160 research outputs found

    QMR: A Quasi-Minimal Residual method for non-Hermitian linear systems

    Get PDF
    The biconjugate gradient (BCG) method is the natural generalization of the classical conjugate gradient algorithm for Hermitian positive definite matrices to general non-Hermitian linear systems. Unfortunately, the original BCG algorithm is susceptible to possible breakdowns and numerical instabilities. A novel BCG like approach is presented called the quasi-minimal residual (QMR) method, which overcomes the problems of BCG. An implementation of QMR based on a look-ahead version of the nonsymmetric Lanczos algorithm is proposed. It is shown how BCG iterates can be recovered stably from the QMR process. Some further properties of the QMR approach are given and an error bound is presented. Finally, numerical experiments are reported

    Breakdowns in the implementation of the Lánczos method for solving linear systems

    Get PDF
    AbstractThe Lánczos method for solving systems of linear equations is based on formal orthogonal polynomials. Its implementation is realized via some recurrence relationships between polynomials of a family of orthogonal polynomials or between those of two adjacent families of orthogonal polynomials. A division by zero can occur in such recurrence relations, thus causing a breakdown in the algorithm which has to be stopped. In this paper, two types of breakdowns are discussed. The true breakdowns which are due to the nonexistence of some polynomials and the ghost breakdowns which are due to the recurrence relationship used. Among all the recurrence relationships which can be used and all the algorithms for implementing the Lánczos method which came out from them, the only reliable algorithm is Lánczos/Orthodir which can only suffer from true breakdowns. It is shown how to avoid true breakdowns in this algorithm. Other algorithms are also discussed and the case of near-breakdown is treated. The same treatment applies to other methods related to Lánczos'

    A Switching Approach to Avoid Breakdown in Lanczos-Type Algorithms

    Get PDF
    Lanczos-type algorithms are well known for their inherent instability. They typically breakdown when relevant orthogonal polynomials do not exist. Current approaches to avoiding breakdown rely on jumping over the non-existent polynomials to resume computation. This jumping strategy may have to be used many times during the solution process. We suggest an alternative to jumping which consists in switching between different algorithms that have been generated using different recurrence relations between orthogonal polynomials. This approach can be implemented as three different strategies: ST1, ST2, and ST3.We shall briefly recall how Lanczos-type algorithms are derived. Four of the most prominent such algorithms namely A4, A12, A5/B10 and A5/B8 will be presented and then deployed in the switching framework. In this paper, only strategy ST2 will be investigated. Numerical results will be presented. © 2014 NSP Natural Sciences Publishing Cor

    Recent advances in Lanczos-based iterative methods for nonsymmetric linear systems

    Get PDF
    In recent years, there has been a true revival of the nonsymmetric Lanczos method. On the one hand, the possible breakdowns in the classical algorithm are now better understood, and so-called look-ahead variants of the Lanczos process have been developed, which remedy this problem. On the other hand, various new Lanczos-based iterative schemes for solving nonsymmetric linear systems have been proposed. This paper gives a survey of some of these recent developments

    Avoiding breakdown in variants of the bi-cgstab algorithm

    Get PDF
    AbstractThe bi-cg method and its variants such as cgs, bi-cgstab, and bi-cgstab2 for solving nonsymmetric linear systems of equations can suffer from breakdown. By using the theory of the formal orthogonal polynomials we present a breakdown-free bi-cgstab algorithm and a breakdown-free bi-cgstab2 algorithm. Only exact breakdowns are cured accurately

    Closer to the solutions: iterative linear solvers

    Get PDF
    The solution of dense linear systems received much attention after the second world war, and by the end of the sixties, most of the problems associated with it had been solved. For a long time, Wilkinson's \The Algebraic Eigenvalue Problem" [107], other than the title suggests, became also the standard textbook for the solution of linear systems. When it became clear that partial dierential equations could be solved numerically, to a level of accuracy that was of interest for application areas (such as reservoir engineering, and reactor diusion modeling), there was a strong need for the fast solution of the discretized systems, and iterative methods became popular for these problems
    corecore