
HAL Id: inria-00329779
https://hal.inria.fr/inria-00329779

Submitted on 13 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling Dynamic Workflows onto Clusters of
Clusters using Postponing

Sascha Hunold, Thomas Rauber, Frédéric Suter

To cite this version:
Sascha Hunold, Thomas Rauber, Frédéric Suter. Scheduling Dynamic Workflows onto Clusters of
Clusters using Postponing. 3rd International Workshop on Workflow Systems in e-Science - WSES
2008, May 2008, Lyon, France. pp.669-674, �10.1109/CCGRID.2008.44�. �inria-00329779�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50219029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00329779
https://hal.archives-ouvertes.fr


Scheduling Dynamic Workflows onto Clusters of Clusters using Postponing

Sascha Hunold #, Thomas Rauber #, Frédéric Suter ∗

#Department of Mathematics and Physics
University of Bayreuth, Germany

∗ Nancy Université / LORIA
UMR 7503 CNRS - INPL - INRIA - Nancy 2 - UHP, Nancy 1

Abstract

In this article, we revisit the problem of scheduling dy-

namically generated directed acyclic graphs (DAGs)

of multi-processor tasks (M-tasks). A DAG is a ba-

sic model for expressing workflows applications where

each node represents a task of the workflow. We present

a novel algorithm (DMHEFT) for scheduling dynami-

cally generated DAGs onto a heterogeneous collection

of clusters. The scheduling decisions are based on the

predicted runtime of an M-task as well as the estima-

tion of the redistribution costs between data-dependent

tasks. The algorithm also takes care of unfavorable

placements of M-tasks by considering the postponing

of ready tasks even if idle processors are available. We

evaluate the scheduling algorithm by comparing the re-

sulting makespans to the results obtained by using other

scheduling algorithms, such as RePA and MHEFT.

1. Introduction

PC clusters have become mainstream for running

very time-consuming parallelized applications. Nowa-

days, there are many installations of those PC clusters

available to developers and researchers. The computa-

tional power of the parallel platform is the limiting fac-

tor in obtaining a certain result quality (short time, high

detail) of simulation applications. An efficient utiliza-

tion of multiple clusters can help to improve the quality

of the results significantly.

Many applications can be represented as work-

flows which can be modeled as DAGs. Each node in

the DAG represents an executable task and each di-

rected edge represents a data or a control dependency.

The mixed-parallel approach for parallelizing an appli-

cation where data-parallel nodes are executed concur-

rently often leads to faster execution times than pure

data-parallel applications [3]. A task which is as-

signed to a number of available processors is called a

multi-processor task (M-task). The scheduling of such

mixed-parallel applications has been studied for homo-

geneous platforms [8]. More recently, heterogenous

platforms (grid environments, clusters of clusters) have

become the target for scheduling mixed-parallel appli-

cations [1, 6]. The previous approaches assume that the

entire DAG is known at all time. However, DAGs can

also be created dynamically during execution time. For

instance, in a recursively implemented algorithm a task

may create new sub-tasks if certain criteria are satisfied

and so, the workflow is not known beforehand.

Scheduling dynamically generated DAGs on het-

erogenous clusters of clusters is challenging. Assign-

ing too many processors to one task may prevent other

tasks from being executed, and moreover, the scalability

of tasks being limited, assigning many processors does

not necessarily lead to a high performance efficiency.

A primary goal of scheduling algorithms is to

achieve a small makespan that is the time required to

execute all the nodes of the DAG. The reduction of

the communication costs plays an important role for

achieving small makespans. In general, a task receives

input data, performs some computation, and then pro-

duces output data. Input and output data (e.g., matrices

or vectors) are distributed across processors. Data re-

distribution is required when data produced by a source

task is required as input for a target task. Depending

on the processors assigned to source and target tasks,

the communication costs vary tremendously, especially

when the tasks are mapped onto different clusters.

In previous work, we have introduced the TGrid

framework which is an runtime environment for the ex-

ecution of M-tasks in clusters of clusters [4]. It sup-

ports the dynamic creation of M-tasks, leading to afore-

mentioned dynamically created DAGs. M-task pro-

grams can be used to implement scientific applications

which are formulated recursively, e.g., pre-defined con-

vergence criteria decide whether new tasks are gener-

ated or not. A first scheduling algorithm that produces

Eighth IEEE International Symposium on Cluster Computing and the Grid

978-0-7695-3156-4/08 $25.00 © 2008 IEEE
DOI 10.1109/CCGRID.2008.44

669



satisfying makespans for dynamic DAGs (ReP algo-

rithm) was proposed in [5]. For RePA, it is assumed that

the data distribution of tasks is unknown to the sched-

uler and therefore the redistribution costs cannot be esti-

mated. Since RePA does not account for redistribution

costs and attempts to use all idle processors in a het-

erogeneous system, long running tasks (not malleable)

could get scheduled to a small set of processors which

delays the execution of successor tasks.

In this article, we extend the RePA approach by

considering the time for performing data redistribution

between subsequent tasks and also propose a postpon-

ing strategy to avoid assigning a small number of pro-

cessors to computation intensive tasks. We evaluate the

performance of the new scheduling algorithm by run-

ning a number of simulations using SimGrid [2].

This paper is organized as follows. Section 2 points

out the problem of scheduling dynamically generated

DAGs and introduces the ReP algorithm. In Section 3

the DMHEFT algorithm is proposed which extends the

ReP algorithm by accounting for redistribution costs

and adding postponing strategies. Section 4 presents

the experimental evaluation of DMHEFT. Section 5 dis-

cusses related work and Section 6 concludes the article

and outlines future work.

2. Scheduling dynamic DAGs

In this section, we state the scheduling problem for

multi-processors tasks in a heterogeneous environment

and outline our abstraction model. We also recall the

ReP algorithm and discuss performance related draw-

backs of this approach in certain situations.

We consider a computational platform which con-

sists of k clusters Ci, i = 1, . . . ,k. Each cluster Ci con-

tains pi processors of the same type and speed. All

clusters are interconnected to a backbone via a single

network link and each cluster may have a different con-

nection topology. This is a reasonable setup since to-

days larger grid environments are mostly a collection of

internally homogeneous clusters.

Mixed-parallel applications can be modeled as a

DAG G = (N,E), where N = {ti|i = 1, . . . ,n} denotes

the set of nodes which represents M-tasks. E denotes

the set of edges
{

ei, j|(i, j) ∈ {1, . . . ,n}×{1, . . . ,n}
}

,

representing the data-dependencies between the nodes

in N. A node is associated with computational costs

which are modeled as the number of operations that this

task has to execute. Each edge ei, j is weighted by the

amount of data (in bytes) that task ti has to send task t j.

An execution environment for mixed-parallel ap-

plication such as TGrid does not have the notion of

DAGs. The mixed-parallel application is simply a

sequence of M-tasks which are generated during the

Algorithm 1 RePA

1: queue (ready tasks) sorted by decreasing computation cost and

node depth

2: while queue is not empty and clusters not saturated do

3: node = queue.pop()

4: c = find target cluster for node

5: processor nb p = get number of processors(node, c)

6: processor list l = select processors(node, c, p)

7: schedule node on c and l

execution of an application. The arising scheduling

problem is similar to the scheduling of batch jobs in

grids. The main difference is the existence of data-

dependencies between M-tasks. Therefore, the sched-

uler has to take special care of the communication costs

which are involved in the redistribution of data. Af-

ter the mixed-parallel application has finished its exe-

cution in the runtime environment, the call sequence of

M-tasks can be represented as a DAG.

Another requirement of our model is the fact that

M-tasks must be executed within a single cluster. As-

signing an M-task to processors of several different

clusters implies an overhead that is practically never re-

gained by shortening the execution time. The compu-

tational complexity of the scheduler increases signifi-

cantly which leads to a slower decision making process.

In previous work, we have introduced the ReP al-

gorithm (Reuse Processors Algorithm) as a possible

scheduling method to be used within the TGrid frame-

work. Algorithm 1 shows the algorithmic structure of

RePA which is extended in this article. The algorithm is

always executed when M-tasks have finished execution

and new tasks become ready. The queue of ready tasks

is sorted by the computation amount and node depth

(line 1). The node depth is the number of nodes (prede-

cessors) from the entry task to the ready node. Consid-

ering the node depth often avoids the problem of star-

vation that nodes with low computational costs will be

delayed too long and thus, successors of this node will

not become ready leading to a smaller degree of task

parallelization. Sorting by the computational costs of

nodes is a common heuristic for most schedulers (LPT

strategy). The ’big’ tasks have to be scheduled first and

the other tasks are used to ’fill the holes’. This heuristic

avoids the case that larger tasks which require multi-

ple processors to get done in an acceptable amount of

time will not get executed since the fragmentation of

the clusters is too high.

RePA uses three steps to find a suitable assignment

of processors to an M-task (lines 4-6). At first, the al-

gorithm determines which cluster is the most suitable

for executing the currently considered task. The clus-

ter with the most available computational power is se-

lected, i.e., the cluster which minimizes the finish time

670



time

processors processors

tar(Tx)

Tx

Tx

Figure 1. Common problem for dynamic schedulers: placing

and executing a task Tx at time tar(Tx) may lead to an unfavor-
able schedule if the number of available processors is small.

time

processors

postponing time

tmax
pp

tcurrent

pmax
k

t
imp
pp

Tx

Figure 2. DMHEFT – postponing

heuristic for M-task Tx which be-
comes executable at tcurrent .

of the task (EFT strategy). In the second step, the al-

gorithm determines the number of processors which are

assigned to this task. This number is computed by tak-

ing into account the computational power of the cluster

and the computational costs of the other unscheduled

tasks. As a result, a task is assigned to a fair share of the

available processors which leaves enough room for the

other unscheduled tasks. In step three, the algorithm se-

lects this number of processors from the list of available

processors. In the selection phase, RePA favors the pro-

cessors which were assigned to a parent task to reduce

the communication overhead for data redistribution.

The experimental evaluation of RePA showed good

results in terms of the resulting makespan. Nonethe-

less, our testing methodology and the simulation tools

have evolved significantly since then. A newer sim-

ulation testbed, described in Section 4, allowed us to

obtain more accurate and realistic scheduling results.

Moreover, we have separated and further investigated

the cases in which the schedules produced by RePA had

most potential for improvements compared the sched-

ules produced by an algorithm with a static DAG ap-

proach such as MHEFT.

It clearly turned out that neglecting the commu-

nication costs for data redistribution when selecting a

cluster can lead to a big communication overhead, es-

pecially when data has to be moved across cluster bor-

ders. We could also observe that the strategy of using

all processors at all time has a big impact on the overall

makespan. As we consider moldable tasks, the proces-

sors which are assigned to a task are determined before

starting the task and cannot be changed during the ex-

ecution. An illustration of a problematic setup is de-

picted on the lefthand side of Figure 1. At time tar, the

task Tx becomes ready. In this case, RePA attempts to

schedule the biggest task (most operations to perform)

on the available processors. As one can see, as a conse-

quence of this decision Tx will be executed on this clus-

ter for a long time. If the mixed-parallel program does

not contain a high degree of task parallelism and many

tasks are dependent on the result of Tx, the schedule will

contain large holes. A possible solution to this problem

might be the utilization of a postponing strategy, e.g.,

task Tx can be postponed until more processors become

available, see Figure 1 (right).

In the context of this work, we highlight two es-

sential objectives for reducing the average makespan

of schedules of dynamically generated DAGs: (1) ac-

counting for the redistribution costs when assigning a

task to a particular cluster and, (2) using postponing

strategies to find a good mapping of computational in-

tensive M-tasks to a cluster.

3. Scheduling algorithm using postponing

In this section, we give a detailed description

of DMHEFT. The algorithm follows similar princi-

ples as RePA and matches the objectives stated above.

The name DMHEFT (dynamic MHEFT) was chosen

since the algorithm schedules dynamically generated

DAGs of M-tasks by using an EFT approach onto a

heterogeneous collection of clusters.

As mentioned, the general ideas behind DMHEFT

and RePA are similar, i.e., DMHEFT proceeds in the

same sequence of steps as RePA which are: (1) select-

ing a cluster, (2) determining the number of processors

on this cluster, (3) selecting the processors of this clus-

ter. The pseudo code of DMHEFT is shown in Algo-

rithm 2. The algorithm (line 1-4) is always executed

when a node becomes executable.

The first improvement is to consider the commu-

nication costs involved in the data redistribution pro-

cess. To achieve this, we have to consider all clusters

having at least one idle processor which are potential

candidates for the task assignment. For each cluster,

671



DMHEFT estimates the computation time of the con-

sidered task and also estimates the communication time

for the data redistribution between this possible task al-

location and parent task allocations. The algorithm se-

lects the cluster with the smallest total time consisting

of the task execution time and the maximum of all re-

distribution operations.

Algorithm 2 DMHEFT

1: while not done do

2: node schedules = schedule( dag, get ready nodes() )

3: for each schedule in node schedules do

4: run task( schedule )

function schedule (dag dag, list ready nodes)

1: Q= { ready nodes } ∪ PQ // PQ contains postponed tasks

2: sort Q by incr. depth and decr. computation amount

3: node schedules = {}
4: while Q is not empty and clusters not saturated do

5: Ti= pop(Q)

6: [Cbest , lpbest , tbest ] = get best cluster(Ti)

7: if Cbest > −1 then // clusters not saturated

8: task schedule = (Ti, lpbest , tcurrent , tbest )

9: if Ti is postponed then

10: if tcurrent + tbest < t
imp
pp or tcurrent ≥ tmax

pp then

11: // force scheduling

12: add task schedule to node schedules

13: else append Ti to PQ

14: else if postponable(Ti , tbest ) then

15: append Ti to PQ

16: else add task schedule to node schedules

17: return node schedules

function get best cluster( task T , queue Q )

1: Cbest = −1, tbest = −1, lpbest ={}
2: for each cluster C j do

3: pC j
= get nb of processors for cluster(T ,C j ,Q)

4: lpavail = get processors for cluster(C j , pC j
)

5: test
j = estimate time( Ti, lpavail )

6: if test
j < tbest or -1 then set Cbest ,tbest , lpbest

7: return [Cbest ,tbest , lpbest ]

function postponable( task T , test
T )

1: tmax
pp = tcurrent + fpp · t

est
T // max postponing time span

2: t
imp
pp = tcurrent + fpi · t

est
T // improvement minimum

3: for each cluster Ck do

4: ptmax
pp = get free processor(tmax

pp ,Ck)

5: pmax
k = fcu · ptmax

pp

// only a fraction of the processors might be available

6: t
pp
i,k = estimate time(T, pmax

k )

7: if tmax
pp + t

pp
i,k ≤ t

imp
pp then

8: return true // postponing will probably work

9: return false

The second optimization based on postponing

strategies requires more changes. Similar to RePA, the

node with the highest computation amount (or smallest

node depth) is selected and assigned to the cluster which

minimizes the finish time of the task (accounting redis-

tribution costs). As seen in Figure 1, executing a com-

putational intensive task on a small set of processors

might increase the resulting makespan of the schedule.

Thus, a postponing strategy (function postponable) can

help to overcome this problem. The herein proposed

postponing heuristic uses three parameters depicted in

Figure 2. Their values can be computed from the cur-

rent time tcurrent (the time when a task T becomes exe-

cutable) and the estimated finish time of this task test
T .

We defined as tmax
pp = tcurrent + fpp · test

T ,0 ≤ fpp < 1,

the maximum amount of time that a task can be post-

poned. We expressed by t
imp
pp = tcurrent + fpi · t

est
T ,0 <

fpi ≤ 1∧ t
imp
pp ≥ tmax

pp , the time by which a postponed

task must be completed to justify postponing. And fi-

nally pmax
k = fcu · ptmax

pp ,0 < fcu < 1 represents the num-

ber of processors which can be assigned the a task at

time tmax
pp , where ptmax

pp is the number of free processors

at this time. fpp, fpi and fcu are adjustment variables

whose values will be given later.

After the best cluster and the processor list for the

currently active task T has been determined (lines 1-8),

the scheduler calls the postponable function (line 14)

to estimate the likeliness that postponing T can reduce

the execution time of T . The rationale behind the three

postponing parameters is as follows. The value of tmax
pp

denotes the time by which a postponed task must be ex-

ecuted. For this time, the scheduler tries to predict the

number of free processors ptmax
pp on this cluster by scan-

ning the estimated finish time of the currently running

tasks. Since it is unlikely that at time tmax
pp only T will

be ready for execution the number of free processors

which can be assigned to T is limited to a fraction of

ptmax
pp and is denoted by the variable pmax

k . The values

help the scheduler to predict the execution time of T

at time tmax
pp if pmax

k processors could be assigned to T .

Due to the fact that the number of executable tasks at

time tmax
pp is unknown, the number of idle processors is

hard to predict. Therefore, a task is only postponed if it

could lead to a significant performance gain. This per-

formance gain is expressed by the time t
imp
pp , i.e., only

if the postponing, the redistribution, and the execution

of T is predicted to be done by t
imp
pp the scheduler will

postpone T .

A postponable task is removed from the list of

ready nodes and appended to a list of postponed nodes

(line 15). The algorithm in function schedule outlines

the postponing strategy with an upper postponing bound

(line 10). If time tmax
pp is up task T is scheduled on its

currently best known allocation. We experimented with

two cases: (1) postponing using a hard upper bound,

and (2) the postponing is not bounded by a threshold

(lines 9-13 removed). In case (1), a task is executed

when tmax
pp is up. In the second case, the time tmax

pp is

only used to estimate if further postponing would pro-

vide a benefit to the execution time. If so, a task can

be postponed multiple times, as long as the postponing

condition (function postponable) evaluates to true.

672



4. Experimental results

To evaluate the quality of DMHEFT, we performed

a series of simulations using different configurations of

platforms and DAGs. We consider randomly gener-

ated application graphs to model a variety of applica-

tion classes. We have used the same DAG generation

framework as in [6]. Each of the generated edges is as-

sociated with communication costs which are specified

by the data size of the nodes. That pinpoints the size of

the data but not the communication pattern used to sim-

ulate the data redistribution. Therefore, we assume for

the data redistribution that data (matrices) is distributed

in a block-partitioned fashion onto the processors of the

tasks. The communication pattern (the number of mes-

sages which must be transferred) is created by comput-

ing the overlapping of the output and input matrices of

the nodes. In total, 144 DAGs consisting of 25, 50, 75,

or 100 nodes were generated. These DAGs are sched-

uled onto 40 different grid platforms. Each grid plat-

form consists of either 4 or 8 clusters, and each cluster

contains processors has a computation performance be-

tween 1 GFLOPS and 1.5 GFLOPS. For the cluster in-

terconnection network, a 10 Gbit Ethernet network with

a latency of 100 µs is considered.

All experiments have been carried out using the

SimGrid toolkit [2] (revision 4988) which provides

a testbed with all necessary functionality to simulate

mixed-parallel programs in a heterogeneous distributed

environment. We have used the ptask L07 work-

station model which considers network contention and

also takes network latencies into account.

Before DMHEFT can be compared to the other

algorithms, we first have to obtain suitable values for

the three postponing parameters fpp, fpi, and fcu intro-

duced in Section 3. Experiments have been performed

with all possible combinations of pre-defined values for

each parameter. The following values have been chosen

for the each postponing parameter for the simulations:

fpp = 0.2, fpi = 0.8, and fcu = 0.4.

As mentioned before, we have evaluated several

strategies for DMHEFT which are: (1) consider the re-

distribution costs only, no postponing, (2) use a post-

poning strategy with a threshold (hard limit), and (3)

use a postponing strategy without threshold. Not sur-

prisingly, the version that does not use a postponing

strategy produced the longest schedules in the average.

However, the scheduling method without using a post-

poning threshold showed better results in the average

and was therefore used in the comparison experiments.

Figure 3 shows the average makespan of the sched-

ules produced by DMHEFT, RePA, and MHEFT. Sim-

ilar trends were noticed for 4 and 8 clusters. The

schedules produced by MHEFT are shorter in the av-

25 50 75 100
0

200

400

600

800

1000

1200

8 clusters

number of nodes

a
v
g

 m
a

k
e

s
p

a
n

 [
s
]

 

 
MHEFT

REPA

DMHEFT

Figure 3. Average makespan produced by
MHEFT, RePA, and DMHEFT.

erage which could be expected since MHEFT follows

a static approach where the entire DAG is known at all

times. More importantly, the results for DMHEFT show

a huge improvement compared to RePA as its average

makespan is at least 34% better.

Table 1. Pair-wise comparison of the schedul-

ing algorithms for a total of 5760 tests.

MHEFT REPA DMHEFT combined

MHEFT

better

xxx

4932 4242 79.64 %

equal 26 54 0.69 %

worse 802 1464 19.67 %

REPA

better 802

xxx

1533 20.27 %

equal 26 185 1.83 %

worse 4932 4042 77.90 %

DMHEFT

better 1464 4042

xxx

47.80 %

equal 54 185 2.07 %

worse 4242 1533 50.13 %

Table 1 presents another view of the experimen-

tal data. This table gives a one to one comparison

for each pair of scheduling algorithms. The use of

MHEFT results in better schedules in about 79% of

all cases. When comparing only the dynamic schedul-

ing approaches, DMHEFT clearly outperforms RePA

in 4042 tests (70%). The relative high number of bet-

ter schedules obtained using RePA (1533) is the result

of different strategies for placing the first task on each

cluster. If a cluster is empty, RePA allocates all avail-

able processors for the first scheduled task. In con-

trast, DMHEFT allocates only the ’fair share’ for a task

leading to a lower communication overhead for small

DAGs (25 nodes) compared to RePA. In comparison to

MHEFT, DMHEFT produces better schedules in more

than 25% of all cases which is noteworthy, especially

since DMHEFT can only predict future allocations.

It is also interesting to examine the relative qual-

ity of the schedules produced by an algorithm using the

degradation from best metric. The first line of Table 2

presents the average over the total number of experi-

673



Table 2. Average degradation from best.

MHEFT REPA DMHEFT

avg over all exp. 5.2% 98.7% 36.2%

# not best 1888 5200 4338

avg over # not best 16.0% 109.4% 48.1%

ments (5760) of the percent relative difference for each

experiment between the makespan achieved by an algo-

rithm and the best makespan achieved. We can see that

MHEFT produces schedules which are very close to the

best schedule and that for dynamic DAGs, the schedules

produced by DMHEFT are in the average more than

60% shorter than those of RePA. It could by criticized

that this averaging method favors an algorithm which

is often the best. Thus, we provide a second averaging

method in which the sum is divided by the number of

experiments where a given algorithm did not produced

the shortest schedule. This number is shown in the sec-

ond line of Table 2 while the third line presents the con-

sequent degradation from best. We can see that MHEFT

is still close to the best schedule produced as MHEFT

knows the entire DAG before making the first decision.

Knowing that MHEFT produces often best schedules

or at least very close schedules, the comparison of the

degradation from the best of RePA and DMHEFT has a

significant meaning: a schedule produced by DMHEFT

is in average about 50% slower than a static approach,

and since RePA produces schedules which are twice as

long as the best, it can be stated that DMHEFT clearly

improves the schedule quality for dynamic DAGs.

5. Related work

Existing algorithms for scheduling mixed-parallel

programs are based on static DAGs. A number of

scheduling algorithms have been designed for the case

of homogeneous platforms [8]. An overview and dis-

cussion of mixed-parallel task scheduling algorithms

for heterogenous environments is provided in [6]. Re-

cently, the ∆-CTS [9] has been proposed which attempts

to increase the effective degree of task-parallelism

of a DAG by relaxing the critically classification of

ready tasks (bottom levels). An algorithm for dynamic

scheduling of directed graph-based workflows has been

presented in [7]. Even though the workflow model used

in this paper is similar to the M-task graphs of TGrid,

the main objective of both approaches is different. In-

stead of scheduling a static workflow representation on

a highly heterogeneous and dynamic grid environment,

the TGrid program itself can be treated as a dynamic

description of a mixed-parallel workflow which is exe-

cuted in a static environment consisting of several ho-

mogeneous clusters.

6. Conclusions

In this article we have presented the DMHEFT al-

gorithm for scheduling dynamic workflows. Our ap-

proach takes redistribution costs between dependent

tasks into account. To achieve a small makespan the

algorithm also features several postponing heuristics

which help to avoid unfavorable task placements. An

evaluation of the scheduling algorithm has shown that

DMHEFT outperforms RePA in most cases and is com-

petitive to static approaches like MHEFT even with de-

cisions based on the task scheduling history. In future

work, we will investigate the performance of DMHEFT

in a dynamic environment in which the predicted and

actual execution times of an M-task may differ. We

also plan to extend the approach to multiple DAGs using

fairness policies as suggested in [10] and finally to im-

plement DMHEFT and RePA within the TGrid schedul-

ing component for a real world evaluation.

References

[1] H. Casanova, F. Desprez, and F. Suter. From Heteroge-

neous Task Scheduling to Heterogeneous Mixed Paral-

lel Scheduling. In the 10th Int. Euro-Par Conf., volume

3149 of LNCS, 2004.

[2] H. Casanova, A. Legrand, and M. Quinson. SimGrid: a

Generic Framework for Large-Scale Distributed Exper-

iments. In 10th International Conference on Computer

Modeling and Simulation, Mar. 2008.

[3] S. Chakrabarti, K. Yelick, and J. Demmel. Models and

Scheduling Algorithms for Mixed Data and Task Paral-

lel Programs. JPDC, 47(2):168–184, 1997.

[4] S. Hunold, T. Rauber, and G. Rünger. TGrid – Grid Run-

time Support for Hierarchically Structured Task-parallel

Programs. In the 5th Int. HeteroPar Workshop, 2006.

[5] S. Hunold, T. Rauber, and G. Rünger. Dynamic Schedul-

ing of Multi-Processor Tasks on Clusters of Clusters. In

the 6th Int. HeteroPar Workshop, 2007.

[6] T. N’Takpé, F. Suter, and H. Casanova. A Comparison of

Scheduling Approaches for Mixed-Parallel Applications

on Heterogeneous Platforms. In the 6th Int. Symp. on

Parallel and Distributed Computing, 2007.

[7] R. Prodan and T. Fahringer. Dynamic Scheduling of

Scientific Workflow Applications on the Grid: A Case

Study. In the 2005 ACM Symposium on Applied Com-

puting, pages 687–694. ACM Press, 2005.

[8] A. Rădulescu and A. J. C. van Gemund. A Low-

Cost Approach towards Mixed Task and Data Parallel

Scheduling. In the 15th International Conference on

Parallel Processing (ICPP), pages 69–76, 2001.

[9] F. Suter. Scheduling ∆-Critical Tasks in Mixed-Parallel

Applications on a National Grid. In 8th Int. Conf. on

Grid Computing (GRID 2007), 2007.

[10] H. Zhao and R. Sakellariou. Scheduling Multiple DAGs

onto Heterogeneous Systems. In the 15th Heterogeneous

Computing Workshop (HCW), 2006.

674


