713 research outputs found

    A data dependency recovery system for a heterogeneous multicore processor

    Get PDF
    Multicore processors often increase the performance of applications. However, with their deeper pipelining, they have proven increasingly difficult to improve. In an attempt to deliver enhanced performance at lower power requirements, semiconductor microprocessor manufacturers have progressively utilised chip-multicore processors. Existing research has utilised a very common technique known as thread-level speculation. This technique attempts to compute results before the actual result is known. However, thread-level speculation impacts operation latency, circuit timing, confounds data cache behaviour and code generation in the compiler. We describe an software framework codenamed Lyuba that handles low-level data hazards and automatically recovers the application from data hazards without programmer and speculation intervention for an asymmetric chip-multicore processor. The problem of determining correct execution of multiple threads when data hazards occur on conventional symmetrical chip-multicore processors is a significant and on-going challenge. However, there has been very little focus on the use of asymmetrical (heterogeneous) processors with applications that have complex data dependencies. The purpose of this thesis is to: (i) define the development of a software framework for an asymmetric (heterogeneous) chip-multicore processor; (ii) present an optimal software control of hardware for distributed processing and recovery from violations;(iii) provides performance results of five applications using three datasets. Applications with a small dataset showed an improvement of 17% and a larger dataset showed an improvement of 16% giving overall 11% improvement in performance

    Using the Xeon Phi platform to run speculatively-parallelized codes

    Get PDF
    Producción CientíficaIntel Xeon Phi accelerators are one of the newest devices used in the field of parallel computing. However, there are comparatively few studies concerning their performance when using most of the existing parallelization techniques. One of them is thread-level speculation, a technique that optimistically tries to extract parallelism of loops without the need of a compile-time analysis that guarantees that the loop can be executed in parallel. In this article we evaluate the performance delivered by an Intel Xeon Phi coprocessor when using a software, state-of-the-art thread-level speculative parallelization library in the execution of well-known benchmarks. We describe both the internal characteristics of the Xeon Phi platform and the particularities of the thread-level speculation library being used as benchmark. Our results show that, although the Xeon Phi delivers a relatively good speedup in comparison with a shared-memory architecture in terms of scalability, the relatively low computing power of its computational units when specific vectorization and SIMD instructions are not fully exploited makes this first generation of Xeon Phi architectures not competitive (in terms of absolute performance) with respect to conventional multicore systems for the execution of speculatively parallelized code.2018-04-01Castilla-Leon Regional Government (VA172A12-2); MICINN (Spain) and the European Union FEDER (MOGECOPP project TIN2011-25639, HomProg-HetSys project TIN2014-58876-P, CAPAP-H5 network TIN2014-53522-REDT)

    MURAC: A unified machine model for heterogeneous computers

    Get PDF
    Includes bibliographical referencesHeterogeneous computing enables the performance and energy advantages of multiple distinct processing architectures to be efficiently exploited within a single machine. These systems are capable of delivering large performance increases by matching the applications to architectures that are most suited to them. The Multiple Runtime-reconfigurable Architecture Computer (MURAC) model has been proposed to tackle the problems commonly found in the design and usage of these machines. This model presents a system-level approach that creates a clear separation of concerns between the system implementer and the application developer. The three key concepts that make up the MURAC model are a unified machine model, a unified instruction stream and a unified memory space. A simple programming model built upon these abstractions provides a consistent interface for interacting with the underlying machine to the user application. This programming model simplifies application partitioning between hardware and software and allows the easy integration of different execution models within the single control ow of a mixed-architecture application. The theoretical and practical trade-offs of the proposed model have been explored through the design of several systems. An instruction-accurate system simulator has been developed that supports the simulated execution of mixed-architecture applications. An embedded System-on-Chip implementation has been used to measure the overhead in hardware resources required to support the model, which was found to be minimal. An implementation of the model within an operating system on a tightly-coupled reconfigurable processor platform has been created. This implementation is used to extend the software scheduler to allow for the full support of mixed-architecture applications in a multitasking environment. Different scheduling strategies have been tested using this scheduler for mixed-architecture applications. The design and implementation of these systems has shown that a unified abstraction model for heterogeneous computers provides important usability benefits to system and application designers. These benefits are achieved through a consistent view of the multiple different architectures to the operating system and user applications. This allows them to focus on achieving their performance and efficiency goals by gaining the benefits of different execution models during runtime without the complex implementation details of the system-level synchronisation and coordination

    A Survey of Techniques for Architecting TLBs

    Get PDF
    “Translation lookaside buffer” (TLB) caches virtual to physical address translation information and is used in systems ranging from embedded devices to high-end servers. Since TLB is accessed very frequently and a TLB miss is extremely costly, prudent management of TLB is important for improving performance and energy efficiency of processors. In this paper, we present a survey of techniques for architecting and managing TLBs. We characterize the techniques across several dimensions to highlight their similarities and distinctions. We believe that this paper will be useful for chip designers, computer architects and system engineers

    TOWARD HIGHLY SECURE AND AUTONOMIC COMPUTING SYSTEMS: A HIERARCHICAL APPROACH

    Get PDF
    The overall objective of this research project is to develop novel architectural techniques as well as system software to achieve a highly secure and intrusion-tolerant computing system. Such system will be autonomous, self-adapting, introspective, with self-healing capability under the circumstances of improper operations, abnormal workloads, and malicious attacks. The scope of this research includes: (1) System-wide, unified introspection techniques for autonomic systems, (2) Secure information-flow microarchitecture, (3) Memory-centric security architecture, (4) Authentication control and its implication to security, (5) Digital right management, (5) Microarchitectural denial-of-service attacks on shared resources. During the period of the project, we developed several architectural techniques and system software for achieving a robust, secure, and reliable computing system toward our goal
    corecore