CA, May 1996.

10. E. Hemaspaandra, L. Hemaspaandra, and H. Hempel, An introduction to query order, Bull.
EATCS 63 (1997), 93–107.

11. E. Hemaspaandra, L. Hemaspaandra, and H. Hempel, Query order in the polynomial hierarchy,
J. Univ. Comput. Sci. 4 (1998), 574–588.

12. L. Hemaspaandra, H. Hempel, and G. Wechsung, Query order, SIAM J. Comput. 28 (1999),
637–651.

13. L. Hemaspaandra, A. Naik, M. Ogihara, and A. Selman, Computing solutions uniquely collapses
the polynomial hierarchy, SIAM J. Comput. 25 (1996), 697–708.

14. L. Hemaspaandra, J. Rothe, and G. Wechsung, Easy sets and hard certificate schemes, Acta Inform.
34 (1997), 859–879.

15. B. Jenner and J. Torán, The complexity of obtaining solutions for problems in NP, in ‘‘Complexity
Theory Retrospective II’’ (L. Hemaspaandra and A. Selman, Eds.), Springer-Verlag, Berlin/New
York, 1997.

16. K. Ko, On self-reducibility and weak P-selectivity, J. Comput. System Sci. 26 (1983), 209–221.

17. J. Köbler and O. Watanabe, New collapse consequences of NP having small circuits, SIAM J.
Comput. 28 (1998), 311–324.

18. S. Kosub, On NP-partitions over posets with an application to reducing the set of solutions of NP
problems, in ‘‘Proceedings of the 25th International Symposium on Mathematical Foundations of
Computer Science,’’ Lecture Notes in Computer Science, Vol. 1893, pp. 467–476, Springer-Verlag,
Berlin/New York, August/September 2000.

REDUCING SOLUTIONS OF NP FUNCTIONS 327

19. S. Kosub and K. Wagner, The boolean hierarchy of NP-partitions, in ‘‘Proceedings of the 17th
Annual Symposium on Theoretical Aspects of Computer Science,’’ Lecture Notes in Computer
Science, Vol. 1770, pp. 157–168, Springer-Verlag, Berlin/New York, February 2000.

20. A. Naik, J. Rogers, J. Royer, and A. Selman, A hierarchy based on output multiplicity, Theoret.
Comput. Sci. 207 (1998), 131–157.

21. M. Ogihara, Functions computable with limited access to NP, Inform. Process. Lett. 58 (1996),
35–38.

22. M. Ogiwara and L. Hemachandra, A complexity theory for feasible closure properties, J. Comput.
System Sci. 46 (1993), 295–325.

23. A. Russell and R. Sundaram, Symmetric alternation captures BPP, Computational Complexity 7
(1998), 152–162.

24. U. Schöning, A low and a high hierarchy within NP, Journal of Computer and System Sciences 27
(1983), 14–28.

25. A. Selman, A taxonomy of complexity classes of functions, J. Comput. System Sci. 48 (1994),
357–381.

26. A. Selman, Much ado about functions, in ‘‘Proceedings of the 11th Annual IEEE Conference on
Computational Complexity,’’ pp. 198–212, IEEE Comput. Soc. Press, Los Alamitos, CA, May 1996.

27. N. Vereshchagin, Relativizable and nonrelativizable theorems in the polynomial theory of algo-
rithms, Russian Acad. Sci. Izv. Math. 42 (1994), 261–298.

28. K. Wagner, A note on parallel queries and the symmetric-difference hierarchy, Inform. Process. Lett.
66 (1998), 13–20.

328 HEMASPAANDRA, OGIHARA, AND WECHSUNG

	1. INTRODUCTION AND DISCUSSION
	2. A SUFFICIENT CONDITION
	3. NECESSARY CONDITIONS
	4. LOWNESS RESULTS
	5. A UNIFIED STRENGTHENING
	6. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

