
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
Journal of Computer and System Sciences 72 (2006) 660–689

www.elsevier.com/locate/jcss

LWPP and WPP are not uniformly gap-definable ✩

Holger Spakowski a,1, Rahul Tripathi b,∗,2

a Institut für Informatik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
b Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA

Received 21 May 2004; received in revised form 23 November 2005

Available online 21 February 2006

Abstract

Resolving an issue open since Fenner, Fortnow, and Kurtz raised it in [S. Fenner, L. Fortnow,
S. Kurtz, Gap-definable counting classes, J. Comput. System Sci. 48 (1) (1994) 116–148], we prove
that LWPP is not uniformly gap-definable and that WPP is not uniformly gap-definable. We do so in
the context of a broader investigation, via the polynomial degree bound technique, of the lowness,
Turing hardness, and inclusion relationships of counting and other central complexity classes.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Complexity classes; Gap-definability; Turing hardness; Polynomial degree bounds; Relativization
theory

✩ A preliminary version of this paper appeared in [H. Spakowski, R. Tripathi, Degree bounds on polynomials
and relativization theory, in: Proceedings of the 3rd IFIP International Conference on Theoretical Computer
Science, Kluwer, 2004, pp. 105–118. [38]].

* Corresponding author.
E-mail addresses: spakowsk@cs.uni-duesseldorf.de (H. Spakowski), tripathi@cse.usf.edu (R. Tripathi).

1 Research supported in part by a grant from the DAAD and by the DFG under grants RO 1202/9-1 and RO
1202/9-3. Work done in part while visiting the University of Rochester.

2 Research supported in part by grants NSF-INT-9815095/DAAD-315-PPP-gü-ab and NSF-CCF-0426761.
Most of this work was done while the author was affiliated with the Department of Computer Science at the
University of Rochester, Rochester, NY 14627, USA.
0022-0000/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2006.01.002

https://core.ac.uk/display/82373063?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 661
1. Introduction

1.1. Background

Fenner, Fortnow, and Kurtz [16] introduced the function class GapP as a natural ex-
tension of the class #P. While #P functions are defined by the number of accepting paths
of nondeterministic polynomial-time Turing machines, functions in GapP are defined by
the difference between the number of accepting and rejecting paths of nondeterministic
polynomial-time Turing machines. Fenner, Fortnow, and Kurtz [16] observed that many
important counting classes (e.g., PP, C=P, ModkP) can be defined in terms of GapP func-
tions. They called such classes gap-definable.

Informally speaking, a gap-definable counting class is a collection of all sets such that,
for any set in the class, the membership of a string in the set depends (in a way particular
to the class) on the gap (difference) between the number of accepting and rejecting paths
produced by some nondeterministic polynomial-time Turing machine associated with the
set. (See Section 2.2 for the definition of classes and Fig. 1 for the inclusion relationships
between the classes mentioned here.) Gap-definable classes such as LWPP and AWPP are,
for instance, interesting because of their relevance to quantum computing: LWPP is the
best known classical upper bound for EQP (a quantum analog of P) and AWPP is the best
known classical upper bound for BQP (a quantum analog of BPP) [19]. Thus the inves-
tigation of gap-definable classes may shed light on the structure of the quantum classes
EQP and BQP. The gap-definable class SPP is low for several counting classes including
PP, C=P, and ModkP, and the gap-definable class LWPP is low for PP and C=P [16]. Be-
cause of this lowness property, SPP and LWPP are useful in understanding the structural
complexity of counting classes PP and C=P. SPP is known to contain an important natural
problem—the graph isomorphism problem [3]. Arvind and Vinodchandran [4] and Vin-
odchandran [45] showed that many group-theoretic computational problems are in SPP or
LWPP. Since SPP and LWPP are considered as weak complexity classes, the classification
of the graph isomorphism problem and certain group-theoretic computational problems
into SPP or LWPP supports the belief that these problems are unlikely to be complete
for NP.

A formal definition of gap-definability is given in terms of GapP functions and disjoint
sets A,R ⊆ Σ∗ × Z. (See Section 3 for the definition of gap-definability.) Based on the
mechanism of relativizing this definition, Fenner, Fortnow, and Kurtz [16] suggested two
ways of defining gap-definability for a relativizable class: uniform and nonuniform gap-
definability. A relativizable class is uniformly gap-definable if it is gap-definable in every
relativized world, where the choice of A and R is fixed and independent of the oracle.
On the other hand, a relativizable class is nonuniformly gap-definable if it is gap-definable
in every relativized world, where the choice of A and R depends on the oracle. Some
examples of uniformly gap-definable counting classes are PP, C=P, ModkP, and SPP, and
examples of classes that are nonuniformly gap-definable but were not known previously
to be uniformly gap-definable are LWPP and WPP [16]. The proof of nonuniform gap-
definability of LWPP and WPP given by Fenner, Fortnow, and Kurtz [16] required, given
any oracle O, an RE-immune set relative to O in order to define the sets A and R for these
classes. Subsequently, Fenner, Fortnow, and Li [18] showed that A and R can be chosen

662 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
such that A ∪ R is recursive. Fenner, Fortnow, and Kurtz [16] showed that SPP is low
for every uniformly gap-definable class; whether SPP is low for LWPP or WPP remained
open.

This paper resolves the open issues, raised by Fenner, Fortnow, and Kurtz [16], on
whether LWPP is uniformly gap-definable and whether WPP is uniformly gap-definable.
We prove that none of the classes LWPP and WPP are uniformly gap-definable. Thus
LWPP and WPP are natural counting classes, which are nonuniformly gap-definable but
are not uniformly gap-definable. This makes both LWPP and WPP special compared to
other known natural gap-definable counting classes. Our proof that both LWPP and WPP
are not uniformly gap-definable is in the context of a broader investigation using the poly-
nomial degree bound technique. Among other results, we apply this proof technique to
resolve an open question by Hemaspaandra, Ramachandran, and Zimand [28], and to ex-
tend the results by Hemaspaandra, Jain, and Vereshchagin [26].

1.2. The proof technique

In this paper, we use degree bounds of polynomials representing (not necessarily
boolean) functions in constructing relativized worlds. Polynomials have been used in ob-
taining lower bounds for constant depth circuits [1,36], proving upper bounds on the power
of complexity classes [40,41], proving closure properties of counting classes [11], proving
bounds on the number of queries to compute a boolean function in the quantum black-box
computing model [7], and in the construction of oracles in complexity theory [13,17,39].
See Beigel [8] and Regan [31] for nice surveys on the application of polynomials in circuit
complexity and computational complexity theory.

In relativization theory, the technique of using degree bounds of polynomials has been
extensively used in constructing oracles that separate complexity classes. We give some
examples. Beigel [9] used a degree lower bound of a univariate polynomial to show that
the set L = {x10k | |x| is even and k ∈ N+} (called ODD-MAX-BIT in [9]) cannot be
recognized by perceptrons3 of polylogarithmic order, subexponential weight, and quasi-
polynomial size. Using this result, he constructed an oracle relative to which PNP � PP.
Aspnes et al. [5] showed that any low, i.e. polylog(n), degree polynomial fails to sign rep-
resent4 the parity function on n bits with at least some constant probability when the input
bits are chosen uniformly at random. So they were able to show that relative to a random
oracle, PP �= PSPACE with probability one. Tarui [39] proved that if a low degree polyno-
mial evaluates to zero on a certain large collection of inputs over a boolean domain, then
the polynomial itself must be a zero polynomial. He used this result in constructing an
oracle relative to which BPP � PC=P. Recently, de Graaf and Valiant [13] made use of the

3 A perceptron is a depth 2 circuit with a threshold gate at the root and AND-gates at the input level. The order
of a perceptron is the maximum fanin of its AND-gates, its weight is the maximum absolute value of the weights
on the inputs to the threshold gate, and its size is the number of AND-gates it contains.

4 A sign representation of a function f : {1,−1}N → {1,−1} is a polynomial p ∈ R[y1, y2, . . . , yN] such
that for all y1, y2, . . . , yN ∈ {1,−1}, sign(p(y1, y2, . . . , yN)) = sign(f (y1, y2, . . . , yN)). Note that any boolean
function on N variables can be represented as a function from {1,−1}N to {1,−1}, where each bit b ∈ {0,1} is
replaced by (−1)b .

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 663
degree of a representing polynomial over the field Zp , for prime p, to obtain a relativized
separation of EQP (the quantum analog of P) from ModpP.

Beigel, Buhrman, and Fortnow [10] and Fenner et al. [17] showed that degree
bounds of polynomials can be used to obtain relativized collapses as well. In particu-
lar, Beigel, Buhrman, and Fortnow [10] used polynomials to construct an oracle A such
that PA = ⊕

PA and NPA = EXPA, and Fenner et al. [17] showed that relative to an
SP-generic oracle, AWPP (a class defined in Section 2) equals P. We apply the poly-
nomial degree bound technique to notions such as relativized lowness, nonexistence of
Turing-hard sets in some relativized world, and relativized separations.

1.3. Our contributions

Fenner, Fortnow, and Kurtz [16] showed that SPP is low for every uniformly gap-
definable class (see Section 3 for the definition of uniform and nonuniform gap-
definability). Thus SPP is low for each of PP, C=P, ModkP, and itself. Both LWPP
and WPP are known to be nonuniformly gap-definable and, prior to this paper, it was
an open question whether or not these classes are uniformly gap-definable [16] as well.
Thus Fenner, Fortnow, and Kurtz [16] asked whether SPP is also low for LWPP or WPP.
We give a relativized answer to their question by exhibiting an oracle relative to which
even UP ∩ coUP is not low for LWPP as well as for WPP. As a consequence of this oracle
construction and an observation relating the issues of uniform gap-definability and low-
ness of SPP, we get the result that LWPP and WPP are not uniformly gap-definable. This
resolves an open question raised by Fenner, Fortnow, and Kurtz [16].

The existence of complete sets in a class is a topic of interest in complexity theory.
Though classes such as NP, C=P, and PP possess polynomial-time many-one complete
sets, for several other natural classes such as UP and BPP, no complete set (under any weak
enough to be interesting notion of reducibility) is known. This motivates the investigation
of completeness for these promise classes in relativized worlds. That line of research was
pursued in several papers [24,26,35]. In particular, Hemaspaandra, Jain, and Vereshcha-
gin [26] showed that there is an oracle relative to which UP ∩ coUP, UP, FewP, and
Few have no polynomial-time Turing complete sets. The existence of a relativized world
where promise classes such as SPP, LWPP, WPP, and AWPP do not have (polynomial-
time many-one or Turing) complete sets remained unresolved [28]. We use a lower bound
on the approximate degree of a boolean function given by Nisan and Szegedy [29] to con-
struct a relativized world in which AWPP has no polynomial-time Turing hard sets for
UP ∩ coUP. As a corollary, we obtain that none of the classes SPP, LWPP, WPP, and
AWPP have polynomial-time Turing complete sets in some relativized world. This settles
an open question by Hemaspaandra, Ramachandran, and Zimand [28], and extends one of
the main results by Hemaspaandra, Jain, and Vereshchagin [26]. Using a similar technique,
we construct another relativized world where AWPP has no polynomial-time Turing hard
sets for ZPP.

Certain classes are known to be weak in some relativized worlds while their com-
position with themselves lead to powerful classes in every relativized world. C=P is
a class that is immune to RP in a relativized world [37], but its composition with it-
self, i.e. C=PC=P, contains the polynomial hierarchy in every relativized world. (In fact,

664 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
PH ⊆ P#P[1] ⊆ UPC=P ⊆ C=PC=P.) Since ZPP � WPP in some relativized world and, rela-
tive to an oracle, WPP is not self-low [37], it is worth investigating whether WPP, a class
similar to C=P, behaves in the same way as C=P when composed with itself. We use prop-
erties of low degree multilinear polynomials to construct an oracle world in which ZPP
is not contained in WPPWPP, thus falsifying this intuition. We also use a lower bound re-
sult on the degree of a univariate polynomial (by Ehlich and Zeller [14] and Rivlin and
Cheney [32]) to construct an oracle relative to which NP ∩ coNP � AWPP.

The proof technique that we use are applicable to classes that are not known to be gap-
definable. For instance, we use the degree lower bound of polynomials in constructing a
relativized world where MIP ∩ coMIP has no polynomial-time Turing hard sets for ZPP.
This result can be seen as an extension of a result by Hemaspaandra, Jain, and Vereshcha-
gin [26], which states that relative to an oracle, IP ∩ coIP has no polynomial-time Turing
hard sets for ZPP.

2. Preliminaries

2.1. Notations

Let N+, Q, R, and Z denote the set of positive integers, rational numbers, real numbers,
and integers, respectively. Our alphabet is Σ = {0,1}. For any A ⊆ Σ∗ and n ∈ N+, let
A=n denote the set of strings of length n in A and A�n denote the set of strings of length
at most n in A. For every n ∈ N+, let [n] =df {1,2, . . . , n}. Let 〈. . .〉 be a multiarity, easily
computable, and invertible pairing function. If A,B ⊆ Σ∗, then define A ⊕ B = {0w |
w ∈ A} ∪ {1w | w ∈ B}. For any set X of variables and for any polynomial p ∈ R[X],
deg(p) denotes the total degree of p.

For standard notions in complexity theory, such as complexity classes, classes known to
be in between P and NP, reductions, etc., we refer the reader to the textbook by Hemaspaan-
dra and Ogihara [27]. For any nondeterministic Turing machine N , A ⊆ Σ∗, and x ∈ Σ∗,
we use the shorthand NA(x) for “the computation of N with oracle A on input x.” For any
deterministic oracle transducer M , A ⊆ Σ∗, and x ∈ Σ∗, we denote by MA(x) the value
computed by M with oracle A on input x. Throughout the paper, polynomials bounding the
running time of machines are monotonically increasing. We assume that the computation
paths of an oracle Turing machine include the answers from the oracle. Given a nondeter-
ministic Turing machine N , computation path ρ, and x ∈ Σ∗, let sign(N,x,ρ) = +1 if
ρ is an accepting path of N(x), and let sign(N,x,ρ) = −1 if N(x) rejects along ρ. Let
#accNA(x) (#rejNA(x)) denote the number of accepting (respectively, rejecting) paths of
NA(x). For any oracle NPTM N and A ⊆ Σ∗, gapNA :Σ∗ → Z is defined as follows: For
all x ∈ Σ∗, gapNA(x) = #accNA(x) − #rejNA(x).

2.2. Complexity classes

We define the following complexity classes relevant to this paper.

Definition 2.1.

(1) [16,23] GapP = {g | (∃NPTMN)[g = gapN]}.

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 665
(2) [16,23,30] SPP = {L | (∃g ∈ GapP) (∀x ∈ Σ∗) [g(x) ∈ {0,1}∧ (x ∈ L ⇔ g(x) = 1)]}.
(3) [16] LWPP = {L | (∃g ∈ GapP) (∃h ∈ FP: 0 /∈ range(h)) (∀x ∈ Σ∗) [g(x) ∈

{0, h(0|x|)} ∧ x ∈ L ⇔ g(x) = h(0|x|)]}.
(4) [16] WPP = {L | (∃g ∈ GapP) (∃h ∈ FP: 0 /∈ range(h)) (∀x ∈ Σ∗) [g(x) ∈ {0, h(x)}∧

x ∈ L ⇔ g(x) = h(x)]}.

SPP is an acronym of Stoic PP, WPP is an acronym of Wide PP, and LWPP is an
acronym of Length-dependent Wide PP.

The counting class AWPP (“Almost WPP”) was introduced by Fenner et al. [17]. The
original definition of AWPP included the amplification property. Later, Fenner [15] gave a
simplified definition for this class (see Theorem 2.3). We will only need the definition of
AWPP due to Fenner in this paper.

Definition 2.2. [17] A language L is in AWPP if and only if for every polynomial r(·),
there exist a GapP function g and a polynomial p(·) such that, for all x ∈ Σ∗,

x ∈ L ⇒ 1 − 2−r(|x|) � g(x)

2p(|x|) � 1, and

x /∈ L ⇒ 0 � g(x)

2p(|x|) � 2−r(|x|).

Theorem 2.3. [15] A language L is in AWPP if and only if there exist a GapP function g

and a polynomial p(·) such that, for all x ∈ Σ∗,

x ∈ L ⇒ 2

3
� g(x)

2p(|x|) � 1, and

x /∈ L ⇒ 0 � g(x)

2p(|x|) � 1

3
.

We refer to any pair (NA,MA), where N is a nondeterministic polynomial-time ora-
cle Turing machine, M is deterministic polynomial-time oracle transducer, and A ⊆ Σ∗,
as an LWPPA pair or a WPPA pair, depending on the context. For any nondeterminis-
tic polynomial-time oracle Turing machine N , polynomial q(·), and A ⊆ Σ∗, we refer to
(NA,q) as an AWPPA pair. We introduce the following notations.

• If (NA,MA) is an LWPPA pair, then L(NA,MA) =df {x ∈ Σ∗ | gapNA(x) =
MA(0|x|)}.

• If (NA,MA) is a WPPA pair, then L(NA,MA) =df {x ∈ Σ∗ | gapNA(x) = MA(x)}.
• If (NA,q) is an AWPPA pair, then L(NA,q) =df {x ∈ Σ∗ | gapNA(x)/2q(|x|) ∈

[2/3,1]}.

We define a predicate “valid” as follows.

• (NA,MA) is a valid LWPPA pair if and only if for each x ∈ Σ∗, MA(0|x|) �= 0 and
gapNA(x) ∈ {0,MA(0|x|)}.

666 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
• (NA,MA) is a valid WPPA pair if and only if for each x ∈ Σ∗, MA(x) �= 0 and
gapNA(x) ∈ {0,MA(x)}.

• (NA,q) is a valid AWPPA pair if and only if for each x ∈ Σ∗, gapNA(x)/2q(|x|) ∈
[0,1/3] ∪ [2/3,1].

An interactive proof system [6,22] is a computational model consisting of a probabilistic
polynomial-time verifier V interacting with an infinitely powerful prover P to decide the
membership of a string in a set. The verifier and the prover interact using a protocol and
at the end of it, the verifier either accepts or rejects. A generalization of this proof system,
proposed by Ben-Or, Goldwasser, Kilian, and Wigderson [12], involves more than a single
prover and is referred to as multiprover interactive proof system. A formal definition of a
k-prover interactive proof system for a set L is as follows.

Definition 2.4. [6,12,22] For any k � 1, a set L has a k-prover interactive proof system if
there is a probabilistic polynomial-time verifier V that interacts with k provers such that,
for each x ∈ Σ∗, the following conditions hold:

(1) If x ∈ L, then there is a set of k provers P1,P2, . . . ,Pk such that Prob[P1,P2, . . . ,Pk ,
and V on x accept] � 1 − 2−|x|.

(2) If x /∈ L, then for any set of k provers P ′
1,P

′
2, . . . ,P

′
k , Prob[P ′

1,P
′
2, . . . ,P

′
k , and V on

x accept] � 2−|x|.

Here the probability is over the random coin tosses done by V . IP (MIP) is the class of all
sets that have 1-prover interactive proof systems (respectively, k-prover interactive proof
systems for some k � 1).

It can be shown that if a set L has a k-prover interactive proof system for some k, then
L also has a 2-prover interactive proof system [12]. Even in the case when the number of
provers are polynomially related with the input length, the computational power of such a
multiprover proof system is known to be no more than that of a 2-prover proof system.

The inclusion relationship between classes considered in this paper is summarized in
Fig. 1.

2.3. Polynomial encoding

In our proofs, we use an encoding of the behavior of a nondeterministic polynomial-
time oracle Turing machine on an input relative to some finite set, where the set can be
viewed as a source of a possible oracle extension at some stage of the oracle construction.
This encoding is defined in terms of a multilinear polynomial with integer coefficients
over variables representing the strings in the set. The formal description of the polynomial
encoding is given as follows.

Definition 2.5. Let N be a nondeterministic polynomial-time oracle Turing machine with
running time t (·). Let O,T ⊆ Σ∗ be such that O ∩ T = ∅, and let x1, x2, . . . , xm, where
m = ‖T ‖, be the lexicographic enumeration of strings in T . For any x ∈ Σ∗, a polynomial

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 667
Fig. 1. Complexity graph G where a node represents a complexity class and a directed edge (U,V) in G represents
the fact that “class U is known to be included in class V .”

encoding of NO(x) w.r.t. T is a multilinear polynomial p ∈ Z[y1, y2, . . . , ym] defined as
follows: Call a computation path ρ of N(·)(x) allowable if along ρ, all queries q ∈ O have
a “yes” answer, all queries q /∈ O∪T have a “no” answer, and no query q ∈ T is answered
in a conflicting way. Let xi1, xi2, . . . , xi� be the distinct queries to strings in T along an
allowable ρ. Create a monomial mono(ρ) that is the product of terms zik , k ∈ [�], where
zik = yik if xik is answered “yes” and zik = (1−yik) if xik is answered “no” along ρ. Define

p(y1, y2, . . . , ym) =
∑

sign(N,x,ρ) · mono(ρ).
ρ: ρ is allowable

668 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
The following proposition is evident from the definition of the polynomial encoding.

Proposition 2.6. Let p ∈ Z[y1, y2, . . . , ym] be the polynomial encoding of NO(x) w.r.t. T .
Then the polynomial p(y1, y2, . . . , ym) has the following properties:

(1) for all B ⊆ T , p(χB(x1),χB(x2), . . . , χB(xm)) = gapNO∪B (x), and
(2) deg(p) � t (|x|).

Here N , t (·), O, T , m, and x1, x2, . . . , xm are defined as in Definition 2.5.

3. Lowness and gap-definability

The low hierarchy within NP was introduced by Schöning [34] to study the inner struc-
ture of NP. Since the introduction of the low hierarchy, the concept of lowness has been
generalized to arbitrary relativizable function and language classes. A set L ⊆ Σ∗ is said
to be low for a relativizable class C if CL ⊆ C. A class C2 is called low for a relativizable
class C1 if CC2

1 ⊆ C1.
Fenner, Fortnow, and Kurtz [16] introduced the notion of gap-definability to study

the counting classes that can be defined using GapP functions alone. Since most of the
well-known counting classes, such as PP, C=P, and ModkP, are gap-definable, any charac-
terization for gap-definable classes carries over to these counting classes. For instance, it is
known that SPP is low for every member of a particular collection of gap-definable classes,
namely the collection of uniformly gap-definable classes. Thus it follows that SPP is low
for the counting classes PP, C=P, and ModkP. The formal definition of gap-definability is
given below.

Definition 3.1. [16] A class C is gap-definable if there exist disjoint sets A,R ⊆ Σ∗ × Z
such that, for any L ⊆ Σ∗, L ∈ C if and only if there exists an NPTM N such that for all
x ∈ Σ∗,

x ∈ L ⇒ (
x,gapN(x)

) ∈ A, and

x /∈ L ⇒ (
x,gapN(x)

) ∈ R.

The class C is also denoted by Gap(A,R).

For relativizable classes, Fenner, Fortnow, and Kurtz [16] introduced two ways of
defining gap-definability: uniform and nonuniform. A relativizable class C is said to be
uniformly gap-definable if it is gap-definable w.r.t. any oracle with a fixed (independent
of the oracle) choice of A and R. A relativizable class C is said to be nonuniformly gap-
definable if it is gap-definable w.r.t. an oracle where the choice of A and R may depend on
the oracle. Thus the choice of A and R may vary with different oracles in case of nonuni-
form gap-definability. We now give a definition that expresses the oracle (in)dependence
of the pair (A,R) in the notion of gap-definability. In what follows, (A,R) is called an
accepting pair if A,R ⊆ Σ∗ × Z and A ∩ R = ∅.

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 669
Definition 3.2. [16]

(1) A relativizable class C is gap-definable relative to an oracle O with accepting pair
(A,R) if for any L ⊆ Σ∗, L ∈ CO if and only if there exists an oracle NPTM N such
that for all x ∈ Σ∗,

x ∈ L ⇒ (
x,gapNO (x)

) ∈ A, and

x /∈ L ⇒ (
x,gapNO (x)

) ∈ R.

(2) A relativizable class C is uniformly gap-definable if there is an accepting pair (A,R)

such that for every oracle O ⊆ Σ∗, it holds that C is gap-definable relative to O with
accepting pair (A,R).

(3) A relativizable class C is nonuniformly gap-definable if for every oracle O ⊆ Σ∗, there
is an accepting pair (A,R) such that C is gap-definable relative to O with accepting
pair (A,R).

Fenner, Fortnow, and Kurtz [16] proved that SPP is low for GapP. This implies that SPP
is low for every uniformly gap-definable counting class, such as PP, C=P,

⊕
P, and SPP.

It is easy to see that this result holds in every relativized world.

Theorem 3.3. [16] If C is a uniformly gap-definable class, then for every O ⊆ Σ∗, it holds
that CSPPO = CO .

In Theorem 3.6, we construct a relativized world in which UP ∩ coUP is not low for
LWPP as well as for WPP. Since UP ∩ coUP ⊆ SPP in every relativized world, this
also shows that relative to the same oracle, SPP is not low for either LWPP or WPP.
Fenner, Fortnow, and Kurtz [16] proved that both LWPP and WPP are nonuniformly gap-
definable. However, they leave open the question whether LWPP and WPP are uniformly
gap-definable. From Theorems 3.3 and 3.6, we conclude that LWPP and WPP are not uni-
formly gap-definable.

We use a variant of the prime number theorem, stated in Lemma 3.4, in the proof of
Theorem 3.6 to estimate the number of primes between two integers.

Lemma 3.4. [33] For every n � 17, the number of primes less than or equal to n, i.e. π(n),
satisfies

n/ lnn < π(n) < 1.25506n/ lnn.

The following lemma, Lemma 3.5, was used by Spakowski, Thakur, and Tripathi [37]
to construct a relativized world in which WPP is not closed under polynomial-time Turing
reductions. The same lemma is useful in proving Theorem 3.6.

Lemma 3.5. [37] Let N,p ∈ N+ be such that p is a prime number and p � N/2. Let
s ∈ Z[y1, y2, . . . , yN] be a multilinear polynomial with total degree deg(s) < p. If for some
val ∈ Z, it holds that

670 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
(1) s(0,0, . . . ,0) = 0, and
(2) s(y1, y2, . . . , yN) = val, for every y1, y2, . . . , yN ∈ {0,1} with

∑N
i=1 yi = p,

then p | val.

Theorem 3.6. (∃A) [LWPPUPA∩coUPA � WPPA].5

Proof. For any B ⊆ Σ∗, define the test language LB by

LB = {
0n | ∥∥B=2n

∥∥ �= 0
}
.

We put certain constraints on the set B that guarantee LB to be in LWPPUPB∩coUPB
. For

each n ∈ N+, we say that B satisfies Constraint(B,n) if the following conditions hold:

(a) B=2n+1 = {0z} for some z ∈ Σ2n, and
(b) B=2n+1 = {0z} ⇒ ‖B=2n‖ ∈ {0, rank(z)},

where rank(z) is the number of strings of length |z| that are lexicographically less than or
equal to z.

Claim 1. If B satisfies Constraint(B,n) at each length n, then LB is in LWPPUPB∩coUPB
.

Proof. Let B satisfy Constraint(B,n) for every n ∈ N+. We will define L ⊆ Σ∗, and
oracle machines N and M that satisfy the following: (a) L ∈ UPB ∩ coUPB , (b)
(NL⊕B,ML⊕B) is a valid LWPPL⊕B pair, and (c) L(NL⊕B,ML⊕B) = LB . This will
show that LB is in LWPPUPB∩coUPB

. The set L is defined as follows:

L= {
x | |x| is odd and (∃x′)

[|x′| = |x| and rank(x) � rank(x′) and x′ ∈ B
]}

.

If B satisfies Constraint(B,n) for every n ∈ N+, then L ∈ UPB ∩ coUPB since there is
exactly one string x′ ∈ B at every odd length.

Let N ′ be a nondeterministic polynomial-time oracle Turing machine that, with access
to the oracle B , on input x,

(1) if x /∈ 0∗ then rejects x, and
(2) if x ∈ 0∗ then guesses a string x′ of length 2|x| and accepts x′ if and only if x′ is in B .

Since #P ⊆ GapP in every relativized world, there exists a nondeterministic polynomial-
time oracle Turing machine N such that for all O ⊆ Σ∗ and x ∈ Σ∗, gapNO (x) =
#accN ′O (x). Finally, we define the deterministic polynomial-time oracle transducer M
that, with access to the oracle L⊕ B , on input x,

(1) if x /∈ 0∗ then outputs some nonzero value, say 1, and

5 It is easy to see that LWPPUPA∩coUPA = LWPP(UPA∩coUPA)⊕A .

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 671
(2) if x ∈ 0∗ then performs a binary search for the unique string 0w, where |w| = 2|x|, in
B by asking queries for the membership of strings of the form 0w′, where |w′| = 2|x|,
in L. The machine ML⊕B(0n) finally outputs rank(w).

It can easily be verified that (NL⊕B,ML⊕B) is a valid LWPPUPB∩coUPB
pair and

L(NL⊕B,ML⊕B) = LB . Thus the claim follows. �
We construct an oracle A such that, for each n, Constraint(A, n) is true and

LA /∈ WPPA. Let (Ni,Mi) be an enumeration of machine pairs where Ni is nondeter-
ministic oracle Turing machine, Mi is a deterministic oracle transducer, and both Ni and
Mi run in time ni + i on inputs of length n. The oracle A is constructed in stages. In each
stage, the membership in A of strings of length 2n and 2n+1 are decided for some n ∈ N+.
Initially, A := {02m+1 | m ∈ N+} and n := 17.

Stage i, i ��� 1: Choose n large enough so that 2n > 4n2(ni + i), no string of length 2n or
more is queried in the previous stages, and n is larger than the value of n in the previous
stage. We diagonalize against nondeterministic polynomial-time oracle Turing machine
Ni and deterministic polynomial-time oracle transducer Mi . Let A := A− {02n+1} and let
val =df MA

i (0n). Because of the condition 0 /∈ range(h) in the definition of WPP, we can
assume that val is nonzero.

Let

S = {
w | w ∈ Σ2n and MA

i

(
0n

)
does not query w

}
∪ {

0w | w ∈ Σ2n and MA
i

(
0n

)
does not query 0w

}
.

(�) Choose B ⊆ S such that Constraint(B,n) is true and the following holds:∥∥B=2n
∥∥ �= 0 and gapNA∪B

i

(
0n

) �= val, or∥∥B=2n
∥∥ = 0 and gapNA∪B

i

(
0n

) �= 0.

We will show in Claim 2 that there is a set B satisfying (�). Set A := A ∪ B . Move to the
next stage.
End of Stage

Clearly, the construction guarantees that LA /∈ WPPA. Thus it remains to show that a
set B satisfying (�) always exists.

Claim 2. For every i � 1, there exists a set B satisfying (�).

Proof. Assume to the contrary that in some stage i, no set B satisfying (�) exists. Then
for every B ⊆ S such that B satisfies Constraint(B,n), the following holds:∥∥B=2n

∥∥ �= 0 ⇒ gapNA∪B
i

(
0n

) = val, and∥∥B=2n
∥∥ = 0 ⇒ gap A∪B

(
0n

) = 0.
Ni

672 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
Let Z = {z ∈ Σ2n | rank(z) is prime, 0z ∈ S, and 2n−2 � rank(z) � 2n−1}.
Fix an arbitrary element z from Z. Then for all C ⊆ Σ2n ∩ S, it holds that

‖C‖ = rank(z) ⇒ gap
N

A∪C∪{0z}
i

(
0n

) = val, and (1)

‖C‖ = 0 ⇒ gap
N

A∪C∪{0z}
i

(
0n

) = 0. (2)

Let N =df ‖Σ2n ∩ S‖ and let x1, x2, . . . , xN be the lexicographic enumeration of strings
in Σ2n ∩ S. Let sz ∈ Z[y1, y2, . . . , yN] be the polynomial encoding of N

A∪{0z}
i (0n)

w.r.t. Σ2n ∩ S. From Proposition 2.6, it follows that the polynomial sz(y1, y2, . . . , yN)

has the following properties:

• for all C ⊆ Σ2n∩S, it holds that sz(χC(x1),χC(x2), . . . , χC(xN)) = gap
N

A∪C∪{0z}
i

(0n).

• deg(sz) � ni + i < rank(z) < N/2.

Statements (1) and (2), respectively, imply that

• for all y1, y2, . . . , yN ∈ {0,1} such that
∑N

i=1 yi = rank(z), we have sz(y1, y2, . . . ,

yN) = val, and
• sz(0,0, . . . ,0) = 0.

It follows from Lemma 3.5 that rank(z) | val.
Therefore, we have shown that for each z ∈ Z, rank(z) | val. Hence by Lemma 3.4

and the fact that 2n > 4n2(ni + i), val �
∏

z∈Z rank(z) � 2‖Z‖ � 2π(2n−1)−π(2n−2)−ni−i �
22n−1/n2−ni−i > 2ni+i . However, M

(·)
i (0n) runs in time ni + i and so val � 2ni+i . Thus we

have a contradiction. This completes the proofs of Claim 2 and Theorem 3.6. �
Corollary 3.7. LWPP and WPP are not uniformly gap-definable.

Corollary 3.8. There is a relativized world A such that

(1) for any class C ∈ {UP ∩ coUP,UP,FewP,Few,SPP,LWPP}, CA is not low for
LWPPA, and

(2) for any class C ∈ {UP ∩ coUP,UP,FewP,Few,SPP,LWPP,WPP}, CA is not low for
WPPA.

4. Robust hardness under Turing reducibilities

Complexity classes such as P, NP, coNP, PP, C=P, and ModkP are robust in possess-
ing polynomial-time many-one complete sets. That is, these complexity classes contain
polynomial-time many-one complete sets in every relativized world. However, classes such
as NP ∩ coNP, UP, and BPP lack polynomial-time many-one complete sets in some rel-
ativized worlds because of the built-in promises in their definitions [24,35]. The current
section continues this exploration of complexity classes to gap-definable counting classes.

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 673
We prove that there exist relativized worlds where several gap-definable counting
classes including AWPP, WPP, LWPP, and SPP lack polynomial-time Turing complete
sets. We resolve an open question of Hemaspaandra, Ramachandran, and Zimand [28] and
extend one of the main results of Hemaspaandra, Jain, and Vereshchagin [26]. The central
technical tool used in the proofs of this section is a lower bound by Nisan and Szegedy [29]
on the approximate degree of certain boolean functions.

If f : {0,1}N → {0,1} is a boolean function and p ∈ R[y1, y2, . . . , yN] is a multilin-
ear polynomial such that, for every y1, y2, . . . , yN ∈ {0,1}, f (y1, y2, . . . , yN) = p(y1, y2,

. . . , yN), then p is said to be a polynomial representing f exactly. If p is a smallest degree
multilinear polynomial representing a boolean function f exactly, then we use deg(f) to
denote deg(p), the total degree of p. We now give a definition of the notion of the approx-
imate degree of a boolean function.

Definition 4.1. [29] Given a boolean function f : {0,1}N → {0,1} and a polynomial
p ∈ R[y1, . . . , yN], we say that p approximates f if for every y1, . . . , yN ∈ {0,1}, it holds
that |f (y1, . . . , yN) − p(y1, . . . , yN)| � 1/3. The approximate degree of f , denoted by
d̃eg(f), is the minimum integer d such that there is a polynomial of degree d that approx-
imates f .

Nisan and Szegedy [29] obtained a Ω(
√

N) lower bound on the degree and approxi-
mate degree of a restricted, though still quite general, boolean function. In particular, they
showed that any boolean function, whose value is zero on the all-zero input but whose
value is one on every boolean input vector with Hamming weight (the number of 1’s in
the boolean vector) one, has approximate degree at least

√
N/6. As a direct consequence

of this, they obtained a Ω(
√

N) lower bound on the approximate degree of the boolean
OR function. (In fact, Nisan and Szegedy [29] also obtained a matching upper bound of
O(

√
N) on the approximate degree of the OR function.)

Lemma 4.2. [29] Let f be a boolean function on N inputs such that f (0,0, . . . ,0) = 0
and for every x1, x2, . . . , xN ∈ {0,1} such that

∑
i∈[N] xi = 1, f (x1, x2, . . . , xN) = 1. Then

the following inequalities hold:

deg(f) �
√

N/2 and d̃eg(f) �
√

N/6.

We use this result by Nisan and Szegedy [29] to prove Lemma 4.5, which is central to
our relativization results involving the class AWPP.

When we speak about relativized Turing reductions, it is natural to ask whether the
Turing reduction is allowed access to the oracle. We answer this question by giving two
different definitions of relativized Turing reductions as in Definitions 4.3(1) and 4.3(2).

Definition 4.3.

(1) If C1 and C2 are relativizable classes, then for each A ⊆ Σ∗, we say that CA1
has a �p,A-hard set for CA if there exists L1 ∈ CA such that for every L2 ∈ CA,
T 2 1 2

674 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
L2 ∈ PA⊕L1 . If C1 and C2 are the same class, then L1 is referred to as a �p,A
T -complete

set for CA1 . In this case, we say that CA1 has a �p,A
T -complete set.

(2) If C1 and C2 are relativizable classes, then for each A ⊆ Σ∗, we say that CA1 has a
�p

T -hard set for CA2 if there exists L1 ∈ CA1 such that for every L2 ∈ CA2 , L2 ∈ PL1 . If
C1 and C2 are the same class, then L1 is referred to as a �p

T -complete set for CA1 . In
this case, we say that CA1 has a �p

T -complete set.

However, Lemma 4.4 shows that the two notions, Definitions 4.3(1) and 4.3(2), of rel-
ativized polynomial-time Turing reductions are equivalent when dealing with hardness
results. We note that the two notions lead to remarkably different effects as studied in
[21,25].

Lemma 4.4. (See [26] for a similar lemma.) If C1 and C2 are relativizable classes and if C1
is closed under join operation in every relativized world, then for every A ⊆ Σ∗, CA1 has

a �p,A
T -hard set for CA2 if and only if CA1 has a �p

T -hard set for CA2 .

Proof. Let L be a set in CA1 that is �p,A
T -hard for CA2 . Then for every L′ ∈ CA2 , L′ ∈ PL⊕A.

Since CA1 is closed under join operation and since A ∈ CA1 , it follows that L ⊕A is in CA1 .
Hence, L ⊕A ∈ CA1 is �p

T -hard for CA2 .
The other direction also follows easily because for any A ⊆ Σ∗, the �p

T -hardness of a

set for CA2 implies the hardness of the set under �p,A
T reduction for CA2 . �

The proof of Theorem 4.6, which is one of the main results of this section, uses Lem-
mas 4.4 and 4.5. We mention that Hemaspaandra, Jain, and Vereshchagin [26] proved,
using a different combinatorial technique, that relative to an oracle, FewP contains no
polynomial-time Turing hard set for UP ∩ coUP. Theorem 4.6 extends this result and im-
plies that there is a relativized world where SPP has no polynomial-time many-one or
Turing complete sets. That answers positively a question raised by Hemaspaandra, Ra-
machandran, and Zimand [28].

The following lemma is central to our oracle constructions involving the class AWPP.

Lemma 4.5. Let O ⊆ Σ∗ and let (N,q) be an arbitrary AWPP pair with polynomial p

bounding the running time of N . Fix an arbitrary x ∈ Σ∗. Let C be a subset of Σ∗ such
that the following are true:

(1) (NO∪A,q) is a valid AWPPO∪A pair for every A ⊆ C.
(2) x ∈ L(NO∪{α}, q) ⇔ x /∈ L(NO, q), for every α ∈ C.

Then ‖C‖ � 6p(|x|)2.

Proof. W.l.o.g. assume that x /∈ L(NO, q). Let

C =df
{
α ∈ Σ∗ | x ∈ L

(
NO∪{α}, q

)}
.

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 675
To get a contradiction, suppose that k =df ‖C‖ > 6p(|x|)2. Let s ∈ Z[y1, y2, . . . , yk] be
the polynomial encoding of NO(x) w.r.t. C. From Proposition 2.6 it is easy to see that s

satisfies the following properties:

(1) For every y1, y2, . . . , yk ∈ {0,1}, s(y1, y2, . . . , yk)/2q(|x|) ∈ [0,1/3] ∪ [2/3,1].
(2) s(0,0, . . . ,0)/2q(|x|) ∈ [0,1/3].
(3) s(y1, y2, . . . , yk)/2q(|x|) ∈ [2/3,1] for every y1, y2, . . . , yk ∈ {0,1} with

∑k
i=1 yi = 1.

(4) deg(s) � p(|x|).

Let f be the boolean function defined by

• f (y1, y2, . . . , yk) = 0 ⇔ s(y1, y2, . . . , yk)/2q(|x|) ∈ [0,1/3], and
• f (y1, y2, . . . , yk) = 1 ⇔ s(y1, y2, . . . , yk)/2q(|x|) ∈ [2/3,1].

Hence f (0,0, . . . ,0) = 0, and for every boolean vector �y of Hamming weight 1, f (�y) = 1.
It follows from Lemma 4.2 that d̃eg(f) �

√
k/6. On the other hand, it is easy to see that

polynomial s approximates f in the sense of Definition 4.1. Therefore d̃eg(f) � deg(s) �
p(|x|) <

√
k/6. A contradiction. �

Theorem 4.6. There exists an oracle A such that AWPPA has no �p,A
T -hard set for

UPA ∩ coUPA.

Proof. Let (Ni, qj ,Mk) be an enumeration of tuples where Ni is a nondeterministic
polynomial-time oracle Turing machine, qj is a polynomial, and Mk is a deterministic
polynomial-time oracle Turing machine. For each AWPP pair (Ni, qj), we define our test
language as follows:

L〈i,j〉(B) = {
0n | n is a power of the 〈i, j 〉th prime number and

∥∥B ∩ 0Σn
∥∥ �= 0

}
.

Since AWPP is closed under join operation in every relativized world, by Lemma 4.4 it
suffices to construct an oracle A such that AWPPA has no �p

T -hard set for UPA ∩ coUPA.
The oracle A is constructed in stages. Initially, A := {0}∗. In stage 〈i, j, k〉, we diagonalize
against tuple (Ni, qj ,Mk) and modify oracle A at some length.

Stage 〈i, j,k〉: Let r(·) be a polynomial that bounds the running time of both Ni and Mk .
Choose an integer n satisfying the following requirements: (a) n is a power of the 〈i, j 〉th
prime number, (b) 2n > 6 · r(n) · r(r(n))2, (c) n is large enough so that n satisfies any
promises made in the previous stages and no string of length greater than or equal to n is
queried in any of the previous stages, and (d) n is larger than the value of n in the previous
stage. Let A := A− {0n+1}.

Consider Mk(0n) with oracle L(NA
i , qj). Let β1, β2, . . . , β�, where 0 � � � r(n), be

the sequence of queries asked by Mk(0n) to the oracle L(NA
i , qj).

If there exists a set B ⊆ Σn+1 such that (NA∪B
i , qj) is not a valid AWPPA∪B pair, then

set A := A ∪ B . This may cause the test language L〈i,j〉(A) not to be in UPA ∩ coUPA.
But this is no problem because L〈i,j 〉(A) is only defined to witness that the (now invalid)

676 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
AWPPA pair (NA
i , qj) does not constitute a �p

T -hard set for UPA ∩ coUPA. We can move
to the next stage. But we have to make sure that AWPPA pair (NA

i , qj) does not become
valid in later stages. Therefore, we promise to choose the value of n in the next stage to be
larger than r(|w|), where w is an arbitrary input string that makes AWPPA pair (NA

i , qj)

invalid, and then move to the next stage.
Otherwise, we proceed with the following claim.

Claim 3. There exists a string z0 ∈ 0Σn (z1 ∈ 1Σn) that can be added to A without chang-
ing the answers of the AWPPA pair (NA

i , qj) to the queries β1, β2, . . . , β�, and hence
without changing the acceptance behavior of Mk(0n).

Let us assume that the claim is true. If Mk(0n) with oracle L(NA
i , qj) accepts, then set

A := A∪ {z1}. If Mk(0n) with oracle L(NA
i , qj) rejects, then set A := A∪ {z0}. Move to

the next stage.
End of Stage

It is easy to see that one of the following is true for each AWPP pair (Ni, qj).

(1) (NA
i , qj) violates the promise of a valid AWPPA pair at some stage of oracle con-

struction, or
(2) L〈i,j〉(A) is in UPA ∩ coUPA but for each k ∈ N, there exists x ∈ Σ∗ such that

x ∈ L〈i,j〉(A) ⇔ x /∈ L(M
L(NA

i ,qj)

k). This ensures that in case (NA
i , qj) constitutes

a valid AWPPA pair, then L〈i,j〉(A) ��p
T L(NA

i , qj) and so L(NA
i , qj) cannot be �p

T -
hard for UPA ∩ coUPA.

It is clear that if each AWPP pair (Ni, qj) fulfills one of these requirements, then AWPPA

has no �p
T -hard set for UPA ∩ coUPA. This completes the proof of Theorem 4.6. �

Proof of Claim 3. We prove only the existence of a string z0 ∈ 0Σn satisfying the con-
ditions of the claim; the existence of a string z1 ∈ 1Σn, as promised in the claim, can be
proved similarly. For any string βe (1 � e � �), let

C(βe) = {
α ∈ 0Σn | βe ∈ L

(
N

A∪{α}
i , qj

) ⇔ βe /∈ L
(
NA

i , qj

)}
.

Apply Lemma 4.5 with O := A and x := βe. Since C(βe) satisfies the conditions of the
lemma, we obtain ‖C(βe)‖ � 6 · r(r(n))2.

Because 2n > 6 · r(n) · r(r(n))2 � 6 · � · r(r(n))2, we can find a string z0 ∈ 0Σn \
(C(β1) ∪ C(β2) ∪ · · · ∪ C(β�)), which satisfies the conditions of the claim. �
Corollary 4.7. There is an oracle A such that for every complexity class C ∈ {UP ∩
coUP,UP,FewP,Few,SPP,LWPP,WPP,AWPP}, CA has no �p,A

T -complete set.

We next construct in Theorem 4.8 a relativized world where AWPP has no polynomial-
time Turing hard set for ZPP. We essentially use an extension of the ideas used in the proof
of Theorem 4.6 for proving this result.

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 677
Theorem 4.8. (∃A) [AWPPA has no �p,A
T -hard set for ZPPA].

Proof. The proof is similar to the one of Theorem 4.6. Let (Ni, qj ,Mk) and the test lan-
guage L〈i,j〉(B) be defined as in the proof of Theorem 4.6. For each B ⊆ Σ∗ and n, ξ ∈ N,
we define predicates “Zeros” and “Ones” as follows.

Zeros(B,n, ξ) ≡ B ⊆ 0Σn and ‖B‖ > ξ,

Ones(B,n, ξ) ≡ B ⊆ 1Σn and ‖B‖ > ξ.

Since AWPP is closed under join operation in every relativized world, by Lemma 4.4 it
suffices to construct an oracle A such that AWPPA has no �p

T -hard set for ZPPA. The
oracle A is constructed in stages. Initially, A := 0Σ∗. In stage 〈i, j, k〉, we diagonalize
against tuple (Ni, qj ,Mk) and modify oracle A at some length. The details are as follows.

Stage 〈i, j,k〉: Let r(·) be a polynomial that bounds the running time of both Ni and Mk .
Choose an integer n satisfying the following requirements: (a) n is a power of the 〈i, j 〉th
prime number, (b) 2n−1 > 6 · r(n) · r(r(n))2, (c) n is large enough so that n satisfies any
promises made in the previous stages and no string of length greater than or equal to n is
queried in any of the previous stages, and (d) n is larger than the value of n in the previous
stage. Let A := A− Σn+1.

Consider Mk(0n) with oracle L(NA
i , qj). Let β1, β2, . . . , β�, where 0 � � � r(n), be

the sequence of queries asked by Mk(0n) to the oracle L(NA
i , qj).

If there exists a set B ⊆ Σn+1 such that (NA∪B
i , qj) is not a valid AWPPA∪B pair, then

set A := A ∪ B . Move to the next stage with the promise to choose the value of n in the
next stage to be larger than r(|w|), where w is an arbitrary input string that makes AWPPA

pair (NA
i , qj) invalid.

Otherwise, proceed with the following claim.

Claim 4. There exist sets B0 and B1 such that (a) Zeros(B0, n,2n−1) and Ones(B1, n,2n−1)

are true, and (b) Bγ (γ ∈ {0,1}) can be added to A without changing the answers of the
AWPPA pair (NA

i , qj) to the queries β1, β2, . . . , β�, and hence without changing the ac-
ceptance behavior of Mk(0n).

Let us assume that the claim is true. If Mk(0n) with oracle L(NA
i , qj) accepts, then set

A := A∪B1. If Mk(0n) with oracle L(NA
i , qj) rejects, then set A := A∪B0. Move to the

next stage.
End of Stage

The correctness of the construction is as in the proof of Theorem 4.6. This completes
the proof of Theorem 4.8. �
Proof of Claim 4. We prove only the existence of a set B0 satisfying the conditions of
the claim; a similar proof for the existence of a set B1, as promised in the claim, can be
given. The proof is by iteration of the idea in the proof of Claim 3. First apply Lemma 4.5
with O := A to claim the existence of a string z0 ∈ 0Σn that can be added to A without

678 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
changing the answers of (NA
i , qj) to the queries β1, β2, . . . , β�. Next apply Lemma 4.5

with O := A∪{z0} to claim the existence of a string z′
0 ∈ 0Σn that can be added to A∪{z0}

without changing the answers of (N
A∪{z0}
i , qj), and hence of (NA

i , qj), to the queries
β1, β2, . . . , β�. Because 2n−1 > 6 · r(n) · r(r(n))2 � 6 ·� · r(r(n))2, we can add 2n−1 strings
to A, one after the other in this manner, always without changing the answers of (NA

i , qj)

to the queries β1, β2, . . . , β�. �
Corollary 4.9. [19,24,26] There is an oracle A such that for every class C ∈ {ZPP,RP,

coRP,BPP,BQP}, CA has no �p,A
T -complete set.

Note. An alternative proof of Theorems 4.6 and 4.8 can be obtained using a lemma by
Vereshchagin [43,44] on proving whether a complexity class has a polynomial-time Turing
hard set for another complexity class. Fortnow and Rogers [19] used this lemma to prove
that BQP has no polynomial-time Turing hard set for BPP in some relativized world.

5. Relativized noninclusion

Beigel [9] constructed an oracle relative to which PNP � PP. As a consequence, there
is a relativized world in which NP is not low for PP. However, in contrast to NP, it is not
clear whether NP ∩ coNP is not low for PP in some relativized world. Spakowski, Thakur,
and Tripathi [37] showed that there is an oracle relative to which ZPP is not contained in
WPP, a class known to be low for PP. Thus it follows that relative to the same oracle, NP∩
coNP � WPP. In Theorem 5.2, we extend this result and show that there is a relativized
world in which NP ∩ coNP � AWPP, where AWPP is a class known to be low for PP. This
supports our belief that NP ∩ coNP might not be low for PP in a suitable relativized world.

We use the following lemma by Ehlich and Zeller [14] and Rivlin and Cheney [32] to
lower bound the degree of univariate polynomials that satisfy certain constraints. This is a
standard technique (see, e.g., [7,9,29]).

Lemma 5.1. [14,32] Let p ∈ R[y] be a univariate polynomial with the following proper-
ties:

(1) for every integer � with 0 � � � N , b1 � p(�) � b2, and
(2) for some real 0 � z � N , the derivative of p satisfies |p′(z)| � c.

Then deg(p) �
√

cN/(c + b2 − b1).

Theorem 5.2. (∃A) [NPA ∩ coNPA � AWPPA].

Proof. Let (Ni, qj) be an enumeration of pairs, where Ni is a nondeterministic polyno-
mial-time oracle Turing machine and qj is a polynomial. The test language L(B) is defined
by

L(B) = {
0n | ∥∥B ∩ 0Σn

∥∥ �= 0
}
.

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 679
We will construct an oracle A in stages such that for each n ∈ N+, either ∅ ⊂ A=n+1 ⊆
0Σn or ∅ ⊂ A=n+1 ⊆ 1Σn holds. This ensures that L(A) is in NPA ∩ coNPA. Initially,
A := 0Σ∗. In stage 〈i, j 〉, we diagonalize against pair (Ni, qj) and modify A at some
length. We now give a description of stage 〈i, j 〉.

Stage 〈i, j〉: Let r(·) be a polynomial that bounds the running time of Ni . Choose n large
enough so that (a) 2n > 7 · r(n)2, (b) no machine considered in the previous stages queries
a string of length n or more, and (c) n is larger than the value of n in the previous stage.
Let A := A− Σn+1.

If there exists a nonempty set B ⊆ 0Σn or B ⊆ 1Σn such that gapNA∪B
i

(0n)/2qj (n) /∈
[0,1/3] ∪ [2/3,1], then set A := A∪ B and move to the next stage.

Otherwise, the following claim applies.

Claim 5. There exists a nonempty set B ⊆ Σn+1 such that the following holds:

B ⊆ 0Σn and gapNA∪B
i

(
0n

)
/2qj (n) ∈ [0,1/3], or

B ⊆ 1Σn and gapNA∪B
i

(
0n

)
/2qj (n) ∈ [2/3,1].

Let us assume that the claim is true. Take such a set B . Set A := A ∪ B . Move to the next
stage.
End of Stage

Clearly, L(A) ∈ NPA ∩ coNPA and one of the following is true for each AWPP pair
(Ni, qj).

(1) (NA
i , qj) violates the promise of a valid AWPPA pair, or

(2) (NA
i , qj) is a valid AWPPA pair, but there exists a length n such that

0n ∈ L(A) ⇔ 0n /∈ L
(
NA

i , qj

)
.

Thus it follows that L(A) ∈ NPA ∩ coNPA but L(A) /∈ AWPPA. This completes the proof
of Theorem 5.2. �
Proof of Claim 5. Assume to the contrary that no set B ⊆ Σn+1 satisfies the conditions
of the claim. Then the following holds:

∅ ⊂ B ⊆ 0Σn ⇒ gapNA∪B
i

(
0n

)
/2qj (n) ∈ [2/3,1], and (3)

∅ ⊂ B ⊆ 1Σn ⇒ gapNA∪B
i

(
0n

)
/2qj (n) ∈ [0,1/3]. (4)

We will show that Statement (3) implies

gapNA
i

(
0n

)
/2qj (n) � 3/5. (5)

By an analogous proof, it can be shown that Statement (4) implies gapNA
i

(0n)/2qj (n) �
2/5, which gives a contradiction with Statement (5).

680 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
Suppose that g =df gapNA
i

(0n)/2qj (n) < 3/5. Let s′ ∈ Z[y1, y2, . . . , y2n] be the polyno-

mial encoding of NA
i (0n) w.r.t. 0Σn. Define s ∈ R[y1, y2, . . . , y2n] as follows:

s(y1, y2, . . . , y2n) = 1

2qj (n)
· s′(y1, y2, . . . , y2n).

It is easy to verify that s(y1, y2, . . . , y2n) satisfies the following properties:

• For each y1, y2, . . . , y2n ∈ {0,1} such that
∑2n

�=1 y� � 1, s(y1, y2, . . . , y2n) ∈ [2/3,1].
• s(0,0, . . . ,0) = g < 3/5.
• deg(s) � r(n).

We follow closely the proof of Nisan and Szegedy [29, Lemma 3.5]. Let s̃ be the univariate
polynomial giving the symmetrization of s. Polynomial s̃ satisfies the following properties:

(1) deg(s̃) � deg(s) � r(n).
(2) For every integer � with 0 � � � 2n, g � s̃(�) � 1.
(3) s̃(0) = g.
(4) s̃(1) � 2/3.

Properties (3) and (4) together imply that for some real 0 � z � 1, the derivative s̃′(z) �
2/3 − g. We can now apply Lemma 5.1 and obtain

deg(s̃) �
√

(2/3 − g) · 2n

(2/3 − g) + 1 − g
=

√
2n

1 + 1−g
2/3−g

� 2n/2

√
7

,

which contradicts the property (1) of s̃.
Analogously (using the polynomial encoding of NA

i (0n) w.r.t. 1Σn) it can be shown
that Statement (4) implies gapNA

i
(0n)/2qj (n) � 2/5, which gives the desired contradiction.

This completes the proof of Claim 5. �
Certain classes are known to be not very powerful in some relativized worlds, however

their composition with themselves are found to be more powerful classes in every rela-
tivized world. For instance, Spakowski, Thakur, and Tripathi [37] showed the existence of
a relativized world in which RP is immune to C=P. But C=PC=P is known to contain the
polynomial hierarchy in every relativized world. In fact, in every relativized world, UPC=P

and ZPPC=P, which are subclasses of C=PC=P, contain the polynomial hierarchy. Using
Torán’s [42] combinatorial technique, Spakowski, Thakur, and Tripathi [37] constructed
an oracle relative to which ZPP � WPP. Corollary 3.8 shows that there is a relativized
world where WPP is not self-low, and so we cannot conclude directly from their result
that ZPP is not contained in WPPWPP relative to an oracle. Therefore, we are interested in
whether or not WPP shows a similar behavior as its superclass C=P, i.e. whether WPPWPP

is as big a class as to contain the polynomial hierarchy in every relativized world. Theo-
rem 5.8 shows that this is not the case by stating a relativized world in which ZPP is not
contained in WPPWPP. For the proof, we will need Lemmas 5.4, 5.5, 5.6, and 5.7. Below,
we state the idea of the proof.

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 681
Proof Idea: The proof of Theorem 5.8 is in two steps and the idea is as follows. Let
(Ni1,Mj1 ,Ni2,Mj2) be a tuple of machines at some stage of oracle construction, where
we treat (Ni1,Mj1) as a base WPP pair and treat (Ni2 ,Mj2) as a WPP pair acting as an
oracle to (Ni1,Mj1). In the first step, we express the dependency on an oracle segment of
the acceptance behavior of WPP pair (Ni2,Mj2) on any input w by a low degree multilinear
polynomial pw with variables corresponding to the strings of the oracle segment. This step
is identified in Lemma 5.5. In the second step, we express the acceptance behavior of WPP
pair (Ni1,Mj1) on input 0n with access to the oracle defined by the WPP(·) pair (N

(·)
i2

,M
(·)
j2

)

by a low degree multilinear polynomial in which variables are substituted by low degree
polynomials obtained from the first step. We identify this step in Lemma 5.6. Since the
composition of low degree polynomials is a low degree polynomial, we finally obtain a
low degree polynomial that satisfies certain conditions. Using Lemma 5.7, we obtain the
desired result.

Definition 5.3. For any nondeterministic oracle Turing machine N , deterministic oracle
transducer M , A ⊆ Σ∗, and w ∈ Σ∗, we say that Valid(NA,MA,w) is true if it holds that
MA(w) �= 0 and gapNA(w) ∈ {0,MA(w)}.

Lemma 5.4. Let M be a deterministic oracle transducer with running time t (·) and let
w ∈ Σ∗. Let x1, x2, . . . , xm be the lexicographic enumeration of all strings up to length
t (|w|). There is a multilinear polynomial p ∈ Q[y1, y2, . . . , ym] having the following prop-
erties:

(1) for every A ⊆ Σ∗ such that MA(w) �= 0, p(χA(x1),χA(x2), . . . , χA(xm)) = 1/MA(w),
and

(2) deg(p) � t (|w|).

Proof. For every potential computation path ρ of M(·) on input w, i.e. computation path
ρ of MA on input w for some arbitrary oracle A, create mono(ρ) as in Definition 2.5 with
O := ∅ and T := (Σ∗)�t (|w|). Let val(ρ) be the value output by M on path ρ. Define

p(y1, y2, . . . , ym) =
∑

path ρ: val(ρ) �=0

mono(ρ)

val(ρ)
. �

Lemma 5.5. Let N be a nondeterministic oracle Turing machine, M be a deterministic
oracle transducer, both running in time t (·), and let w ∈ Σ∗. Let x1, x2, . . . , xm be the lex-
icographic enumeration of all strings up to length t (|w|). There is a multilinear polynomial
pw ∈ Q[y1, y2, . . . , ym] having the following properties:

(1) For every A ⊆ Σ∗ such that Valid(NA,MA,w) is true, it holds that

pw

(
χA(x1),χA(x2), . . . , χA(xm)

) =
{

1 if gapNA(w) = MA(w), and
0 if gapNA(w) = 0.

(2) deg(pw) � 2t (|w|).

682 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
Proof. Let p1 be a polynomial representing gapNA(w) as in Definition 2.5 with O := ∅
and T := (Σ∗)�t (|w|). Let p2 be a polynomial representing 1/MA(w) as in Lemma 5.4.
Then we get the required polynomial pw by setting pw = p1 · p2. Clearly, deg(p) �
2t (|w|). �
Lemma 5.6. Let N1, N2 be nondeterministic oracle Turing machines, M1, M2 be deter-
ministic oracle transducers, all with running time t (·), and let w ∈ Σ∗. Let x1, x2, . . . , xm

be the lexicographic enumeration of all strings up to length t (t (|w|)). There is a multi-
linear polynomial p ∈ Q[y1, y2, . . . , ym] of total degree � 4t (|w|) · t (t (|w|)) having the
following property: For every A ⊆ Σ∗ satisfying

(1) Valid(NA
2 ,MA

2 , v) is true for every v ∈ Σ∗, and

(2) Valid(N
L(NA

2 ,MA
2)

1 ,M
L(NA

2 ,MA
2)

1 ,w) is true,

it holds that

p
(
χA(x1),χA(x2), . . . , χA(xm)

) =
⎧⎨⎩ 1 if gap

N1
L(NA

2 ,MA
2) (w) = M

L(NA
2 ,MA

2)

1 (w),

0 if gap
N1

L(NA
2 ,MA

2) (w) = 0.

Proof. Apply Lemma 5.5 to get the polynomials px1,px2 , . . . , pxm that encode the compu-
tations of (N2,M2) on inputs x1, x2, . . . , xm, respectively. The total degree of each of these
polynomials is � 2t (t (|w|)). Apply Lemma 5.5 to get the polynomial pw that encodes the
computation of the base machine (N1,M1) on input w. Clearly, deg(pw) � 2t (|w|).

To get the desired polynomial p(y1, y2, . . . , ym), take pw(y1, y2, . . . , ym) and substi-
tute every variable yi by the corresponding polynomial pxi

. Clearly, deg(p) � 4t (|w|) ·
t (t (|w|)). �

In the proof of Theorem 5.8, we use the following lemma by Tarui [39], which states
that if a multilinear polynomial is zero on a certain large collection of inputs over a boolean
domain, then the polynomial itself is a zero polynomial.

Lemma 5.7. [39] Let R be a ring. Let s be a multilinear polynomial in R[y1, y2, . . . , yN]
of total degree at most d and let i be a nonnegative integer such that i + d � N and
s(y1, y2, . . . , yN) = 0 for each y1, y2, . . . , yN ∈ {0,1} satisfying i �

∑N
j=1 yj � i + d .

Then s ≡ 0.

Theorem 5.8. (∃A) [ZPPA � WPPWPPA].

Proof. Let the predicates “Zeros” and “Ones” be defined as in the proof of Theorem 4.8.
The test language LB is defined by

LB = {
0n | ∥∥B ∩ 0Σn

∥∥ �= 0
}
.

We will construct an oracle A such that for each n � 1, either Zeros(A=n+1, n,2n−1)

is true or Ones(A=n+1, n,2n−1) is true. This will guarantee that LA is in ZPPA. Let

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 683
(Ni1,Mj1 ,Ni2,Mj2) be an enumeration of tuples where Ni1 and Ni2 are nondeterministic
polynomial-time oracle Turing machines, and Mj1 and Mj2 are deterministic polynomial-
time oracle transducers. Initially, A := 0Σ∗. In stage 〈i1, j1, i2, j2〉, we diagonalize against
(Ni1 , Mj1 , Ni2 , Mj2), treating (Ni1,Mj1) as a base WPP pair and treating (Ni2,Mj2) as a
WPP pair acting as an oracle to (Ni1,Mj1), and modify oracle A at some length. The
details are as follows.

Stage 〈i1, j1, i2, j2〉: Let r(·) be a polynomial that bounds the running time of each
of Ni1 , Mj1 , Ni2 , and Mj2 . Choose n large enough such that the previous stages are not
affected, 2n > 8r(n) · r(r(n)), and n is larger than the value of n in the previous stage. Let
A := A− Σn+1. Perform the following three steps.

(1) Look for a set B ⊆ Σn+1 such that either Zeros(B,n,2n−1) is true or Ones(B,n,2n−1)

is true, and the following holds: There is a string w ∈ Σ∗ such that Valid(NA∪B
i2

,

MA∪B
j2

,w) is not true. If such a set B exists, then set A := A∪B and move to the next
stage. Otherwise, go to step (2).

(2) Look for a set B ⊆ Σn+1 such that either Zeros(B,n,2n−1) is true or Ones(B,n,2n−1)

is true, and the following holds: There is a string w ∈ Σ∗ such that

Valid(N
L(NA∪B

i2
,MA∪B

j2
)

i1
,M

L(NA∪B
i2

,MA∪B
j2

)

j1
,w) is not true. If such a set B exists, then

set A := A∪ B and move to the next stage. Otherwise, go to step (3).
(3) Choose a set B ⊆ Σn+1 such that one of the following holds:

Zeros
(
B,n,2n−1) and gap

N
L(NA∪B

i2
,MA∪B

j2
)

i1

(
0n

) = 0, or

Ones
(
B,n,2n−1) and gap

N
L(NA∪B

i2
,MA∪B

j2
)

i1

(
0n

) = M
L(NA∪B

i2
,MA∪B

j2
)

j1

(
0n

)
.

We will show in Claim 6 that if step (3) is reached then there is always a set B ⊆ Σn+1

satisfying the conditions of step (3). Set A := A ∪ B and move to the next stage. It is
clear that such a set B suffices to successfully finish stage 〈i1, j1, i2, j2〉.

End of Stage

Claim 6. In each stage 〈i1, j1, i2, j2〉, if step (3) is reached, then there is a set B satisfying
the conditions of step (3).

Proof. Assume to the contrary that no such set B exists. Let p ∈ Q[y1, y2, . . . , ym] be
the polynomial that encodes the computation of the WPP pair (Ni1,Mj1) on input 0n with

oracle L(N
(·)
i2

,M
(·)
j2

) as given by Lemma 5.6. We know that for every B ⊆ Σn+1 such that

Zeros(B,n,2n−1) or Ones(B,n,2n−1) is true, the set A = A ∪ B satisfies the hypothesis
of Lemma 5.6. Hence

Zeros
(
B,n,2n−1) ⇒ p

(
χA∪B(x1),χA∪B(x2), . . . , χA∪B(xm)

) = 1, (6)

Ones
(
B,n,2n−1) ⇒ p

(
χA∪B(x1),χA∪B(x2), . . . , χA∪B(xm)

) = 0. (7)

684 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
W.l.o.g. assume that x1, x2, . . . , x2n enumerate the strings in 0Σn, and that x2n+1, x2n+2,

. . . , x2n+1 enumerate the strings in 1Σn. Statement (6) implies that for every z1, z2, . . . , z2n

satisfying
∑2n

i=1 zi > 2n−1,

p
(
z1, z2, . . . , z2n ,0,0, . . .0︸ ︷︷ ︸

2n

, χA∪B(x2n+1+1), . . . , χA∪B(xm)
) − 1 = 0, (8)

and Statement (7) implies that for every z1, z2, . . . , z2n satisfying
∑2n

i=1 zi > 2n−1,

p
(

0,0, . . .0︸ ︷︷ ︸
2n

, z1, z2, . . . , z2n , χA∪B(x2n+1+1), . . . , χA∪B(xm)
) = 0. (9)

Since deg(p) � 4r(n) · r(r(n)) < 2n−1, we can apply Lemma 5.7 to Eqs. (8) and (9).
We obtain p(0,0, . . . ,0, χA∪B(x2n+1+1), . . . , χA∪B(xm)) − 1 = 0, and p(0,0, . . . ,0,

χA∪B(x2n+1+1), . . . , χA∪B(xm)) = 0, respectively. A contradiction. This completes the
proofs of Claim 6 and Theorem 5.8. �

For any k ∈ N+, let WPPk denote the kth level of WPP hierarchy formed by composing
WPP with itself up to k levels. The proof of Theorem 5.8 can be easily extended to show
the following general result: (∀k ∈ N+) (∃A) [ZPPA � WPPk,A].

6. Extensions to other classes

In this section, we demonstrate the technique of using degree lower bound of polyno-
mials in constructing relativized worlds for classes defined by probabilistic oracle Turing
machines. Hemaspaandra, Jain, and Vereshchagin [26] showed that relative to an oracle,
IP ∩ coIP has no polynomial-time Turing hard sets for ZPP. We extend their result in The-
orem 6.3 by constructing an oracle world where MIP ∩ coMIP has no polynomial-time
Turing hard sets for ZPP. In the proof, we use the characterization of MIP in terms of ora-
cle proof systems as given by Fortnow, Rompel, and Sipser [20]. Note that in the real world
(i.e. relative to ∅ as an oracle) MIP∅ ∩coMIP∅ = NEXP∩coNEXP and so, MIP∅ ∩coMIP∅
contains polynomial-time Turing hard sets for ZPP∅ = ZPP. It follows that Theorem 6.3
does not hold in the real world.

Definition 6.1. [20] We say that a set L has an oracle proof system if there exists a proba-
bilistic polynomial-time oracle Turing machine N such that for all x ∈ Σ∗,

x ∈ L ⇒ (∃Q ⊆ Σ∗)
[
Prob

[
NQ(x) accepts

]
� 1 − 2|x|] and

x /∈ L ⇒ (∀Q ⊆ Σ∗)
[
Prob

[
NQ(x) accepts

]
� 2−|x|],

where the probability is over the random coin tosses done by N .

The next theorem states that the class of sets accepted by multiprover interactive proto-
cols (MIP) is the same as the class of sets that are accepted by oracle proof systems.

Theorem 6.2. [20] A set L is accepted by an oracle proof system if and only if L is accepted
by a multiprover interactive protocol.

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 685
Since the proof of Theorem 6.2 relativizes, it suffices to construct a relativized world
where no oracle proof system accepts a set that is polynomial-time Turing hard for ZPP.
We construct such a relativized world in the next theorem.

Theorem 6.3. There exists an oracle A such that MIPA ∩ coMIPA has no �p,A
T -hard set

for ZPPA.

First we prove the following analog of Lemma 4.5 for probabilistic polynomial-time
oracle Turing machines.

Lemma 6.4. Let O ⊆ Σ∗ and let N be a probabilistic polynomial-time oracle Turing
machine. Let p be a polynomial that bounds the running time of N . Then for every x ∈ Σ∗
with Prob[NO(x) accepts] � 2/3,∥∥{

α ∈ Σ∗ | Prob
[
NO∪{α}(x) accepts

]
� 1/3

}∥∥ � 4p
(|x|)2

.

Proof. Let N ′ be a nondeterministic polynomial-time oracle Turing machine with time
bound p such that for every oracle A and x ∈ Σ∗,

Prob
[
NA(x) accepts

] = #accN ′A(x)/2p(|x|).

Because #P ⊆ GapP relative to every oracle, there is a nondeterministic oracle Turing ma-
chine N ′′ that is time bounded by p such that for every oracle A and x ∈ Σ∗,

Prob
[
NA(x) accepts

] = gapN ′′A(x)/2p(|x|).

Let x ∈ Σ∗ and define

C = {
α ∈ Σ∗ ∣∣ Prob

[
NO∪{α}(x) accepts

]
� 1/3

}
.

To get a contradiction, assume that k =df ‖C‖ > 4p(|x|)2. Let s ∈ Z[y1, y2, . . . , yk] be
the polynomial encoding of N ′′O(x) w.r.t. C. From Definition 2.5 it is easy to see that s

satisfies the following properties:

(1) For every y1, y2, . . . , yk ∈ {0,1}, s(y1, y2, . . . , yk)/2p(|x|) ∈ [0,1].
(2) s(0,0, . . . ,0)/2p(|x|) ∈ [2/3,1].
(3) s(y1, y2, . . . , yk)/2p(|x|) ∈ [0,1/3] for every y1, y2, . . . , yk ∈ {0,1} with

∑k
i=1 yi = 1.

(4) deg(s) � p(|x|).

Here we cannot directly apply Lemma 4.2, since s may not approximate any boolean func-
tion. This is so because for y1, y2, . . . , yk ∈ {0,1} with

∑k
i=1 yi /∈ {0,1}, we know only

that s(y1, y2, . . . , yk)/2p(|x|) ∈ [0,1] (s may take, say, value 0.5). But inspection of the
proof by Nisan and Szegedy [29] reveals that this is sufficient for the proof to go through.
Their proof yields that deg(s) �

√
k/4. Therefore p(|x|) � deg(s) �

√
k/4 = √‖C‖/4,

and hence ‖C‖ � 4p(|x|)2. A contradiction. This completes the proof of Lemma 6.4. �
Proof of Theorem 6.3. Let (Ni,Nj ,Mk) be an enumeration of tuples where Ni and Nj

are probabilistic polynomial-time oracle Turing machines as in Definition 6.1, and Mk is a

686 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
deterministic polynomial-time oracle Turing machine. Also, for each B ⊆ Σ∗ and for each
(i, j) ∈ N2, the test language L〈i,j〉(B) is the same as the one in the proof of Theorem 4.6.
If N is a probabilistic polynomial-time oracle Turing machine and B ⊆ Σ∗, then let

L
(
NB

) =df
{
w ∈ Σ∗ | (∃Q ⊆ Σ∗)

[
Prob

[
NQ⊕B(w) accepts

]
� 1 − 2−|w|]}.

We say that NB fails to be a valid MIPB machine if and only if there exists w ∈ Σ∗ such
that

• (∀Q⊆ Σ∗) [Prob[NQ⊕B(w) accepts] < 1 − 2−|w|], and
• (∃Q ⊆ Σ∗) [Prob[NQ⊕B(w) accepts] > 2−|w|].

In stage 〈i, j, k〉, we diagonalize against tuple (Ni,Nj ,Mk) and modify oracle A at some
length. We will treat NA

i and NA
j as machines accepting complementary sets in MIPA.

Initially, A := 0Σ∗.

Stage 〈i, j,k〉: Let r(·) be a polynomial that bounds the running time of each of Ni , Nj

and Mk . Choose n large enough so that (a) n is a power of the 〈i, j 〉th prime number,
(b) 2n−1 > 4 · r(n) · r(r(n))2, (c) n satisfies any promises made in the previous stages and
no string of length n or more is queried in the previous stages, and (d) n is larger than the
value of n in the previous stage. Let A := A \ Σn+1.

If there exists a set B ⊆ Σn+1 such that NA∪B
i or NA∪B

j fails to be a valid MIPA∪B

machine or if L(NA∪B
i) �= L(NA∪B

j), then perform the following steps. Set A := A ∪ B

and then move to the next stage with the promise to choose the value of n in the next stage
to be larger than r(|w|), where w is an arbitrary string such that one of the following is
true.

• w makes NA
i or NA

j invalid, or

• w satisfies w ∈ L(NA
i) ⇔ w ∈ L(NA

j).

Note that setting A in the former step may cause the test language L〈i,j〉(A) not to be in
ZPPA. However, this is not a problem because the purpose of L〈i,j〉(A) is to witness that
(NA

i ,NA
j) does not constitute a set in MIPA ∩ coMIPA that is polynomial-time Turing-

hard for ZPPA, which is already accomplished due to the invalidity of NA
i or NA

j as an

MIPA machine, or due to L(NA
i) �= L(NA

j).
Otherwise, proceed with the following claim.

Claim 7. For any B ⊆ Σn+1, there exists a set C ⊆ Σ∗ with ‖C‖ � 4 · r(n) · r(r(n))2

such that for every z ∈ Σn+1 \ C, the replacement of B by B ∪ {z} does not change the
acceptance behavior of Mk(0n) with oracle L(NA∪B

i).

Let us assume that the claim is true. Start with B := ∅. If Mk(0n) with oracle L(NA
i)

accepts, then apply Claim 7 to add, one after the other, new strings from 1Σn to B such
that the acceptance behavior of Mk(0n) with the oracle L(NA∪B) does not change. Keep
i

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 687
adding strings from 1Σn to B until B contains more than 2n−1 strings. This is feasible
because 2n−1 > 4 · r(n) · r(r(n))2 � ‖C‖.

The case that Mk(0n) with oracle L(NA
i) rejects is treated analogously by adding strings

from 0Σn to B .
Move to the next stage with A := A∪ B .

End of Stage

The correctness of the construction is as in the proof of Theorem 4.6. This completes
the proof of Theorem 6.3. �
Proof of Claim 7. Let β1, β2, . . . , β�, where 0 � � � r(n), be the sequence of queries
made by Mk(0n) to the oracle L(NA∪B

i). Fix any query βe from this sequence. Note that
both NA∪B

i and NA∪B
j are valid MIPA∪B machines accepting complementary sets. There-

fore by Definition 6.1 and the complementarity of L(NA∪B
i) and L(NA∪B

j), one of

• (∃Q ⊆ Σ∗) [Prob[NQ⊕(A∪B)
i (βe) accepts] � 2/3], or

• (∃Q ⊆ Σ∗) [Prob[NQ⊕(A∪B)
j (βe) accepts] � 2/3]

is true. Fix a set Q⊆ Σ∗ and γ ∈ {i, j} such that Prob[NQ⊕(A∪B)
γ (βe)] � 2/3. Let

C(βe) = {
α ∈ Σ∗ | Prob

[
NQ⊕(A∪B∪{α})

γ (βe) accepts
]
� 1/3

}
.

Applying Lemma 6.4 with O := 0Q ∪ 1A ∪ 1B and x := βe, we obtain ‖C(βe)‖ �
4 · r(r(n))2.

By Definition 6.1, βe ∈ L(NA∪B
γ) and for every α ∈ Σn+1 − C(βe), we have

βe ∈ L(N
A∪B∪{α}
γ) as well. Let C =df C(β1) ∪ C(β2) ∪ · · · ∪ C(β�). Clearly, ‖C‖ �

4 · r(n) · r(r(n))2. �
Corollary 6.5. There is an oracle relative to which

(1) ZPP, RP, coRP, IP ∩ coIP have no polynomial-time Turing complete sets [26],
(2) BPP has no polynomial-time Turing complete sets ([24] + [2]), and
(3) MIP ∩ coMIP has no polynomial-time Turing complete sets.

Acknowledgments

We are grateful to Lane Hemaspaandra for his encouragement, advice, and guidance
throughout the project. We thank Mayur Thakur for stimulating discussions.

References

[1] N. Alon, R. Beigel, Lower bounds for approximations by low degree polynomials over Zm, in: Proceed-
ings of the 16th Annual IEEE Conference on Computational Complexity, Chicago, IL, 18–21, June, IEEE
Comput. Soc., 2001, pp. 184–187.

688 H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689
[2] K. Ambos-Spies, A note on complete problems for complexity classes, Inform. Process. Lett. 23 (5) (1986)
227–230.

[3] V. Arvind, P. Kurur, Graph isomorphism is in SPP, in: Proceedings of the 43rd IEEE Symposium on Foun-
dations of Computer Science, Los Alamitos, 16–19, November, IEEE Comput. Soc., 2002, pp. 743–750.

[4] V. Arvind, N. Vinodchandran, Solvable black-box group problems are low for PP, Theoret. Comput.
Sci. 180 (1–2) (1997) 17–45.

[5] J. Aspnes, R. Beigel, M. Furst, S. Rudich, The expressive power of voting polynomials, Combinatorica 14 (2)
(1994) 135–148.

[6] L. Babai, Trading group theory for randomness, in: Proceedings of the 17th ACM Symposium on Theory of
Computing, ACM Press, 1985, pp. 421–429.

[7] R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. de Wolf, Quantum lower bounds by polynomials, J. ACM 48
(2001) 778–797.

[8] R. Beigel, The polynomial method in circuit complexity, in: Proceedings of the 8th Structure in Complexity
Theory Conference, San Diego, CA, May, IEEE Comput. Soc., 1993, pp. 82–95.

[9] R. Beigel, Perceptrons, PP, and the polynomial hierarchy, Comput. Complexity 4 (4) (1994) 339–349.
[10] R. Beigel, H. Buhrman, L. Fortnow, NP might not be as easy as detecting unique solutions, in: Proceedings

of the 30th ACM Symposium on Theory of Computing, ACM Press, 1998, pp. 203–208.
[11] R. Beigel, N. Reingold, D. Spielman, PP is closed under intersection, J. Comput. System Sci. 50 (2) (1995)

191–202.
[12] M. Ben-Or, S. Goldwasser, J. Kilian, A. Wigderson, Multi-prover interactive proofs: How to remove in-

tractability assumptions, in: Proceedings of the 21st ACM Symposium on Theory of Computing, ACM
Press, 1988, pp. 113–131.

[13] M. de Graaf, P. Valiant, Comparing EQP and MOD
pk P using polynomial degree lower bounds, Technical

report, quant-ph/0211179, Quantum Physics, 2002.
[14] H. Ehlich, K. Zeller, Schwankung von Polynomen zwischen Gitterpunkten, Math. Z. 86 (1964) 41–44.
[15] S. Fenner, PP-lowness and a simple definition of AWPP, Theory Comput. Syst. 36 (2) (2003) 199–212.
[16] S. Fenner, L. Fortnow, S. Kurtz, Gap-definable counting classes, J. Comput. System Sci. 48 (1) (1994)

116–148.
[17] S. Fenner, L. Fortnow, S. Kurtz, L. Li, An oracle builder’s toolkit, Inform. and Comput. 182 (2) (2003)

95–136.
[18] S. Fenner, L. Fortnow, L. Li, Gap-definability as a closure property, Inform. and Comput. 130 (1) (1996)

1–17.
[19] L. Fortnow, J. Rogers, Complexity limitations on quantum computation, J. Comput. System Sci. 59 (2)

(1999) 240–252.
[20] L. Fortnow, J. Rompel, M. Sipser, On the power of multi-prover interactive protocols, Theoret. Comput.

Sci. 134 (1994) 545–557.
[21] J. Goldsmith, D. Joseph, Three results on the polynomial isomorphism of complete sets, in: Proceedings of

the 27th IEEE Symposium on Foundations of Computer Science, 1986, pp. 390–397.
[22] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems, SIAM J.

Comput. 18 (2) (1989) 186–208.
[23] S. Gupta, Closure properties and witness reduction, J. Comput. System Sci. 50 (3) (1995) 412–432.
[24] J. Hartmanis, L. Hemachandra, Complexity classes without machines: On complete languages for UP, The-

oret. Comput. Sci. 58 (1988) 129–142.
[25] J. Hartmanis, L. Hemachandra, One-way functions and the non-isomorphism of NP-complete sets, Theoret.

Comput. Sci. 81 (1) (1991) 155–163.
[26] L. Hemaspaandra, S. Jain, N. Vereshchagin, Banishing robust Turing completeness, Internat. J. Found. Com-

put. Sci. 4 (3) (1993) 245–265.
[27] L. Hemaspaandra, M. Ogihara, The Complexity Theory Companion, Springer-Verlag, 2002.
[28] L. Hemaspaandra, A. Ramachandran, M. Zimand, Worlds to die for, SIGACT News 26 (4) (1995) 5–15.
[29] N. Nisan, M. Szegedy, On the degree of boolean functions as real polynomials, Comput. Complexity 4 (4)

(1994) 301–313.
[30] M. Ogiwara, L. Hemachandra, A complexity theory for feasible closure properties, J. Comput. System

Sci. 46 (3) (1993) 295–325.

H. Spakowski, R. Tripathi / Journal of Computer and System Sciences 72 (2006) 660–689 689
[31] K. Regan, Polynomials and combinatorial definitions of languages, in: L. Hemaspaandra, A. Selman (Eds.),
Complexity Theory Retrospective II, Springer-Verlag, 1997, pp. 261–293.

[32] T. Rivlin, E. Cheney, A comparison of uniform approximations on an interval and a finite subset thereof,
SIAM J. Numer. Anal. 3 (2) (June 1966) 311–320.

[33] J. Rosser, L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6
(1962) 64–94.

[34] U. Schöning, A low and a high hierarchy within NP, J. Comput. System Sci. 27 (1983) 14–28.
[35] M. Sipser, On relativization and the existence of complete sets, in: Proceedings of the 9th International

Colloquium on Automata, Languages, and Programming, in: Lecture Notes in Comput. Sci., vol. 140,
Springer-Verlag, 1982, pp. 523–531.

[36] R. Smolensky, Algebraic methods in the theory of lower bounds for boolean circuit complexity, in: Proceed-
ings of the 19th ACM Symposium on Theory of Computing, ACM Press, 1987, pp. 77–82.

[37] H. Spakowski, M. Thakur, R. Tripathi, Quantum and classical complexity classes: Separations, collapses,
and closure properties, Inform. and Comput. 200 (1) (2005) 1–34.

[38] H. Spakowski, R. Tripathi, Degree bounds on polynomials and relativization theory, in: Proceedings of the
3rd IFIP International Conference on Theoretical Computer Science, Kluwer, 2004, pp. 105–118.

[39] J. Tarui, Degree complexity of boolean functions and its applications to relativized separations, in: Proceed-
ings of the 6th Annual Conference on Structure in Complexity Theory, SCTC ’91, Chicago, IL, June, IEEE
Comput. Soc., 1991, p. 285.

[40] S. Toda, PP is as hard as the polynomial-time hierarchy, SIAM J. Comput. 20 (5) (1991) 865–877.
[41] S. Toda, M. Ogiwara, Counting classes are at least as hard as the polynomial-time hierarchy, SIAM J.

Comput. 21 (2) (1992) 316–328.
[42] J. Torán, Complexity classes defined by counting quantifiers, J. ACM 38 (3) (1991) 753–774.
[43] N. Vereshchagin, Relativizable and nonrelativizable theorems in the polynomial theory of algorithms,

Russian Acad. Sci. Izv. Math. 42 (2) (1994) 261–298.
[44] N. Vereshchagin, Relativizability in complexity theory, in: L.D. Beklemishev, M. Pentus, N. Vereshchagin

(Eds.), Provability, Complexity, Grammars, in: Amer. Math. Soc. Transl. Ser. 2, vol. 192, 1999, pp. 87–172.
[45] N. Vinodchandran, Counting complexity of solvable black-box group problems, SIAM J. Comput. 33 (4)

(2004) 852–869.

