13,445 research outputs found

    A Comparison of Scheduling Approaches for Mixed-Parallel Applications on Heterogeneous Platforms

    Get PDF
    International audienceMixed-parallel applications can take advantage of large-scale computing platforms but scheduling them efficiently on such platforms is challenging. In this paper we compare the two main proposed approaches for solving this scheduling problem on a heterogeneous set of homogeneous clusters. We first modify previously proposed algorithms for both approaches and show that our modifications lead to significant improvements. We then perform a comparison of the modified algorithms in simulation over a wide range of application and platform conditions. We find that although both approaches have advantages, one of them is most likely he most appropriate for the majority of users

    A Comparison of Scheduling Approaches for Mixed-Parallel Applications on Heterogeneous Platforms

    Get PDF
    International audienceMixed-parallel applications can take advantage of large-scale computing platforms but scheduling them efficiently on such platforms is challenging. In this paper we compare the two main proposed approaches for solving this scheduling problem on a heterogeneous set of homogeneous clusters. We first modify previously proposed algorithms for both approaches and show that our modifications lead to significant improvements. We then perform a comparison of the modified algorithms in simulation over a wide range of application and platform conditions. We find that although both approaches have advantages, one of them is most likely he most appropriate for the majority of users

    Task Scheduling on the Cloud with Hard Constraints

    Full text link
    Scheduling Bag-of-Tasks (BoT) applications on the cloud can be more challenging than grid and cluster environ- ments. This is because a user may have a budgetary constraint or a deadline for executing the BoT application in order to keep the overall execution costs low. The research in this paper is motivated to investigate task scheduling on the cloud, given two hard constraints based on a user-defined budget and a deadline. A heuristic algorithm is proposed and implemented to satisfy the hard constraints for executing the BoT application in a cost effective manner. The proposed algorithm is evaluated using four scenarios that are based on the trade-off between performance and the cost of using different cloud resource types. The experimental evaluation confirms the feasibility of the algorithm in satisfying the constraints. The key observation is that multiple resource types can be a better alternative to using a single type of resource.Comment: Visionary Track of the IEEE 11th World Congress on Services (IEEE SERVICES 2015

    Taking advantage of hybrid systems for sparse direct solvers via task-based runtimes

    Get PDF
    The ongoing hardware evolution exhibits an escalation in the number, as well as in the heterogeneity, of computing resources. The pressure to maintain reasonable levels of performance and portability forces application developers to leave the traditional programming paradigms and explore alternative solutions. PaStiX is a parallel sparse direct solver, based on a dynamic scheduler for modern hierarchical manycore architectures. In this paper, we study the benefits and limits of replacing the highly specialized internal scheduler of the PaStiX solver with two generic runtime systems: PaRSEC and StarPU. The tasks graph of the factorization step is made available to the two runtimes, providing them the opportunity to process and optimize its traversal in order to maximize the algorithm efficiency for the targeted hardware platform. A comparative study of the performance of the PaStiX solver on top of its native internal scheduler, PaRSEC, and StarPU frameworks, on different execution environments, is performed. The analysis highlights that these generic task-based runtimes achieve comparable results to the application-optimized embedded scheduler on homogeneous platforms. Furthermore, they are able to significantly speed up the solver on heterogeneous environments by taking advantage of the accelerators while hiding the complexity of their efficient manipulation from the programmer.Comment: Heterogeneity in Computing Workshop (2014

    Multi-criteria scheduling of pipeline workflows

    Get PDF
    Mapping workflow applications onto parallel platforms is a challenging problem, even for simple application patterns such as pipeline graphs. Several antagonist criteria should be optimized, such as throughput and latency (or a combination). In this paper, we study the complexity of the bi-criteria mapping problem for pipeline graphs on communication homogeneous platforms. In particular, we assess the complexity of the well-known chains-to-chains problem for different-speed processors, which turns out to be NP-hard. We provide several efficient polynomial bi-criteria heuristics, and their relative performance is evaluated through extensive simulations
    • 

    corecore