5,779 research outputs found

    Population-based incremental learning with associative memory for dynamic environments

    Get PDF
    Copyright © 2007 IEEE. Reprinted from IEEE Transactions on Evolutionary Computation. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In recent years there has been a growing interest in studying evolutionary algorithms (EAs) for dynamic optimization problems (DOPs) due to its importance in real world applications. Several approaches, such as the memory and multiple population schemes, have been developed for EAs to address dynamic problems. This paper investigates the application of the memory scheme for population-based incremental learning (PBIL) algorithms, a class of EAs, for DOPss. A PBIL-specific associative memory scheme, which stores best solutions as well as corresponding environmental information in the memory, is investigated to improve its adaptability in dynamic environments. In this paper, the interactions between the memory scheme and random immigrants, multi-population, and restart schemes for PBILs in dynamic environments are investigated. In order to better test the performance of memory schemes for PBILs and other EAs in dynamic environments, this paper also proposes a dynamic environment generator that can systematically generate dynamic environments of different difficulty with respect to memory schemes. Using this generator a series of dynamic environments are generated and experiments are carried out to compare the performance of investigated algorithms. The experimental results show that the proposed memory scheme is efficient for PBILs in dynamic environments and also indicate that different interactions exist between the memory scheme and random immigrants, multi-population schemes for PBILs in different dynamic environments

    Dominance learning in diploid genetic algorithms for dynamic optimization problems

    Get PDF
    Copyright @ 2006 YangThis paper proposes an adaptive dominance mechanism for diploidy genetic algorithms in dynamic environments. In this scheme, the genotype to phenotype mapping in each gene locus is controlled by a dominance probability, which is learned adaptively during the searching progress and hence is adapted to the dynamic environment. Using a series of dynamic test problems, the proposed dominance scheme is compared to two other dominance schemes for diploidy genetic algorithms. The experimental results validate the efficiency of the proposed dominance learning scheme

    Hyper-learning for population-based incremental learning in dynamic environments

    Get PDF
    This article is posted here here with permission from IEEE - Copyright @ 2009 IEEEThe population-based incremental learning (PBIL) algorithm is a combination of evolutionary optimization and competitive learning. Recently, the PBIL algorithm has been applied for dynamic optimization problems. This paper investigates the effect of the learning rate, which is a key parameter of PBIL, on the performance of PBIL in dynamic environments. A hyper-learning scheme is proposed for PBIL, where the learning rate is temporarily raised whenever the environment changes. The hyper-learning scheme can be combined with other approaches, e.g., the restart and hypermutation schemes, for PBIL in dynamic environments. Based on a series of dynamic test problems, experiments are carried out to investigate the effect of different learning rates and the proposed hyper-learning scheme in combination with restart and hypermutation schemes on the performance of PBIL. The experimental results show that the learning rate has a significant impact on the performance of the PBIL algorithm in dynamic environments and that the effect of the proposed hyper-learning scheme depends on the environmental dynamics and other schemes combined in the PBIL algorithm.The work by Shengxiang Yang was supported by the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom under Grant EP/E060722/1

    Learning the dominance in diploid genetic algorithms for changing optimization problems

    Get PDF
    Using diploid representation with dominance scheme is one of the approaches developed for genetic algorithms to address dynamic optimization problems. This paper proposes an adaptive dominance mechanism for diploid genetic algorithms in dynamic environments. In this scheme, the genotype to phenotype mapping in each gene locus is controlled by a dominance probability, which is learnt adaptively during the searching progress. The proposed dominance scheme isexperimentally compared to two other schemes for diploid genetic algorithms. Experimental results validate the efficiency of the dominance learning scheme

    On the design of diploid genetic algorithms for problem optimization in dynamic environments

    Get PDF
    Tihis article is posted here with permission from the IEEE - Copyright @ 2006 IEEEUsing diploidy and dominance is one method to enhance the performance of genetic algorithms in dynamic environments. For diploidy genetic algorithms, there are two key design factors: the cardinality of genotypic alleles and the uncertainty in the dominance scheme. This paper investigates the effect of these two factors on the performance of diploidy genetic algorithms in dynamic environments. A generalized diploidy and dominance scheme is proposed for diploidy genetic algorithms, where the cardinality of genotypic alleles and/or the uncertainty in the dominance scheme can be easily tuned and studied. The experimental results show the efficiency of increasing genotypic cardinality rather than introducing uncertainty in the dominance scheme

    Evolutionary algorithms for dynamic optimization problems: workshop preface

    Get PDF
    Copyright @ 2005 AC

    Memory-based immigrants for genetic algorithms in dynamic environments

    Get PDF
    Copyright @ 2005 ACMInvestigating and enhancing the performance of genetic algorithms in dynamic environments have attracted a growing interest from the community of genetic algorithms in recent years. This trend reflects the fact that many real world problems are actually dynamic, which poses serious challenge to traditional genetic algorithms. Several approaches have been developed into genetic algorithms for dynamic optimization problems. Among these approches, random immigrants and memory schemes have shown to be beneficial in many dynamic problems. This paper proposes a hybrid memory and random immigrants scheme for genetic algorithms in dynamic environments. In the hybrid scheme, the best solution in memory is retrieved and acts as the base to create random immigrants to replace the worst individuals in the population. In this way, not only can diversity be maintained but it is done more efficiently to adapt the genetic algorithm to the changing environment. The experimental results based on a series of systematically constructed dynamic problems show that the proposed memory based immigrants scheme efficiently improves the performance of genetic algorithms in dynamic environments

    Biological evolution through mutation, selection, and drift: An introductory review

    Full text link
    Motivated by present activities in (statistical) physics directed towards biological evolution, we review the interplay of three evolutionary forces: mutation, selection, and genetic drift. The review addresses itself to physicists and intends to bridge the gap between the biological and the physical literature. We first clarify the terminology and recapitulate the basic models of population genetics, which describe the evolution of the composition of a population under the joint action of the various evolutionary forces. Building on these foundations, we specify the ingredients explicitly, namely, the various mutation models and fitness landscapes. We then review recent developments concerning models of mutational degradation. These predict upper limits for the mutation rate above which mutation can no longer be controlled by selection, the most important phenomena being error thresholds, Muller's ratchet, and mutational meltdowns. Error thresholds are deterministic phenomena, whereas Muller's ratchet requires the stochastic component brought about by finite population size. Mutational meltdowns additionally rely on an explicit model of population dynamics, and describe the extinction of populations. Special emphasis is put on the mutual relationship between these phenomena. Finally, a few connections with the process of molecular evolution are established.Comment: 62 pages, 6 figures, many reference

    On the Role of External Constraints in a Spatially Extended Evolutionary Prisoner's Dilemma Game

    Full text link
    We study the emergency of mutual cooperation in evolutionary prisoner's dilemma games when the players are located on a square lattice. The players can choose one of the three strategies: cooperation (C), defection (D) or "tit for tat" (T), and their total payoffs come from games with the nearest neighbors. During the random sequential updates the players adopt one of their neighboring strategies if the chosen neighbor has higher payoff. We compare the effect of two types of external constraints added to the Darwinian evolutionary processes. In both cases the strategy of a randomly chosen player is replaced with probability P by another strategy. In the first case, the strategy is replaced by a randomly chosen one among the two others, while in the second case the new strategy is always C. Using generalized mean-field approximations and Monte Carlo simulations the strategy concentrations are evaluated in the stationary state for different strength of external constraints characterized by the probability P.Comment: 19 pages, 10 figure
    corecore