4 research outputs found

    ETCS On-board Unit Safety Testing: Saboteurs, Testing Strategy and Results

    Get PDF
    It is necessary to verify the faults tolerance of the European Train Control System (ETCS) on-board unit even if these faults are uncommon. Traditional test methods defined and used in ETCS do not allow to check this, so it is necessary to develop a new mechanism of tests. This paper presents the design and implementation of a saboteur applied to the railway sector. The main purpose of the saboteur is the fault injection in the communication interfaces. By means of a virtual laboratory it is possible to simulate actual train journeys to test the ETCS on-board unit. Making use of the saboteurs and the virtual laboratory it is possible to analyse the behaviour of the train in the presence of unexpected faults, and to verify that the decisions taken are correct to ensure the required safety level. Therefore, this work shows a testing strategy based on different kinds of train journeys when faults are injected, and the analysis of the results.</p

    Dependability analysis of web services

    Get PDF
    Web Services form the basis of the web based eCommerce eScience applications so it is vital that robust services are developed. Traditional validation and verification techniques are centred around the concept of removing all faults to guarantee correct operation whereas Dependability gives an assessment of how dependably a system can deliver the required functionality by assessing attributes, and by eliminating threats via means attempts to improve dependability. Fault injection is a well-proven dependability assessment method. Although much work has been done in the area of fault injection and distributed systems in general, there appears to have been little research carried out on applying this to middleware systems and Web Services in particular. There are additional problems associated with applying existing fault injection technologies to Web Services running in a virtual machine environment since most are either invasive or work at a machine level. The Fault Injection Technology (FIT) method has been devised to address these problems for middleware systems. The Web Service-Fault Injection Technology (WS-FIT) implementation applies the FIT method, based on network level fault injection, to Web Services to create a non-invasive dependability assessment method. It allows targeted perturbation of Web Service RFC parameters as well as more traditional network level fault injection operations. The WS-FIT tool includes taxonomies that define a system under test, fault models to apply and failure modes to be detected, and uses these taxonomies to generate fault injection campaigns. WS-FIT has been applied to a number of case studies and has successfully demonstrated its effectiveness. It has also been successfully applied to a third-party system to evaluate dependability means. It performed this dependability assessment as well as allowing debugging of the means to be undertaken uncovering unknown faults

    Fault injection testing method of software implemented fault tolerance mechanisms of web service systems

    Get PDF
    Testing Web Services applications and their Fault Tolerance Mechanisms (FTMs) is crucial for the development of today's applications. The performance and FTMs of composed service systems are hard to measure at design time because service instability is often caused by the nature of the network. Testing in a real internet environment is difficult to set up and control. However, the adequacy of FTMs and the performance of Web Service applications can be tested efficiently by injecting faults and observing how the target system performs under faulty conditions. This thesis investigates what is involved in testing the software-implemented fault tolerance mechanisms of Web Service systems through fault injection. We have developed a fault injection toolkit that emulates a WAN within a LAN environment between composed service components and offers full control over the emulated environments, in addition to the ability to inject communication and specific software faults. The tool also generates background workloads on the tested system for producing more realistic results. The testing method requires that the target system be constructed as a collection of Web Services applications interacting via messages. This enables the insertion of faults into the target system to emulate the incorrect behaviour of faulty conditions by injecting communication faults and manipulating messages. This approach allows the injection of faults while not requiring any significant changes to the target system. This testing method injects two classes of faults, manly communication and interface faults due to their big impact on Web service system dependability. The method differs from the previous work not only by injecting communication faults based on a Wide Area Network emulator, but also in its ability to inject a combination of communication and interface faults, which could cause what are called Byzantine faults (Arbitrary faults) at the application level. The proposed fault injection method has been applied to test a Web Service system deploying what is called a WS-Mediator for improving the system reliability. The WS-Mediator claims to offer comprehensive off-the-shelf fault tolerance mechanisms to cope with various kinds of typical Web Service application scenarios. We chose to use the N-version programming mechanism offered by the WS-Mediator, which has been tested through out tool. The testing demonstrated the usefulness of the method and its capacity to test the target system under different circumstances and faulty conditions.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore