72,975 research outputs found

    Endoscopic Camera Control by Head Movements for Thoracic Surgery

    Get PDF
    In current video-assisted thoracic surgery, the endoscopic camera is operated by an assistant of the surgeon, which has several disadvantages. This paper describes a system which enables the surgeon to control the endoscopic camera without the help of an assistant. The system is controlled using head movements, so the surgeon can use his/her hands to oper- ate the instruments. The system is based on a flexible endoscope, which leaves more space for the surgeon to operate his/her instruments compared to a rigid endoscope. The endoscopic image is shown either on a monitor or by means of a head- mounted display. Several trial sessions were performed with an anatomical model. Results indicate that the developed concept may provide a solution to some of the problems currently encountered in video-assisted thoracic surgery. The use of a head-mounted display turned out to be a valuable addition since it ensures the image is always in front of the surgeon’s eyes

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Interactive form creation: exploring the creation and manipulation of free form through the use of interactive multiple input interface

    Get PDF
    Most current CAD systems support only the two most common input devices: a mouse and a keyboard that impose a limit to the degree of interaction that a user can have with the system. However, it is not uncommon for users to work together on the same computer during a collaborative task. Beside that, people tend to use both hands to manipulate 3D objects; one hand is used to orient the object while the other hand is used to perform some operation on the object. The same things could be applied to computer modelling in the conceptual phase of the design process. A designer can rotate and position an object with one hand, and manipulate the shape [deform it] with the other hand. Accordingly, the 3D object can be easily and intuitively changed through interactive manipulation of both hands.The research investigates the manipulation and creation of free form geometries through the use of interactive interfaces with multiple input devices. First the creation of the 3D model will be discussed; several different types of models will be illustrated. Furthermore, different tools that allow the user to control the 3D model interactively will be presented. Three experiments were conducted using different interactive interfaces; two bi-manual techniques were compared with the conventional one-handed approach. Finally it will be demonstrated that the use of new and multiple input devices can offer many opportunities for form creation. The problem is that few, if any, systems make it easy for the user or the programmer to use new input devices

    In-home and remote use of robotic body surrogates by people with profound motor deficits

    Get PDF
    By controlling robots comparable to the human body, people with profound motor deficits could potentially perform a variety of physical tasks for themselves, improving their quality of life. The extent to which this is achievable has been unclear due to the lack of suitable interfaces by which to control robotic body surrogates and a dearth of studies involving substantial numbers of people with profound motor deficits. We developed a novel, web-based augmented reality interface that enables people with profound motor deficits to remotely control a PR2 mobile manipulator from Willow Garage, which is a human-scale, wheeled robot with two arms. We then conducted two studies to investigate the use of robotic body surrogates. In the first study, 15 novice users with profound motor deficits from across the United States controlled a PR2 in Atlanta, GA to perform a modified Action Research Arm Test (ARAT) and a simulated self-care task. Participants achieved clinically meaningful improvements on the ARAT and 12 of 15 participants (80%) successfully completed the simulated self-care task. Participants agreed that the robotic system was easy to use, was useful, and would provide a meaningful improvement in their lives. In the second study, one expert user with profound motor deficits had free use of a PR2 in his home for seven days. He performed a variety of self-care and household tasks, and also used the robot in novel ways. Taking both studies together, our results suggest that people with profound motor deficits can improve their quality of life using robotic body surrogates, and that they can gain benefit with only low-level robot autonomy and without invasive interfaces. However, methods to reduce the rate of errors and increase operational speed merit further investigation.Comment: 43 Pages, 13 Figure

    Study to design and develop remote manipulator system

    Get PDF
    Modeling of human performance in remote manipulation tasks is reported by automated procedures using computers to analyze and count motions during a manipulation task. Performance is monitored by an on-line computer capable of measuring the joint angles of both master and slave and in some cases the trajectory and velocity of the hand itself. In this way the operator's strategies with different transmission delays, displays, tasks, and manipulators can be analyzed in detail for comparison. Some progress is described in obtaining a set of standard tasks and difficulty measures for evaluating manipulator performance

    Surface electromyographic control of a novel phonemic interface for speech synthesis

    Full text link
    Many individuals with minimal movement capabilities use AAC to communicate. These individuals require both an interface with which to construct a message (e.g., a grid of letters) and an input modality with which to select targets. This study evaluated the interaction of two such systems: (a) an input modality using surface electromyography (sEMG) of spared facial musculature, and (b) an onscreen interface from which users select phonemic targets. These systems were evaluated in two experiments: (a) participants without motor impairments used the systems during a series of eight training sessions, and (b) one individual who uses AAC used the systems for two sessions. Both the phonemic interface and the electromyographic cursor show promise for future AAC applications.F31 DC014872 - NIDCD NIH HHS; R01 DC002852 - NIDCD NIH HHS; R01 DC007683 - NIDCD NIH HHS; T90 DA032484 - NIDA NIH HHShttps://www.ncbi.nlm.nih.gov/pubmed/?term=Surface+electromyographic+control+of+a+novel+phonemic+interface+for+speech+synthesishttps://www.ncbi.nlm.nih.gov/pubmed/?term=Surface+electromyographic+control+of+a+novel+phonemic+interface+for+speech+synthesisPublished versio

    Index to nasa tech briefs, issue number 2

    Get PDF
    Annotated bibliography on technological innovations in NASA space program

    The measurement of driver describing functions in simulated steering control tasks

    Get PDF
    Measurements of driver describing functions in steering control tasks have been made using a driving simulator. The task was to regulate against a random crosswind gust input on a straight roadway, in order to stay in the center of the lane. Although driving is a multiloop task in general, the forcing function and situation were configured so that an inner-loop visual cue feedback of heading angle of heading rate would dominate, and the driver's response was interpreted to be primarily single-loop. The driver describing functions were measured using an STI describing function analyzer. Three replications for each subject showed good repeatability within a subject. There were some intersubject differences as expected, but the crossover frequencies, effective time delays, and stability margins were generally consistent with the prior data and models for similar manual control tasks. The results further confirm the feasibility of measuring human operator response properties in nominal control tasks with full (real-world) visual field displays
    corecore