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ABSTRACT 

 

AUTOMATING THE BORING STUFF: A DEEP LEARNING AND COMPUTER VISION 

WORKFLOW FOR CORAL REEF HABITAT MAPPING 

 

By 

 

Jordan Patrick Pierce 

 

University of New Hampshire, December 2020 

 

High-resolution underwater imagery provides a detailed view of coral reefs and facilitates insight into 

important ecological metrics concerning their health. In recent years, anthropogenic stressors, including 

those related to climate change, have altered the community composition of coral reef habitats around the 

world. Currently the most common method of quantifying the composition of these communities is through 

benthic quadrat surveys and image analysis. This requires manual annotation of images that is a time-

consuming task that does not scale well for large studies. Patch-based image classification using 

Convolutional Neural Networks (CNNs) can automate this task and provide sparse labels, but they remain 

computationally inefficient. This work extended the idea of automatic image annotation by using Fully 

Convolutional Networks (FCNs) to provide dense labels through semantic segmentation. Presented here is 

an improved version of Multilevel Superpixel Segmentation (MSS), an existing algorithm that repurposes 

the sparse labels provided to an image by automatically converting them into the dense labels necessary for 

training a FCN. This improved implementation—Fast-MSS—is demonstrated to perform considerably 

faster than the original without sacrificing accuracy. To showcase the applicability to benthic ecologists, 

this algorithm was independently validated by converting the sparse labels provided with the Moorea 

Labeled Coral (MLC) dataset into dense labels using Fast-MSS. FCNs were then trained and evaluated by 

comparing their predictions on the test images with the corresponding ground-truth sparse labels, setting 

the baseline scores for the task of semantic segmentation. Lastly, this study outlined a workflow using the 

methods previously described in combination with Structure-from-Motion (SfM) photogrammetry to 

classify the individual elements that make up a 3-D reconstructed model to their respective semantic groups. 

The contributions of this thesis help move the field of benthic ecology towards more efficient monitoring 

of coral reefs through entirely automated processes by making it easier to compute the changes in 

community composition using 2-D benthic habitat images and 3-D models. 
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GENERAL INTRODUCTION 
 

Coral reefs provide a number of ecosystem services including a high biodiversity comparable to the 

Amazon Rainforest [1], a habitat to one-quarter of all marine life [2], and are of cultural and economic 

significance to millions of people around the world; globally, coral reefs have been estimated to provide 

$30 B/yr in various goods and services that include tourism, coastal protection and fisheries [3]. 

Unfortunately, through climate change and other anthropogenic means, a number of stressors are 

threatening the health of coral reefs around the world. Ocean acidification, increasing sea-surface 

temperatures, polluted river runoff from agricultural centers, sedimentation from nearby construction 

projects and overfishing are a few of the stressors affecting reef systems that can cause difficulties for coral 

polyps to perform their primary and secondary functions such as reef building, potentially resulting in 

habitat loss for other organisms [2]. 

To rapidly assess the response of coral reefs to changing environmental conditions, a number of remote 

sensing methods are used. One of the most common is benthic habitat surveys where researchers collect 

underwater images of a coral reef using randomly placed quadrats [4]. These images are then uploaded into 

an annotation software tool such as Coral Point Count (CPCe), which randomly projects a number of points 

onto each image and tasks the user with manually labeling the class category that each point is superimposed 

on [5]. Coverage statistics such as relative abundance, mean, standard deviation and standard error for each 

annotated species can then be estimated for each image, or for the entire research area. Such point-based 

annotation software and analysis tools are a standard method of calculating metrics allowing habitat 

changes to be tracked across space and time. Nonetheless, they are expensive and time-consuming as the 

user must manually annotate each image. Recently, Convolutional Neural Networks (CNNs) have been 

adopted to automate the annotation of images, drastically reducing the amount of time and effort required 

by the user. The ‘patch-based’ image classification technique has been demonstrated as a method for 

assigning labels to different taxa automatically [6, 7, 8]. However, like the manual method this technique 

can only provide sparse labels. Hence typically less than one percent of all an image’s pixels are actually 

provided with a label, potentially resulting in misleading coverage statistics. Ideally, coverage statistics 

would be calculated using dense labels (i.e., pixel-wise labels); unfortunately, this style of annotation is 

typically not used by benthic ecologists. 

While calculating percent coverage statistics within a 2-D quadrat is the most common coral monitoring 

method, it fails to assess the changes in community composition as a 3-dimensional system. Coral reefs are 

structurally complex and facilitate diverse assemblages of organisms largely due to the niche habitats that 

they provide. Although they are highly intricate, advancements in computer vision have made it possible 

to model the structure of a reef through Structure-from-Motion (SfM) algorithms, which utilize the images 

collected from various viewpoints to form an accurate 3-D reconstruction. SfM gives researchers the ability 

to non-invasively capture the geometry of a reef structure with a high level of precision that can then be 

analyzed in far greater detail than with more traditional methods. However, currently there are few efficient 

methods for denoting which portions of the 3-D model belong to a particular class category or functional 

group. This means that researchers are able to model the structure of the entire habitat and observe how it 

changes as a whole, but are unable to record which class categories are actually responsible for causing 

changes in community and structure. 

To help move the field of benthic ecology towards more efficient monitoring of coral reefs, this study 

investigated how dense semantic labels could be obtained for both 2-D images and 3-D reconstructed 

models through semantic segmentation with the use of Fully Convolutional Networks (FCNs). Like all deep 

learning algorithms, a FCN requires a non-trivial amount of labeled samples to learn from, which can often 
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be a significant hurdle for many studies due to the amount of time and resources that are required to create 

pixel-wise labels for each image. But because sparse labels are already ubiquitous within the field of benthic 

ecology, this thesis demonstrates how they can be repurposed with Multilevel Superpixel Segmentation 

(MSS) [9], which can convert them into the format necessary for training a FCN.  

Thus, this thesis consists of three individual components, each of which builds off the previous. In Chapter 

1, an improved version of the MSS algorithm that performs significantly faster and with classification 

scores that are comparable—if not better—than the current start-of-the-art is demonstrated through a 

comparison using the CamVid semantic segmentation benchmark data. In Chapter 2, the performance of 

the improved implementation—Fast-MSS—was independently validated by creating dense labels for the 

images of the Moorea Labeled Coral (MLC) dataset, a notoriously difficult benchmark dataset that includes 

three classification experiments created to test the performance of computer vision algorithms with real 

benthic habitat survey images. The provided ground-truth sparse labels associated with each image in the 

training sets were used with Fast-MSS to create dense labels that a FCN could learn from, which was then 

used to perform semantic segmentation on the images in the test sets. Lastly, Chapter 3 utilized the methods 

described in the previous two chapters and combined them with the standard SfM procedure typically used 

to create 3-D models of coral reefs. Beginning with unannotated images, this study outlined a workflow 

that results in a classified point cloud and 3-D model that could be imported into other spatial modeling or 

GIS software for further analysis.  
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CHAPTER 1: IMPROVEMENTS TO THE MULTILEVEL SUPERPIXEL SEGMENTATION 

ALGORITHM 

 

INTRODUCTION 

Point annotations are labels that are provided to individual pixels within an image denoting the semantic 

category for which they are thought to belong. Point annotations are commonly referred to as ‘sparse’ when 

only a small percentage of the total number of pixels within the image are provided with labels, and ‘dense’ 

when all of the pixels are provided with a label (i.e., pixel-wise labels). Mentioned previously, sparse labels 

are typically provided to images through point-based annotation software, which randomly projects 

numerous points on to each image and tasks the user with providing labels to the pixel each point is 

superimposed on. Because of the randomness in which the points are projected onto an image, the labels 

can be used to estimate various coverage statistics.  

However, when compared to other forms of annotation, creating sparse labels can be an expensive and 

time-consuming process for the human annotator that results in very few pixels within an image actually 

being provided with labels. Using dense labels instead would ensure higher accuracies. Unfortunately, this 

style of annotation is not commonly used by benthic ecologists. 

To provide a method for creating dense labels for images of coral reefs, in 2018 [10] developed the 

annotation tool Deep Segments, which used the Simple Linear Iterative Clustering (SLIC) over-

segmentation algorithm to aggregate pixels of an image into visually homogenous regions of similar size 

called ‘superpixels’ [11]. Users then only need to provide a single class label to each superpixel, which is 

propagated to all of the pixels associated with it, thus reducing annotation times (Fig. 1). 
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Fig. 1 – Dense labeling using Deep Segment; here the image is segmented by SLIC into 280 superpixels 

each composed of individual pixels that share similarities in location and color components, as indicated 

by the blue lines [10]. Each class label provided to a superpixel by the user was propagated to all pixels 

associated with it. 

Alonso et al. [9] and [12] also explored the use of an over-segmentation algorithm for a similar purpose, 

but used it to propagate the labels of existing sparse labels for an image to adjacent pixels in an attempt to 

create dense labels automatically. Originally [12] segmented the image into a pre-defined number of 

superpixels, and then propagated the class label of any sparse labels that happened to have an X, Y location 

that lay within the boundaries of a superpixel to the associated pixels. However, the major drawback to this 

method was determining how many superpixels should be formed; as discussed in [9], having a large 

number of superpixels allows for the contours of objects to be a better fit, but it also increases the number 

of superpixels that are left without a label. This trade-off was later addressed in the MSS algorithm, which, 

as the name implies, used not one but multiple iterations of the over-segmentation algorithm. 

This study makes improvements to the original MSS algorithm making it perform significantly faster and 

with classification scores that are comparable—if not better. Specifically, these improvements are: 

1. Re-writing the algorithm and providing it with a user-friendly application program interface; 

2. The use of an alternative over-segmentation algorithm, a variant called Fast-SLIC [14]; 

3. The method in which labels from each iteration are combined together to form a set of dense labels 

for the image. 

The next section provides a detailed explanation of how the improved implementation—Fast-MSS—

generates dense labels for an image using the existing ground-truth sparse labels. First, an overview of the 

Fast-SLIC over-segmentation is reviewed, followed by a description of how Fast-MSS joins the labels from 

each iteration of Fast-SLIC into a set of dense labels for the image. Finally, a comparison between the Fast-

MSS implementation and the original is performed using the CamVid semantic segmentation benchmark 

dataset. 

 

METHODOLOGY 

Fast-SLIC 

Fast-SLIC’s methodology is based on the K-Means classification algorithm that groups data points into K 

clusters based on their relative location to one another in feature space through an iterative process in an 

attempt to minimize the total intra-cluster variance [13]. In the case of Fast-SLIC, the data points are the 

pixels that make up the image where the five features considered are their X, Y locations in image 

coordinate space and their three color components (i.e., l, a, and b) represented in CIELAB color space 

[14].  

With Fast-SLIC, the number of clusters specified by the user is not an indication of the number of class 

categories present within the image, but the number of superpixels an image is to be partitioned into (Fig. 

2). Because the image contains a finite number of pixels, there is an inverse relationship between the number 

of superpixels/clusters formed and their size. Decreasing the number of clusters results in superpixels 

becoming larger and thus less homogenous, whereas if the number of clusters is equal to the number of 

pixels in an image, then each superpixel is just a single pixel.  
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Fig. 2 – An image segmented by Fast-SLIC into approximately 100 (left), 500 (center), and 1000 (right) 

superpixels, each composed of individual pixels that share similarities in location and color components 

[14]. The relative size of each superpixel is determined by the total number of superpixels formed, whereas 

the compactness is controlled by a weighted function that reconsiders the importance of the color 

components and relative distance to neighboring pixels. 

Unlike K-Means clustering, which scales exponentially with increasingly large datasets, Fast-SLIC 

becomes tractable even with images composed of millions of pixels by limiting the considered search space 

to a fewer number of potential clusters all located within closer proximity [14]. This search space S, is the 

radius in which a pixel must be for a potential cluster to consider it for inclusion (1). Let the user defined 

number of clusters that are formed for an image with a height and width be equal to K, H, and W, 

respectively:  

 

(1) 

where the distance between a pixel and each potential cluster’s centroid Ds is determined by a weighted 

function between the Euclidian distance in CIELAB color space dlab, and image coordinate space dxy as 

defined in (2).  
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(2) 

The weighting of importance between the color value and the relative location for pixel i, when being 

considered by a potential cluster k, is determined by the parameter m, which is provided by the user to 

control the level of compactness of the superpixels to be formed. For higher values of m, each pixel’s 

assignment to a potential cluster is largely dependent on its proximity to the centroid in image space, 

resulting in a superpixel that is more compact and congruent in shape. Alternatively, lower values for m 

increase the importance of similarity in color value allowing a superpixel to be less compact and congruent 

in shape. A pixel’s final assignment to a superpixel is determined by the minimal distance between it and 

all of the potential clusters considered. 

Fast-SLIC follows the same methodology as the original SLIC implementation but includes optimization 

techniques such as color quantization, subsampling, parallelization and integer-based arithmetic. These 

optimizations allow the algorithm to be run on an off-the-shelf CPU with reduced latency that is comparable 

to implementations made to be run on a GPU [14]. 

 

Fast Multilevel Superpixel Segmentation (Fast-MSS) 

The first iteration of Fast-MSS starts by using Fast-SLIC to segment the image into a relatively large 

number of superpixels so that each one is small enough to capture the finer details between bordering 

semantic groups. Then for each successive iteration, the image is segmented into a fewer number of 

superpixels making each one larger and as a result, encompassing more pixels. The number of superpixels 

that form during each iteration is calculated in the same way as described in [9]. Shown in (3), the number 

of superpixels to form Nsp, for any given iteration i, is computed by:  

 

 

(3) 

where the number of superpixels to partition the image into during the first (FirstNsp) and last (LastNsp) 

iteration as well as the total number of iterations (NI) are parameters provided by the user. For example, if 

the user-provided values for FirstNsp, LastNsp, and NI, are equal to 1000, 10, and 10 (respectively), the 

following sequence Nsp, represents the number of superpixels formed during each iteration: 

 

 

 

but because (3) is an exponential equation, decreasing the number of iterations NI, to 5 while holding the 

other two parameters constant results in the sequence Nsp, being equal to: 
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Within a single iteration, each superpixel formed is provided with a unique identifier that is shared with all 

of the individual pixels that are associated with it. If an existing sparse label associated with the image 

happens to have an X, Y location that lies within the boundaries of a superpixel, then that label is propagated 

to all of the pixels associated with the superpixel. If a superpixel contains multiple sparse labels that 

represent different class categories, then the class category that makes up the majority is used to label all 

the pixels associated with it. If there are no sparse labels located within the boundaries of a superpixel, then 

all of its pixels associated with it are labeled as a null class. At the end of the iteration, the class labels that 

were propagated to adjacent pixels are stored in a 2-dimensional array with dimensions that are equal to the 

height H, and width W, of the original image, where each index contains the potential class label for the 

corresponding pixel found within the image (i.e., segmentation map).  

The entire process described in the previous passage is repeated for each iteration resulting in an additional 

2-dimensional array for each of the iterations. Collectively, these 2-dimensional arrays create a 3-

dimensional data structure or ‘stack’, with the shape (H x W x I), where I is equal to the number of iterations. 

The original MSS implementation joined each of the 2-dimensional arrays in the stack starting with the one 

made during the first iteration so that the smaller superpixels that captured the finer details are not 

overwritten by superpixels from subsequent iterations. In the Fast-MSS implementation, the dense labels 

were made by calculating the statistical mode of class labels across the 3rd dimension of the stack. 

As mentioned previously, partitioning an image into a larger number of superpixels results in each one 

being rather small, which, depending on the number of existing annotations could lead to many pixels being 

assigned with the null class label. If this occurs for the same pixel index for the majority of the iterations, 

then that pixel index will also hold the null class label in the resulting dense labels. To avoid this, when 

calculating the mode during the final step, in the scenario where the most common class label is the null 

class, it is replaced with the second most common class label instead. 

 

Comparison using the CamVid dataset  

To highlight the differences between the Fast-MSS implementation and the original, a comparison was 

performed using the CamVid Road Scenes dataset, a semantic segmentation benchmark used within the 

domain of autonomous vehicles. This version of the CamVid dataset contains 600 images with the same 

dimensions (360 pixels x 480 pixels) depicting eleven different class categories (e.g., car, building, road), 

and includes corresponding dense labels for each image (Fig. 3, [15]). 

 

Fig. 3 – Generating dense labels using Fast-MSS. From left to right: an image from the CamVid dataset, 

the corresponding ground-truth dense labels, the synthesized sparse labels, and the dense labels generated 
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from those sparse labels using Fast-MSS. Note that labels are color-coded based on class category, and that 

sparse points are enlarged for display purposes. 

Three trials were conducted in which sparse labels were synthesized for each image by uniformly sampling 

a different percentage of the ground-truth dense labels following a grid formation (see Table 1). From these 

sparse labels, Fast-MSS and the current state-of-the-art were used to generate dense labels that were then 

compared with the original dense labels (ground-truth). 

The metrics used to quantify the differences between the resulting dense labels and the ground-truth data 

were pixel accuracy (PA), mean pixel accuracy (m-PA) and mean Intersection-over-Union (m-IoU), 

calculated using (4), (5), and (7), respectively:  

 

 

(4) 

 

(5) 

 

(6) 

 

(7) 

For each equation TP, TN, FP, and FN represents the True Positive, True Negative, False Positive and False 

Negative rates, respectively. PA represents the number of correct instances over the total number of 

instances, whereas m-PA represents the PA per class N, averaged together unweighted. Intersection-over-

Union (IoU) is calculated by (6), with m-IoU being the IoU per class N, averaged together unweighted. 

Also included in the comparison is the amount of time required to generate dense labels for all 600 of the 

images in the dataset, and an approximation of the amount of time required to process each image. 

The metrics and the original MSS algorithm were implemented using the code published in [9] with the 

recommendations of 1500 and 50 for the initial and final number of superpixels across 15 iterations [12]; 

the Fast-MSS implementation used 7500 and 80 for the initial and final number of superpixels across 20 

iterations. 
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RESULTS 

CamVid Classification Scores 

Table 1 shows the results from the comparison between Fast-MSS and the original implementation using 

the CamVid dataset. Alongside each metric is reported the percentage and actual number of pixels that were 

sampled for synthesizing the sparse labels. Scores are colored red, yellow, or green if they are lower, the 

same, or higher than the other implementation’s score, respectively 

Table 1 – Comparison between Fast-MSS and the original implementation using CamVid. 

 

Implementation 
% of total 

pixels 

Number of 

pixels PA m-PA m-IoU 

Time 

(seconds) 

Time Per Image 

(seconds) 

[12] 

0.1 180 0.87 0.70 0.57 9613 16.02 

0.5 814 0.91 0.77 0.65 9787 16.31 

1.0 1664 0.91 0.79 0.67 9862 16.43 

Fast-MSS 

0.1 180 0.87 0.72 0.56 984 1.64 

0.5 814 0.91 0.82 0.67 1338 2.23 

1.0 1664 0.91 0.84 0.68 1386 2.31 
 

Note: All trials were conducted on the same PC with an Intel i7-8700 processor. Scores are colored red, yellow, or green if they 

are lower, the same, or higher than the other implementation’s score, respectively. 

 

Abbreviations: PA, pixel accuracy; m-PA, mean pixel accuracy; m-IoU, mean Intersection-over-Union. For each metric 1.0 

represents a perfect score. 

 

 

Discussion 

For each of the three trials Fast-MSS was comparable to—if not better than—the current state-of-the-art 

with regards to m-PA and m-IoU, and by using Fast-SLIC the amount of time needed to produce dense 

labels was drastically reduced. 

Empirically it was found that Fast-MSS does well with the previously mentioned parameter values for this 

particular dataset, but it is recommended that users try different parameters for other datasets as these values 

depend on the size of the image and the number of sparse labels provided.  

The improved implementation of the MSS algorithm demonstrates how a dataset that contains only sparse 

labels can quickly and easily be converted to dense labels that are accurate enough to be used for calculating 

coverage statistics, or train a deep learning semantic segmentation algorithm as is shown in the following 

chapters. 

The improvements to the MSS algorithm (i.e., Fast-MSS) were made both publicly available and easy to 

use following a simple application-program interface (API) written entirely in Python. The code and 

examples for its use can be found at github.com/JordanMakesMaps/Fast-Multilevel-Superpixel-

Segmentation 
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CHAPTER 2: SEMANTIC SEGMENTATION OF THE MOOREA LABELED CORAL 

DATASET 

 

INTRODUCTION  

As environmental conditions for coral reefs continue to change, it is critical that researchers are able to 

regularly assess these habitats and as quickly as possible. Some of the more common methods for observing 

these habitats include satellites, unmanned aerial vehicles (UAVs), diver-towed sleds, remotely operated 

vehicles (ROVs), and SCUBA. With these tools researchers are able to obtain a plethora of high-resolution 

imagery data, but often at a pace that far exceeds the rate in which a human can annotate them. Quite often 

studies will allocate a considerable amount of resources to acquire data only to have them stored in a 

database for extended periods of time, sometimes unutilized because of expensive or inefficient methods 

of processing.  

In an attempt to overcome this bottleneck, researchers have begun looking into techniques for automating 

the annotation of coral reef imagery using deep learning and computer vision algorithms. However, deep 

learning algorithms require a non-trivial amount of expertly labeled data to learn from; thus, to aid 

researchers in their development of these recognition algorithms, in 2012 Beijbom et al. published the 

Moorea Labeled Coral (MLC) dataset to serve as the first large scale benchmark to gauge the progress of 

coral reef image classification algorithms [6]. The dataset is composed of 2,055 images taken of the same 

sites across three years (2008-2010) with approximately 400,000 manually annotated labels. Outlined with 

it are three image classification experiments that use the nine most abundant class categories to test an 

algorithm’s ability to generalize across time. 

Unlike other image classification benchmark datasets that assign a single label to an entire image, the MLC 

dataset provides roughly 200 sparse labels with each image to assist in the advancement of patch-based 

image classifiers. When trained, these classifiers should be able to provide sparse labels to novel images 

automatically, and ideally, drastically reduce the amount of effort required to annotate data collected during 

future studies. 

Beijbom et al. set the baseline scores for the three patch-based image classification experiments by using 

handcrafted feature descriptors that take into account both color and texture by using a Maximum Response 

(MR) filter bank with the Bag of Visual Words (BoVW) algorithm [6]. They found that representing each 

image in CIELAB color space and using color channel stretch yielded the best results as a pre-processing 

method, and that combining features from various scales increased the classification accuracy further (see 

Table 2). 

In 2015, Mahmood et al. [7] surpassed the results published by [6] by using features extracted from 

VGGNet [16], a CNN previously trained on the ImageNet dataset. They incorporated information at 

multiple scales by using what they termed the ‘Local-Spatial Pyramid Pooling’ technique, which extracted 

multiple patches of different sizes all centered on the same annotated point, later combining them into a 

single feature descriptor using a max pooling operation [7].  

The current state-of-the-art for patch-based image classification was created in 2018 by [8]. They used a 

custom CNN called the Multipatch Dense Network (MDNet) that learned class categories at multiple scales 

and adopted the use of densely connected convolutional layers to reduce overfitting. MDNet extracted 

features from image-patches of different sizes in parallel, later concatenating them together to create a final 

descriptor for each annotated point. This technique allowed them to train the CNN end-to-end to learn 

information at different scales without having to perform costly resizing operations on each patch.  
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Table 2 – Global classification accuracies from previous and current state-of-the-art methods for each 

of the three experiments outlined in the MLC benchmark dataset. 

 

MLC Benchmark Experiment 1 Experiment 2 Experiment 3 

Beijbom et al. [6] 74.3% 67.3% 83.1% 

Mahmood et al. [7] 77.9% 70.1% 84.5% 

Modasshir et al. [8] 83.4% 80.1% 85.2% 

 

 

To go beyond patch-based image classification and to push the field towards a more useful form of 

annotation for coral reef imagery, the present study demonstrated how a dataset with ground-truth sparse 

labels could be used to perform semantic segmentation on previously unannotated images automatically. 

Using the MLC dataset, sparse labels associated with each image in the training sets were used with Fast-

MSS to create dense labels that a deep learning model could learn from, and then be used to perform 

semantic segmentation on the images in the test sets. A thorough literature review suggests that this dataset 

has only been used to assess the accuracy for patch-based image classification algorithms, making this work 

the first to adapt it for the purposes of semantic segmentation. 

In the next section an adaptation to the MLC experiments for the purpose of semantic segmentation is 

explained, followed by a discussion of the role of the patch-based image classifier technique and how it 

was used to provide additional sparse labels to each image. Next the specifications of deep learning models 

explored and the training procedure are outlined, followed by the results for the three experiments. 

 

METHODOLOGY 

Defining the Benthic Quadrat 

This study performed the same three experiments as originally outlined in [6], but included the ‘Off’ class 

category signifying the location of the metal quadrat frame within each image. As was mentioned in [17] 

there are inconsistences in how annotators chose to label these points. Depending on the situation, some 

annotators would label points superimposed on the quadrat or the transect tape as ‘Off’, whereas others 

would label the points on the quadrat as ‘Off’ but ignore the presence of the tape; however, most often 

points clearly superimposed on the quadrat or transect tape were labeled with the class category that was 

assumed to be underneath them. 

Although this class category is not one of those that is included in the original experiments, through 

preliminary analysis it was found that by allowing the deep learning model to learn the difference between 

the quadrat and all of the other classes, the overall quality of the predictions improved. However, because 

of the inconsistences in how the original ‘Off’ points were labeled, this class category was redefined. The 

original sparse labels belonging to ‘Off’ were discarded and replaced by providing the pixels along the 

perimeter of each image with ‘Off’ sparse labels instead (see the pink colored points in Fig. 4), while the 

transect tape was ignored entirely. These artificial sparse labels placed along the edge of each image worked 
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well to help generate dense labels for an ‘Off’ class category that the deep learning models could then learn 

from, but they were not included in any of the experiments or used when calculating any of the metrics. 

 

Fig. 4 – A side-by-side comparison between an image in the MLC dataset with its original sparse labels 

(left), the dense labels created using Fast-MSS when supplied with additional sparse labels (center), and 

those same dense labels overlaid on the original image (right). Artificially created ‘Off’ points were placed 

along the perimeter of the image (left) to help generate dense labels representing the metal quadrat frame, 

but not the transect tape. Note that labels, both sparse and dense, are color-coded based on class category. 

 

Creating Dense Labels from Sparse Ground-Truth 

During the comparison using the CamVid dataset in Chapter 1, up to 0.1% of the total amount of pixels in 

an image were sampled and used to mimic the presence of sparse labels; however, the MLC dataset has far 

fewer sparse labels available (~0.005%). Therefore, this study investigated if a patch-based image classifier 

could be used as a reliable method for adding additional sparse labels to each image automatically, and if 

doing so helped increase the classification scores of the resulting dense labels. 

Thus, two sets of dense labels were made for each image: one that was supplied with additional sparse 

labels using a patch-based image classifier, and the other using only the original ground-truth sparse labels 

that were provided with the MLC dataset. These two sets of sparse labels were converted into dense using 

Fast-MSS and used to train two sets of FCNs whose classification scores on the test set for the three 

experiments were used to validate this method (Fig. 5).  

To avoid data contamination and biasing the FCNs, three different patch-based image classifiers were 

created: one for each of the MLC experiments. Classifiers were only trained on patches extracted from 

images that belonged to the same experiment to which they would later provide additional labels, and 

classifiers were only trained on patches that were extracted from images within the experiment’s training 

set and not the testing set. Following the method outlined in [6], [7], and [8], image classifiers were trained 

on patches centered on each of the original ground-truth sparse labels associated with every image in each 

experiment’s training set. A preliminary analysis showed that classifiers trained on patches with dimensions 

of 112 x 112 pixels performed better than those trained on smaller sized patches. 
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Fig. 5 – A flow chart showing how the original sparse labels (A) and those created by a patch-based image 

classifier (B) were used with Fast-MSS to generate two separate sets of dense labels for each training image 

of an experiment. These were then used to train two separate FCNs whose accuracy on the test set for the 

same experiment provided validation for the use of the CNN.  

Providing additional labels involved first uniformly extracting patches of 112 x 112 pixels from each image 

in the training set following a grid formation (Fig. 6). In total, approximately 2000 patches were sampled 

from each training image, representing potentially 2000 additional labels, or roughly 0.05% of the total 

number of pixels in the image. These extracted patches were then passed to a classifier as input. The output 

for each was a corresponding vector representing the probability distribution of class categories to which 

the center-most pixel of the patch likely belonged. For each patch the extracted location, the presumed class 

label, and the difference between the two highest probability distributions (i.e., top-1 and top-2 choices) 

were recorded. This difference in “top 2” probabilities is the confidence level of the classifier when making 

the prediction. If the difference was small, the classifier is less confident about its top-1 choice (i.e., the 

presumed class label). 

The difference in “top 2” probabilities were used to filter out sparse labels that were more likely to have 

been misclassified. By setting a confidence threshold value of 0.5, approximately 15% of those additional 

labels were removed from each image. A second filter removed any sparse labels with class categories that 

were not already recorded in the image by the human annotator. Any additional labels that remained through 

this filtering process were concatenated to the original ground-truth sparse labels associated with the image 

to create the second set of sparse labels; the first set used only the original ground-truth sparse labels. Both 

sets were then provided with the points labeled ‘Off’ as explained in the previous section. 
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Fig. 6 – A diagram illustrating how a patch-based classifier was used to provide additional sparse labels to 

each image in an experiment’s training set. After the classifier was trained, 112 x 112 pixel patches were 

uniformly sampled from the training images following a grid formation and passed to the classifier as input. 

If specific criteria were met, then the presumed class label was provided to the center-most pixel where the 

patch was extracted. Note that for display purposes, the number of sparse labels provided to the training 

image is significantly less that what was done in the study. 

These two sets of sparse labels were then converted into two sets of dense labels using Fast-MSS. When 

generating dense labels for either sets, the number of superpixels to form during the first and last iteration 

were 2000 and 100, respectively, and iterations was set to 20.  

The accuracy of these dense labels could not be validated quantitatively as the MLC dataset does not 

provide any ground-truth dense labels, just sparse. Because Fast-MSS used these same sparse labels to 

generate the dense labels, relying on them for validation purposes would result in deceivingly high 

accuracies. Instead the dense labels were evaluated by using them as training data for multiple FCNs, which 

were then compared based on their classification scores using the original ground-truth sparse labels within 

the test set for each of the experiments just as was done for the benchmark studies cited earlier and whose 

results are presented in Table 2.  

 

Experiments 

This study used the same experimental setup to split data as outlined in [6]: for experiment one, K-fold 

cross-validation was used to split the 2008 data into three folds, two of which were used for training and 

the remaining was used for testing; this was done three times so that each fold was used for both training 

and testing, and accuracy scores were later averaged. Experiment two used all of the data from 2008 for 

training and tested on data from 2009, and experiment three used all of the data from 2008 and 2009 for 

training, and tested on data from 2010. This same setup was used for splitting the data for both the patch-

based image classifiers and the semantic segmentation models. 



15 
 

Metrics for each of the three experiments were calculated by using the original sparse labels within the test 

sets as ground-truth, compared against what the deep learning model predicted for the corresponding image. 

However, because the ground-truth was in the form of sparse labels and the deep learning model produced 

dense labels, only the pixel indices that were provided with labels by the original MLC annotators could be 

used to validate the deep learning model’s predictions (Fig. 7). Furthermore, because the ‘Off’ class 

category is not included in the original experiments, any of the dense labels that were predicted as ‘Off’ 

(approximately 1%) were replaced with the top-2 choice label instead.  

 

 

 

Fig. 7 – A diagram inspired by a figure in [9] illustrating the use of a FCN architecture on the MLC dataset 

for semantic segmentation. Models were trained with images and dense labels generated by Fast-MSS, and 

metrics were calculated by comparing the ground-truth sparse labels for each image in the test set against 

the corresponding pixel indices within the predicted dense labels for the same image. 

For the sake of consistency, the same metrics used in [6], [7], and [8] were reported; these include 

classification accuracy, precision, and recall, which were calculated using (8), (9), and (10), respectively.  
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(8) 

 

 

(9) 

 

 

(10) 

Classification accuracy was computed by calculating the subset “accuracy”, which requires that the 

predicted label match exactly the ground-truth label. Precision and recall were calculated by computing a 

confusion matrix that incorporated all of predictions and ground-truth samples from the test set for an 

experiment, calculating the metric for each individual class, and then averaging them together to obtain the 

final score (i.e., macro-averaged). It should be noted that the MLC dataset is heavily imbalanced (see Fig. 

8) and these metrics do not take into consideration the frequency of each class category. 
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Fig. 8 – The distribution of the nine most abundant class categories used in the three patch-based image 

classification experiments associated with the MLC dataset, making up approximately 94% of all sparse 

labels. Note the class category ‘Off’ is not included as it is not used in the experiments or when calculating 

metrics. 

 

Model Training  

For patch-based image classification, after preliminary analysis the NASNet architecture [18] was chosen 

to train three different classifiers, one for each of the experiments. Models were initialized with weights 

pre-trained on ImageNet and consisted of the encoder followed by a max pooling operation, a dropout layer 

(80%) and then finally a single fully connected layer with 10 output nodes. Patches that were extracted 

from the original images with dimensions of 112 pixels x 112 pixels were resized to 224 pixels x 224 pixels 

to match the input size requirement of each encoder, normalized between 0 and 1 using patch-specific max-

min normalization, and then heavily augmented (e.g., adding noise, blurring, sharpening, altering contrast) 

using ImgAug [19] to reduce overfitting.  

Categorical-cross entropy was used as the loss function along with the optimizer Adam with an initial 

learning rate of 10-3 using the ReduceLROnPlateau callback to reduce the learning rate by a factor of 0.5 

for every three epochs in which the validation loss failed to decrease. Because the problem is multi-

categorical classification, the activation function used was softmax; models were trained for 50 epochs with 

a batch size of 32 as this represented the maximum amount of memory that could be allocated during 

training by the GPU being used. 

For semantic segmentation the U-Net architecture was used, which, unlike the original FCN architecture 

outlined in [20], gradually upsamples feature maps by using transposed-convolutional layers and skip 

connections to increase the resolution of the model’s prediction [21]. Because determining the optimal 

encoder for a given dataset is often heuristic, the following eight encoders were experimented with to obtain 

a range of performances: DenseNet-201 [22], EfficientNet-b0 and EfficientNet-b4 [23], InceptionV3 [24], 

ResNet-34, ResNet-50, ResNet-101 [25], and VGGNet-19 [16]. All segmentation models were 

implemented in Python using the Segmentation Models library provided by [26]. 

Each of the encoders were initialized with pre-trained weights from the ImageNet dataset and were left 

frozen (i.e., immutable) for the entire process; only the weights in the decoders were updated during 

training. Images were pre-processed using the methodology recommended for each encoder, and dense 

labels were converted into one-hot-encoded form with a shape of (B x H x W x C) where B and C represent 

the batch size and the number of class categories, respectively. Augmentations were randomly performed 

on each sample using ImgAug in the form of simple affine transformations (flips, flops, rotations) and a 

channel shuffle operation that randomly swaps the location of each channel in the image.  

Preliminary analysis indicated that when training with larger images, the resulting models produced better 

predictions, but due to differing computational requirements for each of the encoders and the amount of 

memory that could be allocated by the GPU, images were reduced in size to 736 x 736 during training and 

testing for all encoders. Consequently, this resulted in the batch size having to be equal to one (i.e., a single 

image).  

Soft-Jaccard was used as the loss function, which is a differentiable proxy that attempts to maximize the 

Intersection-over-Union metric [27]. The optimizer employed was Adam, with an initial learning rate of 

10-3 along with the ReduceLROnPlateau callback using the same settings as described before. The 

activation function was softmax, and models were trained for 20 epochs. 
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All model training was performed on a PC equipped with a NVIDIA GTX 1080 Ti GPU and an Intel i7-

8700 CPU, using the Keras deep learning framework and the Tensorflow numerical computational library. 

 

RESULTS 

Classification Performance 

The results of the trained FCNs on the three MLC experiments can be seen in Table 3 and 4. Each of the 

encoders were compared, as well as the encoders trained using only the MLC sparse labels against their 

counterparts that were trained with the MLC plus the patch-based sparse labels. As seen in Table 3, the 

general trend shows that models using the DenseNet and EfficientNet encoders performed with a higher 

classification accuracy than the others.  

More interesting is the difference in classification accuracy between models that were trained with 

additional sparse labels against their counterparts that were trained without them. Models that were trained 

with the additional sparse labels provided by the patch-based classifier saw an increase in accuracy by 

approximately 3%, on average. 

Table 3 – Classification accuracies for each model on all three experiments, trained with and without 

additional sparse labels. 

 

 

Encoder 

Accuracy 

Exp 1 Exp 2 Exp 3 

    

MLC Sparse Labels    

DenseNet-201 0.716 0.626 0.802 

EfficientNet-b0 0.709 0.620 0.797 

EfficientNet-b4 0.703 0.613 0.827 

InceptionV3 0.662 0.580 0.795 

ResNet-34 0.676 0.630 0.805 

ResNet-50 0.668 0.612 0.787 

ResNet-101 0.672 0.612 0.771 

VGGNet-19 0.618 0.571 0.771 

    

MLC + Patch-based Sparse Labels    

DenseNet-201 0.754 0.614 0.839 

EfficientNet-b0 0.737 0.649 0.824 

EfficientNet-b4 0.737 0.645 0.836 

InceptionV3 0.673 0.570 0.811 

ResNet-34 0.714 0.642 0.814 

ResNet-50 0.696 0.595 0.809 

ResNet-101 0.686 0.617 0.785 

VGGNet-19 0.648 0.606 0.773 
 

Note: Encoder scores are colored red, yellow, or green if they are lower, the same, or higher than the score of its counterpart for 

the same experiment, respectively. Bold numbers show the best performing encoder over all trials, with 1.0 representing a perfect 

score. 
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The same trend among models using the DenseNet and EfficientNet encoders can also be seen with regards 

to precision and recall (Table 4). Moreover, the average increase for both of these metrics for models trained 

with additional sparse labels was approximately 7% compared to those trained without.  

 

Table 4 –  The mean precision and mean recall for each model on all three experiments, trained with 

and without additional labels. 

 

Encoder 
Precision Recall 

Exp 1 Exp 2 Exp 3 Exp 1 Exp 2 Exp 3 

       

MLC Sparse Labels       

DenseNet-201 0.598 0.476 0.497 0.549 0.473 0.564 

EfficientNet-b0 0.574 0.517 0.493 0.531 0.483 0.521 

EfficientNet-b4 0.565 0.523 0.538 0.517 0.485 0.575 

InceptionV3 0.500 0.435 0.481 0.457 0.451 0.471 

ResNet-34 0.567 0.519 0.478 0.520 0.508 0.472 

ResNet-50 0.476 0.505 0.528 0.498 0.503 0.533 

ResNet-101 0.533 0.469 0.476 0.491 0.484 0.504 

VGGNet-19 0.481 0.402 0.425 0.391 0.401 0.363 

       

MLC + Patch-based 

Sparse Labels       

DenseNet-201 0.632 0.517 0.584 0.593 0.602 0.604 

EfficientNet-b0 0.607 0.561 0.565 0.559 0.494 0.580 

EfficientNet-b4 0.631 0.626 0.597 0.563 0.554 0.627 

InceptionV3 0.541 0.453 0.535 0.502 0.474 0.494 

ResNet-34 0.524 0.547 0.494 0.518 0.475 0.594 

ResNet-50 0.540 0.487 0.513 0.520 0.461 0.538 

ResNet-101 0.553 0.531 0.560 0.521 0.505 0.499 

VGGNet-19 0.518 0.466 0.461 0.397 0.363 0.392 
 

Note: Encoder scores are colored red, yellow, or green if they are lower, the same, or higher than the score of its counterpart for 

the same experiment, respectively. Bold numbers show the best performing encoder over all trials, with 1.0 representing a perfect 

score. 

 

Discussion 

The increase in classification scores between models trained using only the MLC sparse labels against their 

counterparts that were trained with the MLC plus the patch-based sparse labels is in agreement with what 

was observed from the comparison using the CamVid dataset in Chapter 1: additional sparse labels can 

positively affect the quality of the resulting dense labels, and deep learning models trained on them are also 

likely to achieve gains in classification scores. This validated the use of the patch-based image classifier in 

this study and also provides evidence for its use in future studies, which (as suggested by results presented 

in Table 1) may save researchers a significant amount of time and resources by automating the task of 

sparse image annotation and improve coral reef monitoring and assessment.  

The top scoring FCNs are suitable for many benthic ecology applications, and would be expected to increase 

in performance even further if provided with additional images to learn from. Typically, the predicted 

segmentation maps (i.e., dense labels) are validated by comparing them to ground-truth segmentation maps, 
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but because the MLC only has sparse labels these were used instead. This form of validation does provide 

some indication of performance, although it is not the most beneficial format as it does not take into account 

the other 99.5% of labels that were predicted by the deep learning model. Looking at a randomly sampled 

segmentation map produced by a DenseNet model, the predicted sparse labels that tend to be misclassified 

are those that are located along the borders of different semantic groups (Fig. 9). This is not unexpected as 

the transition between neighboring class categories is often not sharp in contrast, but instead is usually 

fuzzy and complex.  

 

Fig. 9 – A side-by-side comparison between an image and its labels. From left to right: the original image 

with ground-truth sparse labels superimposed, the dense labels predicted by a deep learning model, and 

those same dense labels overlaid on top of the original image. The sparse labels in the last two columns are 

colored white if predicted correctly, or colored black if incorrectly; note that most of the incorrect 

predictions appear along the borders of semantic groups. 

However, some of the misclassified predictions made by the FCNs could also be attributed to incorrect 

ground-truth labels, which were created in error for the same exact reason. It has already been established 

in [17] that ‘Off’ points were labeled inconsistently, where some that were clearly on the quadrat were 

provided with labels of different class categories that were nearby; the same is also likely true for labels of 

other class categories. Unfortunately, without properly annotated segmentation maps to serve as ground-

truth these questions cannot be completely addressed. 
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CHAPTER 3: SEMANTIC SEGMENTATION WORKFLOW FOR THE CLASSIFICATION OF 

3-D RECONSTRUCTED CORAL REEFS 

 

INTRODUCTION 

Coral reefs are complex 3-dimensional structures that promote the assemblage of diverse groups of 

organisms by providing niche habitats for prey seeking refuge from predation. Although images collected 

through benthic quadrat surveys are routinely used to evaluate community composition, they fail to capture 

the changes that occur to a coral reef when considering the 3-dimensional structure, arguably one of its 

most important attributes.  

Fortunately, the new standard for obtaining 3-D measurements has emerged in the form of Structure-

from-Motion (SfM) algorithms, which utilize images collected from multiple angles to estimate depth 

and provide the ability to reconstruct 3-D models of coral colonies, or even entire reefs [28, 29, 30]. 

Because of the relative ease and the accuracy of the models it can produce, SfM has opened new 

opportunities for exploring how the physical structure of a reef changes across space and time at 

unmatched levels of precision. However, one drawback of SfM is it lacks an inherent mechanism for 

denoting which portions of the reconstructed model belong to a particular class category or functional 

group. This means that (1), 3-D coverage statistics relating to the composition of species cannot be 

calculated and (2), any metric that describes the structure of a reef can only be resolved at the model 

scale. This inability severely hinders the potential to understand any connections that may exist between 

changes in habitat structure and its community composition, such as those that occur during coral-algal 

phase shifts. 

Currently, there is only one other known technique that can be used to classify the 3-D reconstruction of a 

coral reef. Published in 2020, Hopkinson et al. [31] demonstrated how a CNN can be trained on, and used 

to classify the images that are used in the SfM reconstruction. Their methodology involved using the camera 

transformation matrices that are created during the camera alignment phase of the reconstruction process 

to identify all of the images that correspond to each of the elements that make up the 3-D model. Then, after 

training a CNN on a representative subset of those images, it was used to classify all of the remaining 

images that are associated with an element; because multiple viewpoints correspond to every element, a 

majority-voting scheme was used to determine the final semantic label for each one. Conceptually, this 

technique is not unlike a 3-D version of classifying each individual pixel within an image one-by-one, and 

can be computationally demanding especially for high resolution models made up of millions of elements, 

each of which may be associated with 10+ images. 

This study demonstrated a more efficient method that used the pixel-wise labels (i.e., dense labels) for 

each of the images used in the reconstruction process to classify a 3-D reconstructed model. Because each 

image only needs to be provided with a corresponding set of labels once, this method scales linearly and 

can be used to provide semantic labels to a 3-D model regardless of its size or resolution. 

Although providing dense labels to thousands of high-resolution images usually requires a significant 

amount of time, this study drastically reduced the amount of effort needed by developing a workflow that 

used the deep learning and computer vision algorithms that were described in the previous two chapters.  

The next section describes how the dataset used in this study was initially collected, and the process in 

which the 3-D model was reconstructed using SfM photogrammetry software. Next, a comprehensive 

walkthrough for each step of the workflow is provided, followed by an overview of the class categories that 

were defined for this study, and then an explanation of how the deep learning models from the workflow 
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were trained. Finally, how the 3-D models were classified is described, followed by an analysis, the results 

and lastly, a discussion.  

 

METHODOLOGY  

Image acquisition 

Video data were collected of a coral patch reef located near Cheeca Rocks (24.9041°N, 80.6168°W) in the 

Florida Keys National Marine Sanctuary (Fig. 10) using a custom frame equipped with two GoPro Hero 7 

Black video cameras mounted approximately one meter apart, both encased in waterproof housing with a 

flat-view port. Videos were collected by SCUBA divers who swam 1-4 m above the patch reef in a 

boustrophedonic (i.e., lawnmower) pattern with cameras angled towards nadir followed by a second pass 

with cameras angled at approximately 45 degrees to obtain oblique views. Finally, divers were instructed 

to swim freely at various depths and distances from the patch reef, completely encircling it in an attempt to 

acquire footage of any occluded areas on the reef. Videos were recorded in 4K HD (2160 pixels x 3840 

pixels) and at 24 frames per second (fps) in wide field-of-view mode with HyperSmooth stabilization set to 

active. Twenty-three coded targets were strategically placed on and around the site to assist in estimating 

camera locations and the calibration coefficients during the reconstruction of the 3-D model.  

 

 

Fig. 10 – A Google Map of the Florida Keys (left) and satellite imagery obtained from Google Earth 

showing Cheeca Rocks (right), which is located approximately one mile southeast of the Upper Matecumbe 

Key within the Florida Keys National Marine Sanctuary.  

The video survey covered an area of approximately 5 m x 5m with divers swimming between 8 ± 2 m deep, 

was conducted in July of 2019 while water visibility was greater than 35ft, and used only ambient light. 

Post-capture, 2180 images were extracted from the video footage by sequentially sampling one in every 

eight frames, allowing for enough forward overlap (> 60%) between successive images. 

 

Structure-from-Motion Photogrammetry (SfM) 

The 3-D model in this study was created using the SfM photogrammetry software (Agisoft Metashape Pro 

1.6, previously Photoscan) following a similar methodology outlined by [30], with a few additional steps 

that were found to enhance model quality [34]. The patch reef, as seen in Fig. 11, was reconstructed using 
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all of the 2180 still images that were extracted from the video footage. The ‘Camera Calibration’ profile 

was set to ‘Fisheye lens’ to help account for the refraction caused by the GoPro’s wide-angle lens, and the 

‘Detect Markers’ tool was used to automatically create control points for each coded target found within 

the image drastically reducing much of the manual work needed; any of the coded targets not detected were 

marked manually.  

 

 

Fig. 11 – A textured mesh representing the example coral patch—which is roughly 1.5 m in diameter and 

3 m in height—was reconstructed from still images extracted from video footage using Agisoft Metashape 

SfM photogrammetry software. The mesh consisted of 10 million faces, and had an estimated accumulative 

error of 1.4 mm after providing absolute scale using the real world dimensions of the coded targets. 

The remainder of the reconstruction process followed the standard procedure of (1) photo alignment, (2) 

densification, (3) building a mesh and then (4) texturizing it. All quality settings were set to ‘Medium’ with 

the exception of photo alignment, which was set to ‘Highest’ resulting in 95% of images being aligned. The 

reconstructed model consisted of roughly 10 million triangular faces that approximated the surface of the 

patch reef. The model was estimated to have a ground resolution of 0.278 mm/pixel and a reprojection error 

(i.e., root-mean square error) equal to 1.6 pixels. Absolute scale was provided to the model in Metashape 

by creating scale bars along the length and width of seven coded targets found within the model, and 

supplying them with the corresponding real world dimensions (4 ¼ inches x 4 ¼ inches); the estimated 

accumulative error was reported to be approximately 1.4 mm. 

 

A Deep Learning and Computer Vision Workflow  

The still images used to reconstruct the 3-D model were the same ones used to train a deep learning semantic 

segmentation algorithm. However, before they could be used as training data they needed to be provided 

with the appropriate annotations. For semantic segmentation every pixel in the image needs to be provided 

with a label denoting the class category it belongs to (i.e., dense labels), which is a time-consuming and 

expensive process. Even when using commercial image annotation software, providing pixel-wise labels 

can cost the annotator 20+ minutes per image.  
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Thus, to reduce the burden of having to manually perform pixel-level annotations for thousands of images, 

this study designed a workflow that provided every still image in the dataset with dense labels while also 

minimizing the amount of work needed to be performed by the user. The workflow is summarized in Fig. 

12, which first required the user to manually create a dataset that could be used to train a patch-based image 

classifier. This classifier provided numerous sparse labels to each still image automatically, and then using 

Fast-MSS, they were converted into dense labels. These dense labels and their corresponding images 

formed a dataset that were then used to train a Fully Convolutional Network (FCN) capable of performing 

pixel-level classifications on unannotated images.  

 

 

Fig. 12 – A diagram illustrating the workflow used to obtain dense labels for each image. Still images were 

extracted from the video footage (A) and imported into Rzhanov’s patch-extraction tool (B) where patches 

for each class category of interest were extracted (C). These patches and their corresponding labels were 

used to train a patch-based image classifier (D) that then provided numerous sparse labels to each image in 

the dataset (E). Using Fast-MSS (F), the sparse labels were converted into dense (G) and used as the pixel-

wise labels necessary for training a deep learning semantic segmentation algorithm. (H). With a trained 

FCN, novel images collected from the same or similar habitats could be provided with dense labels 

automatically (I) and without having to perform any of the previous steps (B-G). 

Although there were multiple steps involved in this workflow, only the first step required manual effort 

from the user; the remainder of the steps were completed automatically using deep learning and computer 

vision algorithms. Thus, this workflow showcased that training data created through almost entirely 

automatic processes (as opposed to being done manually) could still produce a deep learning model that 

performs with acceptable classification scores to be used in other applications. To evaluate how well these 

deep learning models perform, 50 images were first randomly sampled with replacement from the dataset 
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and given an additional set of ground-truth dense labels that were created by hand using the commercial 

image annotation software LabelBox [32]. These ground-truth dense labels served as a testing set to gauge 

the performance of the patch-based image classifier, the dense labels created by Fast-MSS, and the 

predictions made by the FCNs.  

1. Creating an Image-Patch Dataset 

Beginning the workflow, the first step involved creating a dataset that a patch-based image classifier could 

learn from. Unlike a normal image classifier, a patch-based image classifier is trained on sub-images 

commonly referred to as ‘patches’ that are cropped on individual class categories. A common method for 

creating an image-patch dataset is outlined in [6], where patches are extracted centered on top of the existing 

sparse labels that were created manually by a user with a point-based annotation software tool like Coral 

Point Count (CPCe).  

However, instead of going through the time-consuming process of creating CPCe annotations for each 

image, this study used the Center for Coastal and Ocean Mapping (Durham, NH, USA)’s in-house 

annotation software tool made by Dr. Yuri Rzhanov specifically for the purpose of extracting patches from 

still images. This patch-extraction tool is fast and provides an intuitive interface that allows the user to 

easily sample any part of the image, while archiving the location of extraction and assigned class label. 

Given the freedom to extract patches using a mouse or trackpad, a user can quickly create a highly 

representative dataset. Using this tool, roughly10,000 patches with dimensions of 112 pixels by 112 pixels 

were extracted from the still images in the dataset, averaging approximately 50 patch extractions per minute. 

2. Training a Classifier to Provide Sparse Labels 

This newly created dataset consisting of patches and their corresponding labels served as the training data 

for the patch-based image classifier; as in Chapter 2, the classifier was first trained and then used to provide 

sparse labels to each still image automatically. 

Providing additional labels involved first uniformly extracting patches with dimensions of 112 pixels x 112 

pixels from an image following a grid formation. In total, approximately 2800 patches were sampled from 

each image in the dataset, representing potentially 2800 additional labels per image, or roughly .035% of 

the total number of pixels in the image. Extracted patches were then passed to the classifier as input. The 

output for each was a corresponding vector representing the probability distribution of class categories to 

which the center-most pixel of the patch likely belonged. For each patch the extracted location, the 

presumed class label, and the difference between the two highest probability distributions (i.e., top-1 and 

top-2 choices) were recorded. 

Again, the difference in probabilities were used to filter out sparse labels that were more likely to have been 

misclassified. Determining the ideal threshold involved trying different values and comparing the 

classification scores of the sparse labels predicted for the test images against the labels in the corresponding 

pixel indices of the ground-truth. As discussed in the results section, the final threshold value that was 

chosen balanced the tradeoff between the number of labels that were accepted and their classifications 

scores.  

With regards to efficiency, the patch-based image classifier assigned roughly 200 sparse labels to an image 

per second, as opposed to the one annotation every six seconds that it cost users who used a point-based 

annotation software tool [17]. 
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3. Converting Sparse Labels to Dense using Fast-MSS 

The next step converted the accepted sparse labels that were assigned to each image into dense using Fast-

MSS. For this dataset, the first and last number of superpixels to partition each image into was 5000 and 

300, respectively, and across 30 iterations. Each image was downsized by reducing the height and width by 

a factor of six after confirming that a reduction in the input image’s dimensions could decrease the time 

required to create the dense labels without negatively affecting the classification scores (Table 5). Dense 

labels were then upsized using nearest neighbor interpolation so they matched the image’s original 

dimensions, a requirement for deep learning model training. 

Table 5 – The effect of reducing an input image’s dimensions on the output of Fast-MSS 

 
Reduction 

Factor 

Dimensions 

(pixels) 
PA m-PA w-IoU w-Dice Time (Seconds) 

1 2160 x 3840 0.8852 0.8051 0.8199 0.8938 260.45 

2 1080 x 1920 0.8854 0.8049 0.8197 0.8937 64.42 

3 720 x 1280 0.8856 0.8050 0.8195 0.8936 22.21 

4 540 x 960 0.8853 0.8053 0.8196 0.8936 13.85 

5 432 x 768 0.8853 0.8054 0.8195 0.8933 9.98 

6 360 x 640 0.8850 0.8051 0.8192 0.8930 7.79 
 

Abbreviations: PA, pixel accuracy; MPA, mean pixel accuracy; MIoU, mean intersection over union. Cells are colored red, 

yellow, or green if they are lower, the same, or higher compared to other dimensions, with 1.0 representing a perfect score for 

classification metrics.  

Note: All trials were conducted on the same PC with an Intel i7-8700 processor; dense labels were resized using nearest neighbor 
interpolation before compared to ground-truth. 

 

4. In the Future, Automate the Boring Stuff  

Although the dense labels created could have been used to classify the 3-D reconstructed model directly, 

they were instead used as training data to train a deep learning semantic segmentation algorithm. The major 

advantage of a FCN is its ability to generalize to images collected from domains that are similar to those 

that it was trained on. A researcher could obtain dense labels for images collected from the same or similar 

habitats that the FCN was previously trained on without having to perform any of the previous steps in the 

workflow. Thus, the objective of this workflow was not just to obtain a set of dense labels for every still 

image, but rather it was a means of acquiring dense labels for datasets collected in the future more 

efficiently.  

This study experimented with five FCNs, all of which used encoders from the EfficientNet series (B0 – B4) 

as those were shown to perform with the highest classification scores in the previous study. Each FCN was 

used to create an additional set of dense labels for every image in the dataset; these and the set created by 

Fast-MSS were validated and compared against the ground-truth dense labels within the testing set. 
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Class Categories 

Of the different organisms, substrate types, and objects present in the video footage data, seven class 

categories were formed. Four of these were biological (“Branching”, “Fish”, “Massive Coral” and “Algae”) 

and consisted of multiple species, one encompassed all of the potential substrate types (“Substrate”), 

another was used to denote the coded targets (“Target”), and lastly was the class to represent the background 

(“Water”, Fig 13.)  The first five class categories served as functional groups to demonstrate the ability to 

calculate community composition in both 2-D images and 3-D models, but alternative functional groups 

could be chosen for different purposes.  

 

 

Fig. 13 – A still image (2160 pixels x 3840 pixels) extracted from the video footage showcasing the class 

categories used in this study (left), and the distribution of each class category based on their pixel count 

calculated from the 50 ground-truth dense labels within the testing set (right). 

The majority of the still images in the dataset were made up of pixels that belonged to massive corals 

(Oorbicella faveolata, Orbicella annularis and Porites astreoides), followed by different types of substrate 

(sand, rubble). The third most represented class category was “Algae”, which contained some crustose 

coralline algae (CCA) and filamentous turf algae, but primarily Halimeda spp., which was found in 

abundance in crevices between coral colonies. The “Branching” class was comprised of fire coral 

(Millepora alcicornis) and various other types of octocorals that included sea plumes, sea rods, and sea 

fans; the “Fish” class category incorporated all individuals with no distinction made between genus or 

species. To ensure that the coded targets would not be assumed to be associated with one of the functional 

groups a class was created for it. Lastly L “Water” served as the background class meant to represent the 

pixels in an image where there was nothing as visible as a result of light attenuation through the water 

column.  
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These seven class categories could be found in the still images, but only “Branching”, “Massive Coral”, 

“Algae”, “Substrate” and “Target” were included in the 3-D model because SfM photogrammetry is only 

capable of reconstructing objects that are static within the source images. Thus “Fish” and “Water” would 

be excluded. 

 

Model Training 

The patch-based image classifier that was used to provide sparse labels to each image as described in the 

workflow used the EfficientNet-B0 architecture. Instead of using the typical ‘ImageNet’ weights, the 

classifier was initialized with the ‘Noisy-Student’ weights, which were learned using a semi-supervised 

training scheme that was demonstrated to outperform the former [33]. The encoder was followed by a max 

pooling operation, a dropout layer (80%), and finally a single fully connected layer with seven output nodes 

(one for each of the class categories). Patches were resized to 224 pixels x 224 pixels and fed to the model 

as training data after heavy augmentation techniques were applied using the ImgAug library, and normalized 

to have pixel values between 0 and 1.  

Because the task was multi-categorical classification, softmax was chosen as the activation function for the 

network, and the batch size was set to 32 as this was the largest amount possible given the network 

architecture, the size of the image patches, and the amount of memory that could be allocated by the GPU 

being used. The model was trained on 10,000000 image patches that were randomly split into a training 

(90%) and validation (10%) set for 25 epochs.  

During training the error between the actual and predicted output was calculated using the categorical-cross 

entropy loss function. Parameters throughout the network were adjusted using the Adam optimizer with an 

initial learning rate of 10-4. Using the ReduceLROnPlateau callback, the learning rate was reduced by a 

factor of 0.5 for every three epochs in which the validation loss failed to decrease, and the weights from the 

epoch with the lowest validation loss were archived. 

Based on the results from Chapter 2, this study experimented with five different FCNs, all of which used 

the U-Net architecture and were equipped with one of the five smallest encoders within the EfficientNet 

family (i.e., B0 through B4). Again, all deep learning semantic segmentation models were implemented in 

Python using the Segmentation Models library provided by [24]. 

Each of the EfficientNet encoders was initialized with ‘Noisy-Student’ weights, but was left frozen (i.e., 

immutable) for the entire training process, meaning only the weights within the decoder of the FCN were 

updated. Images were pre-processed in the same way as the images were when the original encoders were 

trained on the ImageNet dataset, while dense labels were converted into one-hot-encoded vectors forming 

a shape of (B x H x W x C) where B and C represent the batch size and the number of class categories, 

respectively. During preliminary analysis it was found that heavier augmentation techniques (e.g., adding 

noise, blurring, sharpening, altering contrast) resulted in lower classification accuracies; instead only 

augmentations in the form of simple affine transformations (flips, flops, rotations) were applied to each 

sample.  

Each successive encoder within the EfficientNet family required an additional amount of memory to train 

due to their increasing architectural size and number of parameters. To accommodate the memory 

requirements of each of the encoders, all images were reduced in height and width by a factor of three 

resulting in dimensions of 736 pixels x 1280 pixels; this was the largest an image could be to work with all 

of the encoders, and consequently resulted in the batch size having to be equal to one (i.e., a single image). 
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Models were trained for 25 epochs on all 2180 images, which were randomly split into a training (90%) 

and validation (10%) set. 

During training of the FCNs the error was calculated using the soft-Jaccard loss function, which acts as a 

differentiable proxy that attempts to maximize the Intersection-over-Union metric [25]. Parameters were 

updated via backpropagation using the Adam optimizer, which was set with an initial learning rate of 10-4 

and used the ReduceLROnPlateau callback with the same settings as described before; after 20 epochs, 

only the weights from the epoch with the lowest validation loss were archived. 

All deep learning models were trained on a PC equipped with an NVIDIA GTX 1080 Ti GPU and an Intel 

i7-8700 CPU, using the Keras deep learning framework and the Tensorflow numerical computational 

library. 

 

3-D Model Classification 

Following the training process, Fast-MSS and the five FCNs were each used to create a set of dense labels 

for each image in the dataset. With each respective set of dense of labels, a separate classified 3-D model 

was created, thus allowing the comparison between the five FCN encoders (i.e., EfficientNet B0 – B4) and 

Fast-MSS. The technique to assign semantic labels to the 3-D model was straight forward and was done 

almost entirely in Agisoft Metashape; the instructions for how this was done are explained below (Fig. 14). 

 

Fig. 14 – A diagram showing step-by-step which tools in Metashape were used to reconstruct the 3-D 

model, followed by how semantic labels were provided to it. Once the images are swapped with their 

corresponding dense labels, the classified point cloud, shaded mesh, and textured mesh can be created 

independently of one another and is not a sequential process like the reconstruction. 
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Once the textured mesh for the 3-D model was created, the entire project was duplicated using the 

‘Duplicate Chunk’ action. Within the duplicated project, all information that was created during the 

construction of the original model (e.g., the mapping of pixels from image to 3-D space, color components 

and UV coordinates) was also copied to the project folder. Following the duplication, images that were used 

in the reconstruction process were swapped with their corresponding dense labels using the ‘Change Paths’ 

tool; because the dimensions of the images and the dense labels were identical, and they both shared the 

same filenames, the swap executed without error. 

Next the ‘Build Texture’ tool was used to create another textured mesh but using the dense labels as the 

source images instead. By default, this tool reused the existing UV coordinates that were copied over during 

the duplication. The ‘Texture Type’ was set to diffuse, and ‘Blending’ was disabled to ensure that the 

discrete categorical values representing each class in the dense labels would not accidently be averaged 

along the borders of neighboring semantic groups in the resulting classified textured mesh (e.g., seamlines). 

Alternatively, it was found that if the blending mode was set to ‘average’ or ‘mosaic’—as is recommended 

by Agisoft—the model could be corrected using a custom post-processing script, which is explained in a 

later passage. 

Once completed, the classified textured mesh was identical to the original in appearance, but with textures 

that were mapped from the respective set of dense labels that were used as source images instead of the still 

images (Fig. 15). A classified shaded mesh and dense point cloud were then created using the ‘Colorize 

Vertices’ and ‘Colorize Dense Cloud’ tools, respectively. These tools worked similarly, mapping the color 

components from the pixel indices found in the source images (i.e., dense labels) to their corresponding 

elements or points within the shaded mesh or dense cloud. 
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Fig. 15 – Comparison between the textured mesh and its corresponding atlas (left) against the classified 

version of the mesh and its corresponding atlas after being corrected using the custom post-processing script 

(right). Validation for the classified model was obtained by comparing the classified atlas with a manually 

annotated texture atlas (not shown) that served as ground-truth. 

However, unlike in the ‘Build Texture’ tool, the blending mode could not be disabled in either ‘Colorize 

Vertices’ or ‘Colorize Dense Cloud’. This resulted in some of the elements or points having color 

components with values that are not within the set of discrete values that denoted the class categories, which 

could potentially pose a problem for those attempting to perform spatial analysis using the classified models 

in future studies. 

Fortunately, Metashape provided a tool called ‘Classify Points’, which selects and then classifies points 

based on an individual, or range of color components. After this was done for each class category, the dense 

cloud and its corrected classifications were exported as conventional point cloud formats including LAS 

and XYZ to confirm that they could be used in other spatial analysis software. 

However, the current version of Metashape does not offer the ability to classify the vertices of a mesh based 

on color components; instead, this study used a custom script written in Python that performed this task 

outside of Metashape, demonstrating that it could be done if needed. After the mesh was colorized using 

‘Colorize Vertices’, it was exported as an OBJ file in ASCII format that stored the 3-dimensional 

coordinates of each vertex and its color components in an easily parsable format. When provided with the 

set of discrete color components that denote each of the class categories, the script was made to first check 

if each vertex had one of the correct color components; if the values were not within the set, they were 

changed to the color components to which they are closest in RGB color space as measured by their 

Euclidean distance. Because the script parsed the file line-by-line, even large models could be corrected 

this way without having memory allocation errors. This same script could also be used to adjust each of the 

pixel indices in the classified textured atlas if the blending mode of the ‘Build Texture’ tool had been set to 

either ‘mosaic’ or ‘average’ instead of being disabled. 

Although the classifications were provided to the shaded mesh and dense point cloud within Agisoft 

Metashape, there was no tool that could be used to evaluate their accuracies. Instead this was done outside 

of Agisoft Metashape, and by using the classification scores of the classified textured mesh as a proxy for 

the scores of the classified shaded mesh and dense point cloud. From Agisoft Metashape both the original 

and the classified textured mesh were exported as 2-D images (i.e., texture atlases), and then the former 

was made into a ‘ground-truth texture atlas’ by manually providing it with semantic labels using the image 

annotation software tool LabelBox. As is done when annotating a typical 2-D image, the pixel indices in 

the original texture atlas were assigned labels denoting the class category they were thought to belong to 

by a trained annotator.  

Unfortunately, not all of the textures were discernable to the annotator as some were either too small, or 

simply did not resemble any of the class categories when represented in the texture atlas. In an attempt to 

provide an accurate form of ground-truth, annotators only assigned labels to the pixel indices that they were 

confidently able to identify, resulting in a ground-truth texture atlas (4096 pixels by 4096 pixels) where 

88% of the pixels were provided with semantic labels.  
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Experiments 

For the analysis, this study validated the results of the patch-based image classifier and its ability to produce 

sparse labels, the dense labels that were created by Fast-MSS, the predictions made by the five FCNs 

experimented with, and the classification accuracy of the 3-D classified models. 

To calculate classification scores, the sparse labels predicted by the patch-based image classifier for each 

image in the test set were compared to the labels in the corresponding pixel indices of the ground-truth. 

Similarly, the dense labels created by Fast-MSS and the FCNs for each image in the test set were compared 

to the ground-truth dense labels. Lastly, each classified 3-D model was evaluated following the process 

described in the previous section, where each 3-D model was exported from Agisoft Metashape as a 2-D 

image and its semantic labels were compared to the ground-truth labels that were provided by the annotator. 

As seen in the bar-chart of Fig. 10, the distribution between class categories was not uniform, which likely 

caused predictive models to learn features that favor over-represented classes, at the expense of under-

represented classes. However, because this study did not value one class over any other, two of the metrics 

used to evaluate the classification scores were calculated as a weighted average based on the frequency 

(i.e., total number of pixels) of each class.  

The metrics used include pixel accuracy (PA), mean pixel accuracy (m-PA), weighted Intersection-over-

Union (w-IoU), and weighted Dice coefficient (w-Dice). PA was computed by globally calculating the ratio 

of correctly classified pixels to the total number of pixels; this is identical to the overall classification 

accuracy and does not take into consideration class imbalances. The m-PA calculates the global accuracy 

of each class individually and then averages them together so that each class contributes to the final score 

equally, regardless of class imbalances. Last are IoU and Dice (i.e., Jaccard index and F1-Score, 

respectively), which are similarity coefficients commonly used for quantifying classification scores of 

semantic segmentation tasks. The weighted average for these two metrics were calculated using (10) and 

(12), respectively:  

 

(10) 

 

(11) 

 

(12) 

where the weight for each class wi, was calculated as ratio of pixels per class over the total number of 

pixels in the test set. 
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RESULTS 

Classification Scores 

First are the results of the patch-based image classifier and how its performance changed as a function of 

the confidence threshold value used. Mentioned in the methods section, the confidence score was used to 

filter sparse labels that were more likely to have been misclassified; a higher threshold value usually 

represents more confidence in a prediction.  

Table 6 – Classification scores for the patch-based image classifier compared against ground-truth. 

Threshold Accepted PA m-PA w-IoU w-Dice 

0.0 100% 0.833 0.786 0.739 0.844 

0.25 94% 0.855 0.815 0.769 0.864 

0.50 89% 0.875 0.835 0.796 0.882 

0.75 83% 0.896 0.857 0.827 0.902 

0.90 76% 0.914 0.874 0.855 0.919 

0.99 61% 0.941 0.902 0.899 0.944 
 

Abbreviations: PA, pixel accuracy; m-PA, mean pixel accuracy; w-IoU, weighted Intersection-over-Union; w-Dice, weighted 
Dice coefficient.  

Note: For classification metrics, 1.0 represents a perfect score. 

 

As expected, Table 6 shows that there is an inverse relationship between the amount of points accepted and 

the overall classification scores, which can readily be seen in Fig. 16. Based on these results, 0.50 was 

chosen as the confidence threshold value for the remainder of the workflow as it was deemed to produce 

results that balanced this tradeoff. 
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Fig. 16 – A line-graph displaying the inverse relationship between the confidence threshold value and the 

classification scores of the sparse labels accepted. As the threshold value becomes more conservative along 

the x-axis, more of the sparse labels the classifier is unsure about are rejected causing the classification 

scores of the remaining labels to increase as a result. 

Table 7 shows that the dense labels that were produced by Fast-MSS produced classification scores that 

were slightly less than those created by any of the FCNs, except for B2, which produced the lowest scores; 

among the FCNs, the differences in performance were marginal. With regards to speed, all FCNs performed 

substantially faster than Fast-MSS, whose recorded time also included the time required by the patch-based 

image classifier to first predict sparse labels for the input image. However, even when the input image was 

reduced in dimensions by a factor of 6, the patch-based image classifier and Fast-MSS combo produced a 

result in 22.6 seconds, which is still 10x slower than the slowest FCN. 

 

Table 7 – Classification scores of each method for producing dense labels compared against ground-truth. 

 

Method PA m-PA w-IoU w-Dice  Time (seconds) 

Fast-MSS 0.885 0.805 0.819 0.893  37.06 

       

EfficientNet-B0 0.895 0.809 0.826 0.899  0.99 

EfficientNet-B1 0.900 0.811 0.833 0.903  1.34 

EfficientNet-B2 0.870 0.797 0.793 0.878  1.78 

EfficientNet-B3 0.897 0.817 0.830 0.901  2.14 

EfficientNet-B4 0.897 0.811 0.830 0.901  2.31 
 

Abbreviations: PA, pixel accuracy; m-PA, mean pixel accuracy; w-IoU, weighted Intersection-over-Union; w-Dice, weighted Dice 
coefficient. 

Note: Times to perform are based on input images with dimensions of 736 pixels by 1280 pixels. Scores are colored red, yellow, or green 

to represent the worst, the intermediate, and the best methods, respectively, for classification scores and speed. Bold numbers highlight 
the best performing method for each metric, with 1.0 representing a perfect score. 

 

Last are the results for the classified 3-D model (Table 8). Overall the classification scores followed the 

same general trend that can be seen in Table 7. The classified texture atlas that used the dense labels 

produced by Fast-MSS as the source images had scores for PA, w-IoU and w-Dice that were slightly less 

than those created by any of the FCNs; the FCNs were equally good with no clear indication that one 

outperformed another.  
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Table 8 – Classification scores of 3-D models represented as texture atlases compared against ground-

truth. 

 

Method PA m-PA w-IoU w-Dice 

Fast-MSS 0.896 0.775 0.823 0.899 

     

EfficientNet-B0 0.905 0.762 0.836 0.907 

EfficientNet-B1 0.910 0.766 0.843 0.911 

EfficientNet-B2 0.908 0.781 0.842 0.910 

EfficientNet-B3 0.907 0.781 0.840 0.910 

EfficientNet-B4 0.913 0.775 0.850 0.915 

 

Abbreviations: PA, pixel accuracy; m-PA, mean pixel accuracy; w-IoU, weighted Intersection-over-Union; w-Dice, weighted 
Dice coefficient. 

Note: Due to the inability to discern the class category of all the pixels in the ground-truth texture atlas, only those that could 

be provided with labels (~88%) were used in the comparison. Scores are colored red, yellow, or green if they are lower, the 

same, or higher than the other method’s score, respectively. Bold numbers highlight the best performing method for each metric 
with 1.0 representing a perfect score. 

 

Discussion 

Table 6 shows the inverse relationship between the confidence threshold value chosen and the percentage 

of sparse labels accepted: as the threshold value became more conservative (i.e., increases) more of the 

labels that the model was not confident about were rejected. This also created a direct relationship between 

the threshold value and the classification scores, because again, as more of the labels the model was not 

confident about were rejected, the overall classification accuracy of the remaining labels was likely to 

increase as a result.  

In Chapter 1 it was shown that Fast-MSS produced dense labels with higher classification scores when it 

was provided a greater number of sparse labels. While this remains true, Table 6 shows that supplying more 

sparse labels is not necessarily beneficial. By decreasing the confidence threshold, there is an increase in 

the number of misclassified labels, whose error would only be compounded when Fast-MSS propagated 

the class label to the adjacent pixel indices when creating dense labels. Thus, when using a patch-based 

image classifier in conjunction with Fast-MSS there exists a balance between the number of sparse labels 

that should be accepted and the resulting classification scores; this can also be used as an indicator to 

determine whether or not the classifier requires further training. Table 6 also highlights why developing a 

comprehensive and well-representative dataset from the very beginning is important, as the classifier’s 

performance has a significant effect on the classification scores of the remaining portions of the workflow 

(as seen in Table 7 and 8). 

A key takeaway from Table 7 is that even though the FCNs were trained on the dense labels produced by 

Fast-MSS, all but B2 achieved higher classification scores. This suggests that as a deep learning algorithm, 

a FCN has the potential to develop a better understanding of which features are associated with each class 

category by learning from all of the images collectively throughout the training process. This is in contrast 

with Fast-MSS, which, although it performed well, is limited by the fact that it can only propagate the label 

that it is provided with outwards to neighboring pixel and does not contain a mechanism for learning 
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whether or not those labels are in fact correct. This is not to say that the patch-based image classifier and 

Fast-MSS do not serve a valuable role within the context of the workflow, but rather that it would be 

preferable to use a trained FCN as the primary method for producing dense labels for novel images collected 

in the future. This, combined with the fact that the FCNs performed substantially faster highlight why 

researchers should be moving towards the use of deep learning algorithms for the annotation of coral reef 

imagery. 

Table 8 shows the classification scores for the 3-D classified models that were made from the different sets 

of dense labels shown in Table 7. Although the difference in scores between each 3-D model is not 

substantial, the fact that they closely resemble the scores in Table 7 suggests three things at a minimum. 

The first is that Agisoft Metashape is able to map the textures from the dense labels to create a 3-D classified 

model with a high level of accuracy. Secondly, the classification scores of the 3-D models appear to be 

largely dependent on the classification scores of the dense labels that were used as source images; this 

reinforces what was already assumed to be true and also provides positive validation for this technique of 

creating 3-D classified models. Finally, the results suggest that the non-conventional ground-truth texture 

atlas that was created is of similar quality when compared to the more conventional ground-truth dense 

labels that were created for the images in the test set. This provides validation for this method of evaluating 

the classification scores of the 3-D model directly, which could prove useful in future studies. 

Although the scores between Table 7 and 8 are similar, there is a pattern of a 1 to 2-point increase for PA, 

w-IoU and w-Dice, which may be caused by the blending of color components that occurs during the ‘Build 

Texture’ function. For each individual element that comprises the 3-D mesh, there are multiple pixels found 

within different source images that all correspond to it, but from different vantage points. When creating 

the textured mesh with the blending mode set to either ‘mosaic’ or ‘average’, each element is assigned a 

color based on the weighted average of the color components from the pixels that it corresponds to [34]. 

Thus, by using either of these modes, the blending of source images—in this case, the dense labels—may 

serve as a weighted average ensemble that contributes to slightly higher classification scores. However, 

Table 8 shows that m-PA drops by approximately 3 to 4-points for each method, but this may be explainable 

by the following.  

SfM algorithms make the assumption that all parts of the scene are static meaning anything dynamic will 

not accurately be incorporated in the reconstruction. For this reason, the two class categories ‘Fish’ and 

‘Water’ that were defined for this study cannot be represented in the 3-D model nor the ground-truth texture 

atlas. However, the ‘Build Texture’ tool will map the semantic labels from the source images to the 3-D 

model regardless of which class category they belong. Because each method still has the potential to 

misclassify some pixels in the source image (as seen by their lack of perfect scores in Table 7), their 

misclassifications can make their way into the classified texture atlas. 

Secondly, by comparing the per-class accuracy between the two top scoring models from tables 7 and 8, it 

can be seen that the scores decrease for all of the classes in the classified texture atlas except for ‘Massive’, 

the most represented category, whereas ‘Branching’ and ‘Target’ drop in score considerably, which are the 

two smallest and least represented class categories that can be found in the 3-D model (Table 9).  
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Table 9 – Comparing the Relative Abundance and Per-Class Accuracy of the Still Images against the 

Texture Atlas. 

 

 Relative Abundance Per-Class Accuracy 

Class Categories Still Images Texture Atlas Still Images Texture Atlas 

Branching 0.02 0.01 0.713 0.406 

Fish 0.01 NA 0.773 NA 

Massive Coral 0.45 0.50 0.865 0.939 

Algae 0.23 0.26 0.965 0.911 

Substrate 0.26 0.22 0.911 0.857 

Target 0.02 0.01 0.938 0.698 

Water 0.01 NA 0.837 NA 
 

Note: the ‘Fish’ and ‘Water’ class categories are not included in the texture atlas due to an inability to reconstruct dynamic 

objects within a photogrammetric model. Classification scores for still images and the texture atlas came from models with B1 

and B4 as encoders, respectively. 

 

These two reasons suggest that the decrease in m-PA is not necessarily reflective of an issue inherent in the 

‘Build Texture’ tool but rather the difficulties in manually providing semantic labels to the ground-truth 

texture atlas—especially for classes that are both relatively small in size and less frequent—as well as how 

the metric is calculated, which does not take into account the imbalances in class distribution and weighs 

each per-class accuracy equally. 

In conclusion, these results provide evidence that the ‘Build Texture’ tool is a method to accurately assign 

semantic labels from source images to a 3-D model, and that resulting classification accuracy of the 

classified texture model is a function of the reconstruction error of the original model, as well as the 

classification scores of the method used to produce dense labels. Although the classified textured mesh is 

not typically used in spatial analyses, this study showed that it can serve as a useful proxy for validating the 

accuracy of the classified shaded mesh and dense point cloud, which often are.  Because the elements that 

make up the textured mesh store both the texture coordinates and the color components, it stands to reason 

that all three model types share similar classification scores (Fig. 17).  

 

Fig. 17 – A side-by-side comparison between the textured mesh (left), the classified textured mesh with 

40% transparency (center), and the classified shaded mesh (right). The classified textured mesh was used 

as a method for validating the classification results of the classified shaded mesh and dense point cloud (not 

shown), which can be used in spatial analyses. 



38 
 

GENERAL CONCLUSION 

 

The underlying theme of this thesis was to investigate techniques that can easily be adopted by ecologists 

to assist them in their ability to monitor the changes that occur in benthic habitats. Point-based annotations 

created by software tools like Coral Point Count (CPCe) are already ubiquitous within this scientific 

community as a method for calculating coverage statistics, and help to assess a reef’s general health both 

spatially and temporally. Unfortunately, the task of manually providing annotations to each image collected 

during a benthic habitat quadrat survey is tedious, time-consuming and prohibitive with regards to cost and 

project scale. With computer vision and deep learning algorithms, this thesis demonstrated how an existing 

set of sparse labels for an image could be converted into pixel-wise labels, allowing for the calculation of 

more robust coverage statistics. By adding improvements to the multilevel superpixel segmentation (MSS) 

algorithm, the first chapter of this thesis demonstrated through a comparison using the CamVid semantic 

segmentation benchmark dataset that the enhanced implementation (i.e., Fast-MSS) performs significantly 

faster and with classification scores that exceed those created by the original.  

Chapter 2 further validated the results of Fast-MSS by using it as a method to create dense labels for each 

image in the Moorea Labeled Coral (MLC) dataset, a rigorous benchmark for testing computer vision 

algorithms in coral reef image recognition. Following the same experimental setup first outlined in [6], this 

study trained multiple Fully Convolutional Networks (FCNs) and used them to set the baseline scores for 

the task of semantic segmentation. Furthermore, classification scores were shown to increase when 

additional sparse labels were provided to each image using a patch-based image classifier. These results 

demonstrate the effectiveness of the technique and illustrate how ecologists may be able to augment their 

existing datasets through entirely automated processes.  

Finally, the methods demonstrated in the first two chapters of this thesis were coupled with Structure-from-

Motion (SfM) photogrammetry to demonstrate how the same techniques applied to 2-D images could also 

be applied to 3-D photogrammetric models. The same images that were extracted from video footage and 

used to create a 3-D model were provided with dense labels following a workflow designed to minimize 

the amount of manual work required by the user. In Agisoft’s Metashape, the source images used in the 

reconstruction were swapped with their corresponding dense labels and used to classify the model, which 

was post-processed using a custom script written in Python. Classification scores were validated by 

comparing the 2-D texture atlas of the classified 3-D model against one that was provided with annotations 

manually using an annotation software tool. Overall the results indicate that this method can be used to 

classify 3-D models and would be suitable for many ecological applications including calculating coverage 

statistics for a reef as a 3-D system, which could provide a more accurate assessment of coral reef cover as 

opposed to just using 2-D images.  

In the future there are plans to incorporate Fast-MSS into an annotation software tool equipped with a 

graphical user interface (GUI) making it accessible to all users regardless of their proficiency in Python or 

command-line interfaces, and to disseminate it freely for public use. As demonstrated in the comparison 

using the CamVid dataset, this algorithm is not specific to images of coral reefs and instead can be applied 

to produce dense labels for images from any domain. The same is also true for the method for classifying 

3-D reconstructed models. 

In conclusion, this thesis represents a step in the direction towards fully automated assessments and 

monitoring systems for coral reefs, and it is hoped that the techniques outlined here can provide at least 

some assistance in understanding how the changes that are occurring are affecting the habitat. 
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APPENDIX  

 

Structure-from-Motion Photogrammetry (SfM) 

As Structure-from-Motion photogrammetry (SfM) is used to reconstruct the 3-D model and also plays a 

crucial role in how semantic labels are assigned, this section serves as an overview of the reconstruction 

process and is meant to provide context to some of the more important details. SfM uses the fundamental 

principal of motion parallax to obtain some estimation of depth of an object or a scene captured from 

multiple overlapping images. By measuring the angle from the multiple viewpoints to the object while also 

estimating the distance between each viewpoint, the distance to the object can be calculated using basic 

trigonometry. Although not all SfM algorithms are identical, many use the same general principles that are 

described below. 

A. Feature Detection 

The first step in a typical SfM algorithm is feature extraction, which is used to detect specific parts within 

the object that can also be found in some of the other images. Key points represent local neighborhoods of 

pixel groupings in areas of an image with large changes in intensity in all directions (e.g., corners), and 

ideally are distinct and can be located within other images regardless of changes in scale, rotation and 

brightness. Once detected, information about those key points including a unique identifier, and their 

location in image space are stored in a file that is associated with the image that they were found in. Finally, 

an algorithm is used to match each of those key points with their corresponding points that were also found 

within other images. 

B. Camera Alignment 

The next step uses the key points to estimate the location of the camera at the time each image was taken. 

This process is sequential and starts by finding the two images that contain the most co-registered key 

points. Given the X, Y locations in image space of each key point and by assuming that all viewing rays to 

the optical sensor of the camera were straight and intersected at the time the image was taken, the Z-location 

for each key point can be estimated using trigonometry; consequently, this also provides an approximate 

location of the camera at the time the second image was taken relative to the first. This process is repeated 

for each additional image, estimating the location of the camera for subsequent images relative to those 

preceding it. However, due to refraction, and imprecise key point localization and camera calibration 

techniques, an error accumulates for each additional camera; camera locations are refined with a bundle 

adjustment algorithm, which uses projection matrices to simultaneously optimize camera and 3-D point 

locations.  

C. Sparse Point Cloud 

Key points are projected into 3-D space to form a sparse point cloud, which primarily serves as an indication 

of how well cameras were aligned (Fig. 18). Further refinements can be made to the point cloud by 

removing any points that are considered to be outliers as determined by their reconstruction uncertainty, re-

projection error, and projection accuracy. 
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Fig. 18 – The sparse point cloud generated from the 2180 aligned images. Each key point represents a 

corresponding location found within two or more images (i.e., co-registered), which is then projected into 

3-D space. The sparse point cloud serves as an indicator as to how well the images were aligned, but it is 

not used directly to create the dense point cloud in the following step. 

D. Dense Point Cloud 

This point cloud is then densified by creating depth maps for every pair of images, which determines the 

location each pixel should be in 3-dimensional space (Fig. 19). Each point in this dense cloud is assigned 

with an X, Y and Z location, as well the color components (i.e., RGB values) averaged from the pixels in 

the images that it originated from. 

 

Fig. 19 – The dense point cloud generated from the depth maps created as a result of the images being 

aligned. By estimating the relative location of the camera when each image was taken, trigonometry can be 

used to create depth maps for pairs of images, thus giving the pixels within each a location in 3-D space.  

E. Shaded and Textured Mesh 

From this point cloud a triangular mesh is created using the Poisson surface reconstruction algorithm (or 

some similar variant) to approximate the surface of the object being modeled (Fig. 20). This mesh is made 

up of many elements (vertices, edges, faces, etc.) that also act as data structures storing the associated 

attributes such as location, color components, normal vectors, light reflectance values, and texture 

coordinates.  
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Fig. 20 – The shaded mesh created from the dense point cloud. Color is provided to the mesh by assigning 

the color component values found in the pixel indices to the corresponding elements making up the mesh.  

The texture or, “UV” coordinates represent the mesh in two dimensions, which conceptually can be thought 

of as flattening or unfolding the 3-D model to form a 2-D image. Through UV mapping, portions from the 

source images that were used in the reconstruction process are mapped onto the 2-D representation of the 

model creating what is referred to as a ‘texture atlas’; note that these textures are different from the color 

components and instead consist of groups of pixels in the shape of a triangle that are grafted from the source 

image onto the atlas. When the texture atlas is applied to the mesh and represented in 3-D it forms a textured 

mesh and is often used for display purposes (Fig. 21); typically, the underlying mesh and the dense point 

cloud that were created in the previous steps are what are used for making precise measurements during 

various spatial analyses.  

 

Fig. 21 – The textured mesh created from the images that were used in the reconstruction process. Unlike 

the point clouds and the shaded mesh, the appearance of the textured mesh does not come directly from the 

color component values of the pixel indices. Instead, groups of pixels that are thought to best represent an 

area of the 3-D model are taken from the images and grafted onto it. 
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