4,182 research outputs found

    Overcoming rule-based rigidity and connectionist limitations through massively-parallel case-based reasoning

    Get PDF
    Symbol manipulation as used in traditional Artificial Intelligence has been criticized by neural net researchers for being excessively inflexible and sequential. On the other hand, the application of neural net techniques to the types of high-level cognitive processing studied in traditional artificial intelligence presents major problems as well. A promising way out of this impasse is to build neural net models that accomplish massively parallel case-based reasoning. Case-based reasoning, which has received much attention recently, is essentially the same as analogy-based reasoning, and avoids many of the problems leveled at traditional artificial intelligence. Further problems are avoided by doing many strands of case-based reasoning in parallel, and by implementing the whole system as a neural net. In addition, such a system provides an approach to some aspects of the problems of noise, uncertainty and novelty in reasoning systems. The current neural net system (Conposit), which performs standard rule-based reasoning, is being modified into a massively parallel case-based reasoning version

    Understanding person acquisition using an interactive activation and competition network

    No full text
    Face perception is one of the most developed visual skills that humans display, and recent work has attempted to examine the mechanisms involved in face perception through noting how neural networks achieve the same performance. The purpose of the present paper is to extend this approach to look not just at human face recognition, but also at human face acquisition. Experiment 1 presents empirical data to describe the acquisition over time of appropriate representations for newly encountered faces. These results are compared with those of Simulation 1, in which a modified IAC network capable of modelling the acquisition process is generated. Experiment 2 and Simulation 2 explore the mechanisms of learning further, and it is demonstrated that the acquisition of a set of associated new facts is easier than the acquisition of individual facts in isolation of one another. This is explained in terms of the advantage gained from additional inputs and mutual reinforcement of developing links within an interactive neural network system. <br/

    Remembering 'zeal' but not 'thing':reverse frequency effects as a consequence of deregulated semantic processing

    Get PDF
    More efficient processing of high frequency (HF) words is a ubiquitous finding in healthy individuals, yet frequency effects are often small or absent in stroke aphasia. We propose that some patients fail to show the expected frequency effect because processing of HF words places strong demands on semantic control and regulation processes, counteracting the usual effect. This may occur because HF words appear in a wide range of linguistic contexts, each associated with distinct semantic information. This theory predicts that in extreme circumstances, patients with impaired semantic control should show an outright reversal of the normal frequency effect. To test this prediction, we tested two patients with impaired semantic control with a delayed repetition task that emphasised activation of semantic representations. By alternating HF and low frequency (LF) trials, we demonstrated a significant repetition advantage for LF words, principally because of perseverative errors in which patients produced the previous LF response in place of the HF target. These errors indicated that HF words were more weakly activated than LF words. We suggest that when presented with no contextual information, patients generate a weak and unstable pattern of semantic activation for HF words because information relating to many possible contexts and interpretations is activated. In contrast, LF words tend are associated with more stable patterns of activation because similar semantic information is activated whenever they are encountered

    Bilingualism and the single route/dual route debate

    Get PDF
    The debate between single and dual route accounts of cognitive processes has been generated predominantly by the application of connectionist modeling techniques to two areas of psycholinguistics. This paper draws an analogy between this debate and bilingual language processing. A prominent question within bilingual word recognition is whether the bilingual has functionally separate lexicons for each language, or a single system able to recognize the words in both languages. Empirical evidence has been taken to support a model which includes two separate lexicons working in parallel (Smith, 1991; Gerard and Scarborough, 1989). However, a range of interference effects has been found between the bilingual’s two sets of lexical knowledge (Thomas, 1997a). Connectionist models have been put forward which suggest that a single representational resource may deal with these data, so long as words are coded according to language membership (Thomas, 1997a, 1997b, Dijkstra and van Heuven, 1998). This paper discusses the criteria which might be used to differentiate single route and dual route models. An empirical study is introduced to address one of these criteria, parallel access, with regard to bilingual word recognition. The study fails to find support for the dual route model

    The Missing Link between Morphemic Assemblies and Behavioral Responses:a Bayesian Information-Theoretical model of lexical processing

    Get PDF
    We present the Bayesian Information-Theoretical (BIT) model of lexical processing: A mathematical model illustrating a novel approach to the modelling of language processes. The model shows how a neurophysiological theory of lexical processing relying on Hebbian association and neural assemblies can directly account for a variety of effects previously observed in behavioural experiments. We develop two information-theoretical measures of the distribution of usages of a morpheme or word, and use them to predict responses in three visual lexical decision datasets investigating inflectional morphology and polysemy. Our model offers a neurophysiological basis for the effects of morpho-semantic neighbourhoods. These results demonstrate how distributed patterns of activation naturally result in the arisal of symbolic structures. We conclude by arguing that the modelling framework exemplified here, is a powerful tool for integrating behavioural and neurophysiological results

    High level cognitive information processing in neural networks

    Get PDF
    Two related research efforts were addressed: (1) high-level connectionist cognitive modeling; and (2) local neural circuit modeling. The goals of the first effort were to develop connectionist models of high-level cognitive processes such as problem solving or natural language understanding, and to understand the computational requirements of such models. The goals of the second effort were to develop biologically-realistic model of local neural circuits, and to understand the computational behavior of such models. In keeping with the nature of NASA's Innovative Research Program, all the work conducted under the grant was highly innovative. For instance, the following ideas, all summarized, are contributions to the study of connectionist/neural networks: (1) the temporal-winner-take-all, relative-position encoding, and pattern-similarity association techniques; (2) the importation of logical combinators into connection; (3) the use of analogy-based reasoning as a bridge across the gap between the traditional symbolic paradigm and the connectionist paradigm; and (4) the application of connectionism to the domain of belief representation/reasoning. The work on local neural circuit modeling also departs significantly from the work of related researchers. In particular, its concentration on low-level neural phenomena that could support high-level cognitive processing is unusual within the area of biological local circuit modeling, and also serves to expand the horizons of the artificial neural net field
    • 

    corecore