6 research outputs found

    Discovering and Generating Hard Examples for Training a Red Tide Detector

    Full text link
    Currently, accurate detection of natural phenomena, such as red tide, that adversely affect wildlife and human, using satellite images has been increasingly utilized. However, red tide detection on satellite images still remains a very hard task due to unpredictable nature of red tide occurrence, extreme sparsity of red tide samples, difficulties in accurate groundtruthing, etc. In this paper, we aim to tackle both the data sparsity and groundtruthing issues by primarily addressing two challenges: i) significant lack of hard examples of non-red tide that can enhance detection performance and ii) extreme data imbalance between red tide and non-red tide examples. In the proposed work, we devise a 9-layer fully convolutional network jointly optimized with two plug-in modules tailored to overcoming the two challenges: i) a hard negative example generator (HNG) to supplement the hard negative (non-red tide) examples and ii) cascaded online hard example mining (cOHEM) to ease the data imbalance. Our proposed network jointly trained with HNG and cOHEM provides state-of-the-art red tide detection accuracy on GOCI satellite images.Comment: 10 page

    Comprehensive Comparison of Deep Learning Models for Lung and COVID-19 Lesion Segmentation in CT scans

    Full text link
    Recently there has been an explosion in the use of Deep Learning (DL) methods for medical image segmentation. However the field's reliability is hindered by the lack of a common base of reference for accuracy/performance evaluation and the fact that previous research uses different datasets for evaluation. In this paper, an extensive comparison of DL models for lung and COVID-19 lesion segmentation in Computerized Tomography (CT) scans is presented, which can also be used as a benchmark for testing medical image segmentation models. Four DL architectures (Unet, Linknet, FPN, PSPNet) are combined with 25 randomly initialized and pretrained encoders (variations of VGG, DenseNet, ResNet, ResNext, DPN, MobileNet, Xception, Inception-v4, EfficientNet), to construct 200 tested models. Three experimental setups are conducted for lung segmentation, lesion segmentation and lesion segmentation using the original lung masks. A public COVID-19 dataset with 100 CT scan images (80 for train, 20 for validation) is used for training/validation and a different public dataset consisting of 829 images from 9 CT scan volumes for testing. Multiple findings are provided including the best architecture-encoder models for each experiment as well as mean Dice results for each experiment, architecture and encoder independently. Finally, the upper bounds improvements when using lung masks as a preprocessing step or when using pretrained models are quantified. The source code and 600 pretrained models for the three experiments are provided, suitable for fine-tuning in experimental setups without GPU capabilities.Comment: 10 pages, 8 figures, 2 table

    Semantic Segmentation for Fully Automated Macrofouling Analysis on Coatings after Field Exposure

    Full text link
    Biofouling is a major challenge for sustainable shipping, filter membranes, heat exchangers, and medical devices. The development of fouling-resistant coatings requires the evaluation of their effectiveness. Such an evaluation is usually based on the assessment of fouling progression after different exposure times to the target medium (e.g., salt water). The manual assessment of macrofouling requires expert knowledge about local fouling communities due to high variances in phenotypical appearance, has single-image sampling inaccuracies for certain species, and lacks spatial information. Here we present an approach for automatic image-based macrofouling analysis. We created a dataset with dense labels prepared from field panel images and propose a convolutional network (adapted U-Net) for the semantic segmentation of different macrofouling classes. The establishment of macrofouling localization allows for the generation of a successional model which enables the determination of direct surface attachment and in-depth epibiotic studies.Comment: 33 pages, 10 figure

    SEMANTIC SEGMENTATION OF BENTHIC COMMUNITIES FROM ORTHO-MOSAIC MAPS

    Get PDF
    Visual sampling techniques represent a valuable resource for a rapid, non-invasive data acquisition for underwater monitoring purposes. Long-term monitoring projects usually requires the collection of large quantities of data, and the visual analysis of a human expert operator remains, in this context, a very time consuming task. It has been estimated that only the 1-2% of the acquired images are later analyzed by scientists (Beijbom et al., 2012). Strategies for the automatic recognition of benthic communities are required to effectively exploit all the information contained in visual data. Supervised learning methods, the most promising classification techniques in this field, are commonly affected by two recurring issues: the wide diversity of marine organism, and the small amount of labeled data. In this work, we discuss the advantages offered by the use of annotated high resolution ortho-mosaics of seabed to classify and segment the investigated specimens, and we suggest several strategies to obtain a considerable per-pixel classification performance although the use of a reduced training dataset composed by a single ortho-mosaic. The proposed methodology can be applied to a large number of different species, making the procedure of marine organism identification an highly adaptable task.</p

    Automating the Boring Stuff: A Deep Learning and Computer Vision Workflow for Coral Reef Habitat Mapping

    Get PDF
    High-resolution underwater imagery provides a detailed view of coral reefs and facilitates insight into important ecological metrics concerning their health. In recent years, anthropogenic stressors, including those related to climate change, have altered the community composition of coral reef habitats around the world. Currently the most common method of quantifying the composition of these communities is through benthic quadrat surveys and image analysis. This requires manual annotation of images that is a time-consuming task that does not scale well for large studies. Patch-based image classification using Convolutional Neural Networks (CNNs) can automate this task and provide sparse labels, but they remain computationally inefficient. This work extended the idea of automatic image annotation by using Fully Convolutional Networks (FCNs) to provide dense labels through semantic segmentation. Presented here is an improved version of Multilevel Superpixel Segmentation (MSS), an existing algorithm that repurposes the sparse labels provided to an image by automatically converting them into the dense labels necessary for training a FCN. This improved implementation—Fast-MSS—is demonstrated to perform considerably faster than the original without sacrificing accuracy. To showcase the applicability to benthic ecologists, this algorithm was independently validated by converting the sparse labels provided with the Moorea Labeled Coral (MLC) dataset into dense labels using Fast-MSS. FCNs were then trained and evaluated by comparing their predictions on the test images with the corresponding ground-truth sparse labels, setting the baseline scores for the task of semantic segmentation. Lastly, this study outlined a workflow using the methods previously described in combination with Structure-from-Motion (SfM) photogrammetry to classify the individual elements that make up a 3-D reconstructed model to their respective semantic groups. The contributions of this thesis help move the field of benthic ecology towards more efficient monitoring of coral reefs through entirely automated processes by making it easier to compute the changes in community composition using 2-D benthic habitat images and 3-D models
    corecore