13,269 research outputs found

    Convergence and Optimality of Adaptive Mixed Methods on Surfaces

    Full text link
    In a 1988 article, Dziuk introduced a nodal finite element method for the Laplace-Beltrami equation on 2-surfaces approximated by a piecewise-linear triangulation, initiating a line of research into surface finite element methods (SFEM). Demlow and Dziuk built on the original results, introducing an adaptive method for problems on 2-surfaces, and Demlow later extended the a priori theory to 3-surfaces and higher order elements. In a separate line of research, the Finite Element Exterior Calculus (FEEC) framework has been developed over the last decade by Arnold, Falk and Winther and others as a way to exploit the observation that mixed variational problems can be posed on a Hilbert complex, and Galerkin-type mixed methods can be obtained by solving finite dimensional subproblems. In 2011, Holst and Stern merged these two lines of research by developing a framework for variational crimes in abstract Hilbert complexes, allowing for application of the FEEC framework to problems that violate the subcomplex assumption of Arnold, Falk and Winther. When applied to Euclidean hypersurfaces, this new framework recovers the original a priori results and extends the theory to problems posed on surfaces of arbitrary dimensions. In yet another seemingly distinct line of research, Holst, Mihalik and Szypowski developed a convergence theory for a specific class of adaptive problems in the FEEC framework. Here, we bring these ideas together, showing convergence and optimality of an adaptive finite element method for the mixed formulation of the Hodge Laplacian on hypersurfaces.Comment: 22 pages, no figures. arXiv admin note: substantial text overlap with arXiv:1306.188

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Subsumption Algorithms for Three-Valued Geometric Resolution

    Full text link
    In our implementation of geometric resolution, the most costly operation is subsumption testing (or matching): One has to decide for a three-valued, geometric formula, if this formula is false in a given interpretation. The formula contains only atoms with variables, equality, and existential quantifiers. The interpretation contains only atoms with constants. Because the atoms have no term structure, matching for geometric resolution is hard. We translate the matching problem into a generalized constraint satisfaction problem, and discuss several approaches for solving it efficiently, one direct algorithm and two translations to propositional SAT. After that, we study filtering techniques based on local consistency checking. Such filtering techniques can a priori refute a large percentage of generalized constraint satisfaction problems. Finally, we adapt the matching algorithms in such a way that they find solutions that use a minimal subset of the interpretation. The adaptation can be combined with every matching algorithm. The techniques presented in this paper may have applications in constraint solving independent of geometric resolution.Comment: This version was revised on 18.05.201

    Completeness of Randomized Kinodynamic Planners with State-based Steering

    Full text link
    Probabilistic completeness is an important property in motion planning. Although it has been established with clear assumptions for geometric planners, the panorama of completeness results for kinodynamic planners is still incomplete, as most existing proofs rely on strong assumptions that are difficult, if not impossible, to verify on practical systems. In this paper, we focus on an important class of kinodynamic planners, namely those that interpolate trajectories in the state space. We provide a proof of probabilistic completeness for these planners under assumptions that can be readily verified from the system's equations of motion and the user-defined interpolation function. Our proof relies crucially on a property of interpolated trajectories, termed second-order continuity (SOC), which we show is tightly related to the ability of a planner to benefit from denser sampling. We analyze the impact of this property in simulations on a low-torque pendulum. Our results show that a simple RRT using a second-order continuous interpolation swiftly finds solution, while it is impossible for the same planner using standard Bezier curves (which are not SOC) to find any solution.Comment: 21 pages, 5 figure
    corecore