7 research outputs found

    A complexity dichotomy for hypergraph partition functions

    Full text link
    We consider the complexity of counting homomorphisms from an rr-uniform hypergraph GG to a symmetric rr-ary relation HH. We give a dichotomy theorem for r>2r>2, showing for which HH this problem is in FP and for which HH it is #P-complete. This generalises a theorem of Dyer and Greenhill (2000) for the case r=2r=2, which corresponds to counting graph homomorphisms. Our dichotomy theorem extends to the case in which the relation HH is weighted, and the goal is to compute the \emph{partition function}, which is the sum of weights of the homomorphisms. This problem is motivated by statistical physics, where it arises as computing the partition function for particle models in which certain combinations of rr sites interact symmetrically. In the weighted case, our dichotomy theorem generalises a result of Bulatov and Grohe (2005) for graphs, where r=2r=2. When r=2r=2, the polynomial time cases of the dichotomy correspond simply to rank-1 weights. Surprisingly, for all r>2r>2 the polynomial time cases of the dichotomy have rather more structure. It turns out that the weights must be superimposed on a combinatorial structure defined by solutions of an equation over an Abelian group. Our result also gives a dichotomy for a closely related constraint satisfaction problem.Comment: 21 page

    The complexity of weighted and unweighted #CSP

    Get PDF
    We give some reductions among problems in (nonnegative) weighted #CSP which restrict the class of functions that needs to be considered in computational complexity studies. Our reductions can be applied to both exact and approximate computation. In particular, we show that a recent dichotomy for unweighted #CSP can be extended to rational-weighted #CSP.Comment: 11 page

    FPTAS for Counting Monotone CNF

    Full text link
    A monotone CNF formula is a Boolean formula in conjunctive normal form where each variable appears positively. We design a deterministic fully polynomial-time approximation scheme (FPTAS) for counting the number of satisfying assignments for a given monotone CNF formula when each variable appears in at most 55 clauses. Equivalently, this is also an FPTAS for counting set covers where each set contains at most 55 elements. If we allow variables to appear in a maximum of 66 clauses (or sets to contain 66 elements), it is NP-hard to approximate it. Thus, this gives a complete understanding of the approximability of counting for monotone CNF formulas. It is also an important step towards a complete characterization of the approximability for all bounded degree Boolean #CSP problems. In addition, we study the hypergraph matching problem, which arises naturally towards a complete classification of bounded degree Boolean #CSP problems, and show an FPTAS for counting 3D matchings of hypergraphs with maximum degree 44. Our main technique is correlation decay, a powerful tool to design deterministic FPTAS for counting problems defined by local constraints among a number of variables. All previous uses of this design technique fall into two categories: each constraint involves at most two variables, such as independent set, coloring, and spin systems in general; or each variable appears in at most two constraints, such as matching, edge cover, and holant problem in general. The CNF problems studied here have more complicated structures than these problems and require new design and proof techniques. As it turns out, the technique we developed for the CNF problem also works for the hypergraph matching problem. We believe that it may also find applications in other CSP or more general counting problems.Comment: 24 pages, 2 figures. version 1=>2: minor edits, highlighted the picture of set cover/packing, and an implication of our previous result in 3D matchin

    A complexity dichotomy for partition functions with mixed signs

    Get PDF
    Partition functions, also known as homomorphism functions, form a rich family of graph invariants that contain combinatorial invariants such as the number of k-colourings or the number of independent sets of a graph and also the partition functions of certain "spin glass" models of statistical physics such as the Ising model. Building on earlier work by Dyer, Greenhill and Bulatov, Grohe, we completely classify the computational complexity of partition functions. Our main result is a dichotomy theorem stating that every partition function is either computable in polynomial time or #P-complete. Partition functions are described by symmetric matrices with real entries, and we prove that it is decidable in polynomial time in terms of the matrix whether a given partition function is in polynomial time or #P-complete. While in general it is very complicated to give an explicit algebraic or combinatorial description of the tractable cases, for partition functions described by a Hadamard matrices -- these turn out to be central in our proofs -- we obtain a simple algebraic tractability criterion, which says that the tractable cases are those "representable" by a quadratic polynomial over the field GF(2)
    corecore