
University of New Hampshire University of New Hampshire

University of New Hampshire Scholars' Repository University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Winter 2020

Automating the Boring Stuff: A Deep Learning and Computer Automating the Boring Stuff: A Deep Learning and Computer

Vision Workflow for Coral Reef Habitat Mapping Vision Workflow for Coral Reef Habitat Mapping

Jordan Patrick Pierce
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/thesis

Recommended Citation Recommended Citation
Pierce, Jordan Patrick, "Automating the Boring Stuff: A Deep Learning and Computer Vision Workflow for
Coral Reef Habitat Mapping" (2020). Master's Theses and Capstones. 1436.
https://scholars.unh.edu/thesis/1436

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire
Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized
administrator of University of New Hampshire Scholars' Repository. For more information, please contact
nicole.hentz@unh.edu.

https://scholars.unh.edu/
https://scholars.unh.edu/thesis
https://scholars.unh.edu/student
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F1436&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/1436?utm_source=scholars.unh.edu%2Fthesis%2F1436&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

This page was intentionally left blank.

ii

AUTOMATING THE BORING STUFF: A DEEP LEARNING AND COMPUTER VISION

WORKFLOW FOR CORAL REEF HABITAT MAPPING

BY

JORDAN PATRICK PIERCE

B.S. Geography/GIS, Texas A&M University, 2016

MASTER’S THESIS

Submitted to the University of New Hampshire

in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

In

Oceanography

December, 2020

iii

ALL RIGHTS RESERVED

© 2020

iv

 Jordan Patrick Pierce

This thesis has been examined and approved in partial fulfillment of the requirements for the degree

of Master of Science in Oceanography by:

Thesis Director, Dr. Jennifer Dijkstra, Associate Research Professor,

Center for Coastal and Ocean Mapping, University of New Hampshire

Dr. Yuri Rzhanov, Research Professor, Center for Coastal and Ocean

Mapping, University of New Hampshire

Dr. Kim Lowell, Research Scientist, Center for Coastal and Ocean

Mapping, University of New Hampshire

On October 29th, 2020

Original approval signatures are on file with the University of New Hampshire Graduate School.

v

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisors Jennifer Dijkstra, Yuri Rzhanov, and Kim Lowell for

their input, their intellectual guidance, and of course, their general awesomeness throughout this entire

project. Yuri, your expertise in optics and familiarity with computer vision algorithms helped guide the

direction of this project from its inception; without your help I am absolutely positive that I would not have

been able to complete all of what I did here. Whether our conversations were over Local Binary Patterns or

foreign cinema, I always learned something from you and thoroughly enjoyed your consul. Kim, because

of your background in machine learning and analytics our discussions often provided insight into aspects

of my own project that I never would have considered. You really helped round out this work by

approaching it from all sides, and by providing (some much needed, I might add) recommendations on how

it should be documented. You both have become role models by demonstrating that the desire to learn and

solve problems never needs to end.

Jenn, you helped legitimize this work by keeping it on track and focused within the domain of benthic

ecology; without you this project would have never made it off the ground. As an advisor, you provided the

mental and emotional support that every student needs and others would do well to emulate you. The

ceaseless encouragement and abundance of opportunities that you presented are the most telling indicators

of how much you genuinely care about your students and the desire for them to succeed in life. Being the

first of your students to finish I say with unfaltering hesitation that you are doing an excellent job and you

need to keep doing what you are doing. Together the four of us formed a perfectly well-balanced team that

I for one would not have changed for anything. Again, thank you for everything that you have done.

I also want to acknowledge a broader base of people who directly helped with this project including

members of CCOM, the Dijkstra Lab (Anne, Brandon, Kristen, Kaitlyn and Matt), and of course Dr. Mark

Butler and his lab (especially Nick, Samantha and Emily). Finally, I want acknowledge those individuals

who, now that I look back, I see played a key role in pivotal life moments such as Rita Sperry and Mr.

Young, who ignited my joy for programming, Dr. Oliver Frauenfeld and Dr. Chris Houser, who introduced

and encouraged participation in undergraduate research, and finally Dr. David Baker (and his eclectic lab

of amazing individuals) for helping me find my way in coral reef ecology.

Oh, and Dr. Robert Ballard of course (he’s just awesome).

vi

DEDICATION

To my friends, who’ve always included me.

To my teachers, who’ve encouraged my curiosity.

To my family, who’ve created the foundation from which I built my life on.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS v

DEDICATION vi

TABLE OF CONENTS vii

LIST OF TABLES xi

LIST OF FIGURES x

LIST OF EQUATIONS xi

ABSTRACT xii

GENERAL INTRODUCTION 1

CHAPTER 1: IMPROVEMENTS TO THE MULTILEVEL SUPERPIXEL SEGMENTATION

ALGORITHM 3

INTRODUCTION 3

METHODOLOGY 4

Fast-SLIC 4

Comparison using the CamVid dataset 7

RESULTS 9

CamVid Classification Scores 9

Discussion 9

CHAPTER 2: SEMANTIC SEGMENTATION OF THE MOOREA LABELED CORAL DATASET 10

INTRODUCTION 10

METHODOLOGY 11

Defining the Benthic Quadrat 11

Creating Dense Labels from Sparse Ground-Truth 12

Experiments 14

Model Training 17

RESULTS 18

Classification Performance 18

Discussion 19

CHAPTER 3: SEMANTIC SEGMENTATION WORKFLOW FOR THE CLASSIFICATION OF 3-D

RECONSTRUCTED CORAL REEFS 21

INTRODUCTION 21

METHODOLOGY 22

Image acquisition 22

Structure-from-Motion Photogrammetry (SfM) 23

A Deep Learning and Computer Vision Workflow 24

viii

Class Categories 27

Model Training 28

3-D Model Classification 29

Experiments 31

RESULTS 33

Classification Scores 33

Discussion 35

GENERAL CONCLUSION 38

LIST OF REFERENCES 39

APPENDIX 41

Structure-from-Motion Photogrammetry (SfM) 41

ix

LIST OF TABLES

Table 1 – Comparison between Fast-MSS and the original implementation using CamVid……………… 9

Table 2 – Global classification accuracies from previous and current state-of-the-art methods for each of

the three experiments outlined in the MLC benchmark dataset……………………………………...11

Table 3 – Classification accuracies for each model on all three experiments, trained with and without

additional sparse labels……………………………………………………………………………… 18

Table 4 – The mean precision and mean recall for each model on all three experiments, trained with and

without additional labels…………………………………………………………………………….. 19

Table 5 – The effect of reducing an input image’s dimensions on the output of Fast-MSS………………26

Table 6 – Classification scores for the patch-based image classifier compared against ground-truth…… 33

Table 7 – Classification scores of each method for producing dense labels compared against ground-

truth………………………………………………………………………………………………….. 34

Table 8 – Classification scores of 3-D models represented as texture atlases compared against ground-

truth………………………………………………………………………………………………….. 35

Table 9 – Comparing the Relative Abundance and Per-Class Accuracy of the Still Images against the

Texture Atlas………………………………………………………………………………………… 37

x

LIST OF FIGURES

Fig. 1 - An example of Deep Segments……………………………………………………………………. 4

Fig. 2 - An image segmented by Fast-SLIC………………………………………………………………...5

Fig. 3 - Creating dense labels for CamVid using Fast-MSS……………………………………………….. 7

Fig. 4 - Creating dense labels for the MLC dataset from ground-truth sparse labels…………………...... 12

Fig. 5 - A flowchart describing the method for validating the use of the patch-based image classifier….. 13

Fig. 6 - A figure describing how sparse labels were provided to images using a patch-based image

classifier……………………………………………………………………………………………... 14

Fig. 7 - A diagram describing how the classification scores for each experiment were calculated……….15

Fig. 8 - A bar-graph describing the frequency of each class category in the MLC dataset………………. 16

Fig. 9 - A comparison of the labels produced by a trained FCN and the ground-truth sparse labels…….. 20

Fig. 10 - A map showing the general location of the research site……………………………………….. 22

Fig. 11 - The textured mesh of the coral patch reef used in the study………………………...…………..38

Fig. 12 - A diagram showing each step of the workflow…………………………………………………. 24

Fig. 13 - Visual description of the class categories defined, and their frequencies in the test set………... 27

Fig. 14 - A diagram showing the steps to produce a 3-D classified model in Agisoft Metashape……….. 29

Fig. 15 - A comparison between the texture and classified textured mesh………………………………..30

Fig. 16 - A line-graph displaying the relationship between the percentage of sparse labels accepted and their

classification scores as a function of the confidence threshold value chosen……………………….. 34

Fig. 17 - A comparison between the textured mesh, classified textured mesh, and classified shaded

mesh…………………………………………………………………………………………………. 37

Fig. 18 - The sparse point cloud…………………………………………………………………………...42

Fig. 19 - The dense point cloud……………………………………………………………………………42

Fig. 20 - The shaded mesh………………………………………………………………………………... 43

Fig. 21 - The textured mesh………………………………………………………………………………. 44

xi

LIST OF EQUATIONS

1. Defining the search space for potential clusters …………………………………………………5

2. Calculating the distance between each data point and a potential cluster in feature space……....5

3. Calculating the number of superpixels to form for each iteration of Fast-MSS………………….6

4. Defining Pixel Accuracy (PA)……………………………………………………………………8

5. Defining mean Pixel Accuracy (m-PA)…………………………………………………………..8

6. Defining Intersection-over-Union (IoU)………………………………………………………….8

7. Defining mean Intersection-over-Union (m-IoU)………………………………………………...8

8. Defining Classification Accuracy………………………………………………………………...15

9. Defining Precision………………………………………………………………………………..16

10. Defining Recall…………………………………………………………………………………...16

11. Defining weighted Intersection-over-Union (w-IoU)…………………………………………….32

12. Defining Dice coefficient score…………………………………………………………………..32

13. Defining weighted Dice (w-Dice)………………………………………………………………...32

xii

ABSTRACT

AUTOMATING THE BORING STUFF: A DEEP LEARNING AND COMPUTER VISION

WORKFLOW FOR CORAL REEF HABITAT MAPPING

By

Jordan Patrick Pierce

University of New Hampshire, December 2020

High-resolution underwater imagery provides a detailed view of coral reefs and facilitates insight into

important ecological metrics concerning their health. In recent years, anthropogenic stressors, including

those related to climate change, have altered the community composition of coral reef habitats around the

world. Currently the most common method of quantifying the composition of these communities is through

benthic quadrat surveys and image analysis. This requires manual annotation of images that is a time-

consuming task that does not scale well for large studies. Patch-based image classification using

Convolutional Neural Networks (CNNs) can automate this task and provide sparse labels, but they remain

computationally inefficient. This work extended the idea of automatic image annotation by using Fully

Convolutional Networks (FCNs) to provide dense labels through semantic segmentation. Presented here is

an improved version of Multilevel Superpixel Segmentation (MSS), an existing algorithm that repurposes

the sparse labels provided to an image by automatically converting them into the dense labels necessary for

training a FCN. This improved implementation—Fast-MSS—is demonstrated to perform considerably

faster than the original without sacrificing accuracy. To showcase the applicability to benthic ecologists,

this algorithm was independently validated by converting the sparse labels provided with the Moorea

Labeled Coral (MLC) dataset into dense labels using Fast-MSS. FCNs were then trained and evaluated by

comparing their predictions on the test images with the corresponding ground-truth sparse labels, setting

the baseline scores for the task of semantic segmentation. Lastly, this study outlined a workflow using the

methods previously described in combination with Structure-from-Motion (SfM) photogrammetry to

classify the individual elements that make up a 3-D reconstructed model to their respective semantic groups.

The contributions of this thesis help move the field of benthic ecology towards more efficient monitoring

of coral reefs through entirely automated processes by making it easier to compute the changes in

community composition using 2-D benthic habitat images and 3-D models.

1

GENERAL INTRODUCTION

Coral reefs provide a number of ecosystem services including a high biodiversity comparable to the

Amazon Rainforest [1], a habitat to one-quarter of all marine life [2], and are of cultural and economic

significance to millions of people around the world; globally, coral reefs have been estimated to provide

$30 B/yr in various goods and services that include tourism, coastal protection and fisheries [3].

Unfortunately, through climate change and other anthropogenic means, a number of stressors are

threatening the health of coral reefs around the world. Ocean acidification, increasing sea-surface

temperatures, polluted river runoff from agricultural centers, sedimentation from nearby construction

projects and overfishing are a few of the stressors affecting reef systems that can cause difficulties for coral

polyps to perform their primary and secondary functions such as reef building, potentially resulting in

habitat loss for other organisms [2].

To rapidly assess the response of coral reefs to changing environmental conditions, a number of remote

sensing methods are used. One of the most common is benthic habitat surveys where researchers collect

underwater images of a coral reef using randomly placed quadrats [4]. These images are then uploaded into

an annotation software tool such as Coral Point Count (CPCe), which randomly projects a number of points

onto each image and tasks the user with manually labeling the class category that each point is superimposed

on [5]. Coverage statistics such as relative abundance, mean, standard deviation and standard error for each

annotated species can then be estimated for each image, or for the entire research area. Such point-based

annotation software and analysis tools are a standard method of calculating metrics allowing habitat

changes to be tracked across space and time. Nonetheless, they are expensive and time-consuming as the

user must manually annotate each image. Recently, Convolutional Neural Networks (CNNs) have been

adopted to automate the annotation of images, drastically reducing the amount of time and effort required

by the user. The ‘patch-based’ image classification technique has been demonstrated as a method for

assigning labels to different taxa automatically [6, 7, 8]. However, like the manual method this technique

can only provide sparse labels. Hence typically less than one percent of all an image’s pixels are actually

provided with a label, potentially resulting in misleading coverage statistics. Ideally, coverage statistics

would be calculated using dense labels (i.e., pixel-wise labels); unfortunately, this style of annotation is

typically not used by benthic ecologists.

While calculating percent coverage statistics within a 2-D quadrat is the most common coral monitoring

method, it fails to assess the changes in community composition as a 3-dimensional system. Coral reefs are

structurally complex and facilitate diverse assemblages of organisms largely due to the niche habitats that

they provide. Although they are highly intricate, advancements in computer vision have made it possible

to model the structure of a reef through Structure-from-Motion (SfM) algorithms, which utilize the images

collected from various viewpoints to form an accurate 3-D reconstruction. SfM gives researchers the ability

to non-invasively capture the geometry of a reef structure with a high level of precision that can then be

analyzed in far greater detail than with more traditional methods. However, currently there are few efficient

methods for denoting which portions of the 3-D model belong to a particular class category or functional

group. This means that researchers are able to model the structure of the entire habitat and observe how it

changes as a whole, but are unable to record which class categories are actually responsible for causing

changes in community and structure.

To help move the field of benthic ecology towards more efficient monitoring of coral reefs, this study

investigated how dense semantic labels could be obtained for both 2-D images and 3-D reconstructed

models through semantic segmentation with the use of Fully Convolutional Networks (FCNs). Like all deep

learning algorithms, a FCN requires a non-trivial amount of labeled samples to learn from, which can often

2

be a significant hurdle for many studies due to the amount of time and resources that are required to create

pixel-wise labels for each image. But because sparse labels are already ubiquitous within the field of benthic

ecology, this thesis demonstrates how they can be repurposed with Multilevel Superpixel Segmentation

(MSS) [9], which can convert them into the format necessary for training a FCN.

Thus, this thesis consists of three individual components, each of which builds off the previous. In Chapter

1, an improved version of the MSS algorithm that performs significantly faster and with classification

scores that are comparable—if not better—than the current start-of-the-art is demonstrated through a

comparison using the CamVid semantic segmentation benchmark data. In Chapter 2, the performance of

the improved implementation—Fast-MSS—was independently validated by creating dense labels for the

images of the Moorea Labeled Coral (MLC) dataset, a notoriously difficult benchmark dataset that includes

three classification experiments created to test the performance of computer vision algorithms with real

benthic habitat survey images. The provided ground-truth sparse labels associated with each image in the

training sets were used with Fast-MSS to create dense labels that a FCN could learn from, which was then

used to perform semantic segmentation on the images in the test sets. Lastly, Chapter 3 utilized the methods

described in the previous two chapters and combined them with the standard SfM procedure typically used

to create 3-D models of coral reefs. Beginning with unannotated images, this study outlined a workflow

that results in a classified point cloud and 3-D model that could be imported into other spatial modeling or

GIS software for further analysis.

3

CHAPTER 1: IMPROVEMENTS TO THE MULTILEVEL SUPERPIXEL SEGMENTATION

ALGORITHM

INTRODUCTION

Point annotations are labels that are provided to individual pixels within an image denoting the semantic

category for which they are thought to belong. Point annotations are commonly referred to as ‘sparse’ when

only a small percentage of the total number of pixels within the image are provided with labels, and ‘dense’

when all of the pixels are provided with a label (i.e., pixel-wise labels). Mentioned previously, sparse labels

are typically provided to images through point-based annotation software, which randomly projects

numerous points on to each image and tasks the user with providing labels to the pixel each point is

superimposed on. Because of the randomness in which the points are projected onto an image, the labels

can be used to estimate various coverage statistics.

However, when compared to other forms of annotation, creating sparse labels can be an expensive and

time-consuming process for the human annotator that results in very few pixels within an image actually

being provided with labels. Using dense labels instead would ensure higher accuracies. Unfortunately, this

style of annotation is not commonly used by benthic ecologists.

To provide a method for creating dense labels for images of coral reefs, in 2018 [10] developed the

annotation tool Deep Segments, which used the Simple Linear Iterative Clustering (SLIC) over-

segmentation algorithm to aggregate pixels of an image into visually homogenous regions of similar size

called ‘superpixels’ [11]. Users then only need to provide a single class label to each superpixel, which is

propagated to all of the pixels associated with it, thus reducing annotation times (Fig. 1).

4

Fig. 1 – Dense labeling using Deep Segment; here the image is segmented by SLIC into 280 superpixels

each composed of individual pixels that share similarities in location and color components, as indicated

by the blue lines [10]. Each class label provided to a superpixel by the user was propagated to all pixels

associated with it.

Alonso et al. [9] and [12] also explored the use of an over-segmentation algorithm for a similar purpose,

but used it to propagate the labels of existing sparse labels for an image to adjacent pixels in an attempt to

create dense labels automatically. Originally [12] segmented the image into a pre-defined number of

superpixels, and then propagated the class label of any sparse labels that happened to have an X, Y location

that lay within the boundaries of a superpixel to the associated pixels. However, the major drawback to this

method was determining how many superpixels should be formed; as discussed in [9], having a large

number of superpixels allows for the contours of objects to be a better fit, but it also increases the number

of superpixels that are left without a label. This trade-off was later addressed in the MSS algorithm, which,

as the name implies, used not one but multiple iterations of the over-segmentation algorithm.

This study makes improvements to the original MSS algorithm making it perform significantly faster and

with classification scores that are comparable—if not better. Specifically, these improvements are:

1. Re-writing the algorithm and providing it with a user-friendly application program interface;

2. The use of an alternative over-segmentation algorithm, a variant called Fast-SLIC [14];

3. The method in which labels from each iteration are combined together to form a set of dense labels

for the image.

The next section provides a detailed explanation of how the improved implementation—Fast-MSS—

generates dense labels for an image using the existing ground-truth sparse labels. First, an overview of the

Fast-SLIC over-segmentation is reviewed, followed by a description of how Fast-MSS joins the labels from

each iteration of Fast-SLIC into a set of dense labels for the image. Finally, a comparison between the Fast-

MSS implementation and the original is performed using the CamVid semantic segmentation benchmark

dataset.

METHODOLOGY

Fast-SLIC

Fast-SLIC’s methodology is based on the K-Means classification algorithm that groups data points into K

clusters based on their relative location to one another in feature space through an iterative process in an

attempt to minimize the total intra-cluster variance [13]. In the case of Fast-SLIC, the data points are the

pixels that make up the image where the five features considered are their X, Y locations in image

coordinate space and their three color components (i.e., l, a, and b) represented in CIELAB color space

[14].

With Fast-SLIC, the number of clusters specified by the user is not an indication of the number of class

categories present within the image, but the number of superpixels an image is to be partitioned into (Fig.

2). Because the image contains a finite number of pixels, there is an inverse relationship between the number

of superpixels/clusters formed and their size. Decreasing the number of clusters results in superpixels

becoming larger and thus less homogenous, whereas if the number of clusters is equal to the number of

pixels in an image, then each superpixel is just a single pixel.

5

Fig. 2 – An image segmented by Fast-SLIC into approximately 100 (left), 500 (center), and 1000 (right)

superpixels, each composed of individual pixels that share similarities in location and color components

[14]. The relative size of each superpixel is determined by the total number of superpixels formed, whereas

the compactness is controlled by a weighted function that reconsiders the importance of the color

components and relative distance to neighboring pixels.

Unlike K-Means clustering, which scales exponentially with increasingly large datasets, Fast-SLIC

becomes tractable even with images composed of millions of pixels by limiting the considered search space

to a fewer number of potential clusters all located within closer proximity [14]. This search space S, is the

radius in which a pixel must be for a potential cluster to consider it for inclusion (1). Let the user defined

number of clusters that are formed for an image with a height and width be equal to K, H, and W,

respectively:

(1)

where the distance between a pixel and each potential cluster’s centroid Ds is determined by a weighted

function between the Euclidian distance in CIELAB color space dlab, and image coordinate space dxy as

defined in (2).

6

(2)

The weighting of importance between the color value and the relative location for pixel i, when being

considered by a potential cluster k, is determined by the parameter m, which is provided by the user to

control the level of compactness of the superpixels to be formed. For higher values of m, each pixel’s

assignment to a potential cluster is largely dependent on its proximity to the centroid in image space,

resulting in a superpixel that is more compact and congruent in shape. Alternatively, lower values for m

increase the importance of similarity in color value allowing a superpixel to be less compact and congruent

in shape. A pixel’s final assignment to a superpixel is determined by the minimal distance between it and

all of the potential clusters considered.

Fast-SLIC follows the same methodology as the original SLIC implementation but includes optimization

techniques such as color quantization, subsampling, parallelization and integer-based arithmetic. These

optimizations allow the algorithm to be run on an off-the-shelf CPU with reduced latency that is comparable

to implementations made to be run on a GPU [14].

Fast Multilevel Superpixel Segmentation (Fast-MSS)

The first iteration of Fast-MSS starts by using Fast-SLIC to segment the image into a relatively large

number of superpixels so that each one is small enough to capture the finer details between bordering

semantic groups. Then for each successive iteration, the image is segmented into a fewer number of

superpixels making each one larger and as a result, encompassing more pixels. The number of superpixels

that form during each iteration is calculated in the same way as described in [9]. Shown in (3), the number

of superpixels to form Nsp, for any given iteration i, is computed by:

(3)

where the number of superpixels to partition the image into during the first (FirstNsp) and last (LastNsp)

iteration as well as the total number of iterations (NI) are parameters provided by the user. For example, if

the user-provided values for FirstNsp, LastNsp, and NI, are equal to 1000, 10, and 10 (respectively), the

following sequence Nsp, represents the number of superpixels formed during each iteration:

but because (3) is an exponential equation, decreasing the number of iterations NI, to 5 while holding the

other two parameters constant results in the sequence Nsp, being equal to:

7

Within a single iteration, each superpixel formed is provided with a unique identifier that is shared with all

of the individual pixels that are associated with it. If an existing sparse label associated with the image

happens to have an X, Y location that lies within the boundaries of a superpixel, then that label is propagated

to all of the pixels associated with the superpixel. If a superpixel contains multiple sparse labels that

represent different class categories, then the class category that makes up the majority is used to label all

the pixels associated with it. If there are no sparse labels located within the boundaries of a superpixel, then

all of its pixels associated with it are labeled as a null class. At the end of the iteration, the class labels that

were propagated to adjacent pixels are stored in a 2-dimensional array with dimensions that are equal to the

height H, and width W, of the original image, where each index contains the potential class label for the

corresponding pixel found within the image (i.e., segmentation map).

The entire process described in the previous passage is repeated for each iteration resulting in an additional

2-dimensional array for each of the iterations. Collectively, these 2-dimensional arrays create a 3-

dimensional data structure or ‘stack’, with the shape (H x W x I), where I is equal to the number of iterations.

The original MSS implementation joined each of the 2-dimensional arrays in the stack starting with the one

made during the first iteration so that the smaller superpixels that captured the finer details are not

overwritten by superpixels from subsequent iterations. In the Fast-MSS implementation, the dense labels

were made by calculating the statistical mode of class labels across the 3rd dimension of the stack.

As mentioned previously, partitioning an image into a larger number of superpixels results in each one

being rather small, which, depending on the number of existing annotations could lead to many pixels being

assigned with the null class label. If this occurs for the same pixel index for the majority of the iterations,

then that pixel index will also hold the null class label in the resulting dense labels. To avoid this, when

calculating the mode during the final step, in the scenario where the most common class label is the null

class, it is replaced with the second most common class label instead.

Comparison using the CamVid dataset

To highlight the differences between the Fast-MSS implementation and the original, a comparison was

performed using the CamVid Road Scenes dataset, a semantic segmentation benchmark used within the

domain of autonomous vehicles. This version of the CamVid dataset contains 600 images with the same

dimensions (360 pixels x 480 pixels) depicting eleven different class categories (e.g., car, building, road),

and includes corresponding dense labels for each image (Fig. 3, [15]).

Fig. 3 – Generating dense labels using Fast-MSS. From left to right: an image from the CamVid dataset,

the corresponding ground-truth dense labels, the synthesized sparse labels, and the dense labels generated

8

from those sparse labels using Fast-MSS. Note that labels are color-coded based on class category, and that

sparse points are enlarged for display purposes.

Three trials were conducted in which sparse labels were synthesized for each image by uniformly sampling

a different percentage of the ground-truth dense labels following a grid formation (see Table 1). From these

sparse labels, Fast-MSS and the current state-of-the-art were used to generate dense labels that were then

compared with the original dense labels (ground-truth).

The metrics used to quantify the differences between the resulting dense labels and the ground-truth data

were pixel accuracy (PA), mean pixel accuracy (m-PA) and mean Intersection-over-Union (m-IoU),

calculated using (4), (5), and (7), respectively:

(4)

(5)

(6)

(7)

For each equation TP, TN, FP, and FN represents the True Positive, True Negative, False Positive and False

Negative rates, respectively. PA represents the number of correct instances over the total number of

instances, whereas m-PA represents the PA per class N, averaged together unweighted. Intersection-over-

Union (IoU) is calculated by (6), with m-IoU being the IoU per class N, averaged together unweighted.

Also included in the comparison is the amount of time required to generate dense labels for all 600 of the

images in the dataset, and an approximation of the amount of time required to process each image.

The metrics and the original MSS algorithm were implemented using the code published in [9] with the

recommendations of 1500 and 50 for the initial and final number of superpixels across 15 iterations [12];

the Fast-MSS implementation used 7500 and 80 for the initial and final number of superpixels across 20

iterations.

9

RESULTS

CamVid Classification Scores

Table 1 shows the results from the comparison between Fast-MSS and the original implementation using

the CamVid dataset. Alongside each metric is reported the percentage and actual number of pixels that were

sampled for synthesizing the sparse labels. Scores are colored red, yellow, or green if they are lower, the

same, or higher than the other implementation’s score, respectively

Table 1 – Comparison between Fast-MSS and the original implementation using CamVid.

Implementation
% of total

pixels

Number of

pixels PA m-PA m-IoU

Time

(seconds)

Time Per Image

(seconds)

[12]

0.1 180 0.87 0.70 0.57 9613 16.02

0.5 814 0.91 0.77 0.65 9787 16.31

1.0 1664 0.91 0.79 0.67 9862 16.43

Fast-MSS

0.1 180 0.87 0.72 0.56 984 1.64

0.5 814 0.91 0.82 0.67 1338 2.23

1.0 1664 0.91 0.84 0.68 1386 2.31

Note: All trials were conducted on the same PC with an Intel i7-8700 processor. Scores are colored red, yellow, or green if they

are lower, the same, or higher than the other implementation’s score, respectively.

Abbreviations: PA, pixel accuracy; m-PA, mean pixel accuracy; m-IoU, mean Intersection-over-Union. For each metric 1.0

represents a perfect score.

Discussion

For each of the three trials Fast-MSS was comparable to—if not better than—the current state-of-the-art

with regards to m-PA and m-IoU, and by using Fast-SLIC the amount of time needed to produce dense

labels was drastically reduced.

Empirically it was found that Fast-MSS does well with the previously mentioned parameter values for this

particular dataset, but it is recommended that users try different parameters for other datasets as these values

depend on the size of the image and the number of sparse labels provided.

The improved implementation of the MSS algorithm demonstrates how a dataset that contains only sparse

labels can quickly and easily be converted to dense labels that are accurate enough to be used for calculating

coverage statistics, or train a deep learning semantic segmentation algorithm as is shown in the following

chapters.

The improvements to the MSS algorithm (i.e., Fast-MSS) were made both publicly available and easy to

use following a simple application-program interface (API) written entirely in Python. The code and

examples for its use can be found at github.com/JordanMakesMaps/Fast-Multilevel-Superpixel-

Segmentation

10

CHAPTER 2: SEMANTIC SEGMENTATION OF THE MOOREA LABELED CORAL

DATASET

INTRODUCTION

As environmental conditions for coral reefs continue to change, it is critical that researchers are able to

regularly assess these habitats and as quickly as possible. Some of the more common methods for observing

these habitats include satellites, unmanned aerial vehicles (UAVs), diver-towed sleds, remotely operated

vehicles (ROVs), and SCUBA. With these tools researchers are able to obtain a plethora of high-resolution

imagery data, but often at a pace that far exceeds the rate in which a human can annotate them. Quite often

studies will allocate a considerable amount of resources to acquire data only to have them stored in a

database for extended periods of time, sometimes unutilized because of expensive or inefficient methods

of processing.

In an attempt to overcome this bottleneck, researchers have begun looking into techniques for automating

the annotation of coral reef imagery using deep learning and computer vision algorithms. However, deep

learning algorithms require a non-trivial amount of expertly labeled data to learn from; thus, to aid

researchers in their development of these recognition algorithms, in 2012 Beijbom et al. published the

Moorea Labeled Coral (MLC) dataset to serve as the first large scale benchmark to gauge the progress of

coral reef image classification algorithms [6]. The dataset is composed of 2,055 images taken of the same

sites across three years (2008-2010) with approximately 400,000 manually annotated labels. Outlined with

it are three image classification experiments that use the nine most abundant class categories to test an

algorithm’s ability to generalize across time.

Unlike other image classification benchmark datasets that assign a single label to an entire image, the MLC

dataset provides roughly 200 sparse labels with each image to assist in the advancement of patch-based

image classifiers. When trained, these classifiers should be able to provide sparse labels to novel images

automatically, and ideally, drastically reduce the amount of effort required to annotate data collected during

future studies.

Beijbom et al. set the baseline scores for the three patch-based image classification experiments by using

handcrafted feature descriptors that take into account both color and texture by using a Maximum Response

(MR) filter bank with the Bag of Visual Words (BoVW) algorithm [6]. They found that representing each

image in CIELAB color space and using color channel stretch yielded the best results as a pre-processing

method, and that combining features from various scales increased the classification accuracy further (see

Table 2).

In 2015, Mahmood et al. [7] surpassed the results published by [6] by using features extracted from

VGGNet [16], a CNN previously trained on the ImageNet dataset. They incorporated information at

multiple scales by using what they termed the ‘Local-Spatial Pyramid Pooling’ technique, which extracted

multiple patches of different sizes all centered on the same annotated point, later combining them into a

single feature descriptor using a max pooling operation [7].

The current state-of-the-art for patch-based image classification was created in 2018 by [8]. They used a

custom CNN called the Multipatch Dense Network (MDNet) that learned class categories at multiple scales

and adopted the use of densely connected convolutional layers to reduce overfitting. MDNet extracted

features from image-patches of different sizes in parallel, later concatenating them together to create a final

descriptor for each annotated point. This technique allowed them to train the CNN end-to-end to learn

information at different scales without having to perform costly resizing operations on each patch.

11

Table 2 – Global classification accuracies from previous and current state-of-the-art methods for each

of the three experiments outlined in the MLC benchmark dataset.

MLC Benchmark Experiment 1 Experiment 2 Experiment 3

Beijbom et al. [6] 74.3% 67.3% 83.1%

Mahmood et al. [7] 77.9% 70.1% 84.5%

Modasshir et al. [8] 83.4% 80.1% 85.2%

To go beyond patch-based image classification and to push the field towards a more useful form of

annotation for coral reef imagery, the present study demonstrated how a dataset with ground-truth sparse

labels could be used to perform semantic segmentation on previously unannotated images automatically.

Using the MLC dataset, sparse labels associated with each image in the training sets were used with Fast-

MSS to create dense labels that a deep learning model could learn from, and then be used to perform

semantic segmentation on the images in the test sets. A thorough literature review suggests that this dataset

has only been used to assess the accuracy for patch-based image classification algorithms, making this work

the first to adapt it for the purposes of semantic segmentation.

In the next section an adaptation to the MLC experiments for the purpose of semantic segmentation is

explained, followed by a discussion of the role of the patch-based image classifier technique and how it

was used to provide additional sparse labels to each image. Next the specifications of deep learning models

explored and the training procedure are outlined, followed by the results for the three experiments.

METHODOLOGY

Defining the Benthic Quadrat

This study performed the same three experiments as originally outlined in [6], but included the ‘Off’ class

category signifying the location of the metal quadrat frame within each image. As was mentioned in [17]

there are inconsistences in how annotators chose to label these points. Depending on the situation, some

annotators would label points superimposed on the quadrat or the transect tape as ‘Off’, whereas others

would label the points on the quadrat as ‘Off’ but ignore the presence of the tape; however, most often

points clearly superimposed on the quadrat or transect tape were labeled with the class category that was

assumed to be underneath them.

Although this class category is not one of those that is included in the original experiments, through

preliminary analysis it was found that by allowing the deep learning model to learn the difference between

the quadrat and all of the other classes, the overall quality of the predictions improved. However, because

of the inconsistences in how the original ‘Off’ points were labeled, this class category was redefined. The

original sparse labels belonging to ‘Off’ were discarded and replaced by providing the pixels along the

perimeter of each image with ‘Off’ sparse labels instead (see the pink colored points in Fig. 4), while the

transect tape was ignored entirely. These artificial sparse labels placed along the edge of each image worked

12

well to help generate dense labels for an ‘Off’ class category that the deep learning models could then learn

from, but they were not included in any of the experiments or used when calculating any of the metrics.

Fig. 4 – A side-by-side comparison between an image in the MLC dataset with its original sparse labels

(left), the dense labels created using Fast-MSS when supplied with additional sparse labels (center), and

those same dense labels overlaid on the original image (right). Artificially created ‘Off’ points were placed

along the perimeter of the image (left) to help generate dense labels representing the metal quadrat frame,

but not the transect tape. Note that labels, both sparse and dense, are color-coded based on class category.

Creating Dense Labels from Sparse Ground-Truth

During the comparison using the CamVid dataset in Chapter 1, up to 0.1% of the total amount of pixels in

an image were sampled and used to mimic the presence of sparse labels; however, the MLC dataset has far

fewer sparse labels available (~0.005%). Therefore, this study investigated if a patch-based image classifier

could be used as a reliable method for adding additional sparse labels to each image automatically, and if

doing so helped increase the classification scores of the resulting dense labels.

Thus, two sets of dense labels were made for each image: one that was supplied with additional sparse

labels using a patch-based image classifier, and the other using only the original ground-truth sparse labels

that were provided with the MLC dataset. These two sets of sparse labels were converted into dense using

Fast-MSS and used to train two sets of FCNs whose classification scores on the test set for the three

experiments were used to validate this method (Fig. 5).

To avoid data contamination and biasing the FCNs, three different patch-based image classifiers were

created: one for each of the MLC experiments. Classifiers were only trained on patches extracted from

images that belonged to the same experiment to which they would later provide additional labels, and

classifiers were only trained on patches that were extracted from images within the experiment’s training

set and not the testing set. Following the method outlined in [6], [7], and [8], image classifiers were trained

on patches centered on each of the original ground-truth sparse labels associated with every image in each

experiment’s training set. A preliminary analysis showed that classifiers trained on patches with dimensions

of 112 x 112 pixels performed better than those trained on smaller sized patches.

13

Fig. 5 – A flow chart showing how the original sparse labels (A) and those created by a patch-based image

classifier (B) were used with Fast-MSS to generate two separate sets of dense labels for each training image

of an experiment. These were then used to train two separate FCNs whose accuracy on the test set for the

same experiment provided validation for the use of the CNN.

Providing additional labels involved first uniformly extracting patches of 112 x 112 pixels from each image

in the training set following a grid formation (Fig. 6). In total, approximately 2000 patches were sampled

from each training image, representing potentially 2000 additional labels, or roughly 0.05% of the total

number of pixels in the image. These extracted patches were then passed to a classifier as input. The output

for each was a corresponding vector representing the probability distribution of class categories to which

the center-most pixel of the patch likely belonged. For each patch the extracted location, the presumed class

label, and the difference between the two highest probability distributions (i.e., top-1 and top-2 choices)

were recorded. This difference in “top 2” probabilities is the confidence level of the classifier when making

the prediction. If the difference was small, the classifier is less confident about its top-1 choice (i.e., the

presumed class label).

The difference in “top 2” probabilities were used to filter out sparse labels that were more likely to have

been misclassified. By setting a confidence threshold value of 0.5, approximately 15% of those additional

labels were removed from each image. A second filter removed any sparse labels with class categories that

were not already recorded in the image by the human annotator. Any additional labels that remained through

this filtering process were concatenated to the original ground-truth sparse labels associated with the image

to create the second set of sparse labels; the first set used only the original ground-truth sparse labels. Both

sets were then provided with the points labeled ‘Off’ as explained in the previous section.

14

Fig. 6 – A diagram illustrating how a patch-based classifier was used to provide additional sparse labels to

each image in an experiment’s training set. After the classifier was trained, 112 x 112 pixel patches were

uniformly sampled from the training images following a grid formation and passed to the classifier as input.

If specific criteria were met, then the presumed class label was provided to the center-most pixel where the

patch was extracted. Note that for display purposes, the number of sparse labels provided to the training

image is significantly less that what was done in the study.

These two sets of sparse labels were then converted into two sets of dense labels using Fast-MSS. When

generating dense labels for either sets, the number of superpixels to form during the first and last iteration

were 2000 and 100, respectively, and iterations was set to 20.

The accuracy of these dense labels could not be validated quantitatively as the MLC dataset does not

provide any ground-truth dense labels, just sparse. Because Fast-MSS used these same sparse labels to

generate the dense labels, relying on them for validation purposes would result in deceivingly high

accuracies. Instead the dense labels were evaluated by using them as training data for multiple FCNs, which

were then compared based on their classification scores using the original ground-truth sparse labels within

the test set for each of the experiments just as was done for the benchmark studies cited earlier and whose

results are presented in Table 2.

Experiments

This study used the same experimental setup to split data as outlined in [6]: for experiment one, K-fold

cross-validation was used to split the 2008 data into three folds, two of which were used for training and

the remaining was used for testing; this was done three times so that each fold was used for both training

and testing, and accuracy scores were later averaged. Experiment two used all of the data from 2008 for

training and tested on data from 2009, and experiment three used all of the data from 2008 and 2009 for

training, and tested on data from 2010. This same setup was used for splitting the data for both the patch-

based image classifiers and the semantic segmentation models.

15

Metrics for each of the three experiments were calculated by using the original sparse labels within the test

sets as ground-truth, compared against what the deep learning model predicted for the corresponding image.

However, because the ground-truth was in the form of sparse labels and the deep learning model produced

dense labels, only the pixel indices that were provided with labels by the original MLC annotators could be

used to validate the deep learning model’s predictions (Fig. 7). Furthermore, because the ‘Off’ class

category is not included in the original experiments, any of the dense labels that were predicted as ‘Off’

(approximately 1%) were replaced with the top-2 choice label instead.

Fig. 7 – A diagram inspired by a figure in [9] illustrating the use of a FCN architecture on the MLC dataset

for semantic segmentation. Models were trained with images and dense labels generated by Fast-MSS, and

metrics were calculated by comparing the ground-truth sparse labels for each image in the test set against

the corresponding pixel indices within the predicted dense labels for the same image.

For the sake of consistency, the same metrics used in [6], [7], and [8] were reported; these include

classification accuracy, precision, and recall, which were calculated using (8), (9), and (10), respectively.

16

(8)

(9)

(10)

Classification accuracy was computed by calculating the subset “accuracy”, which requires that the

predicted label match exactly the ground-truth label. Precision and recall were calculated by computing a

confusion matrix that incorporated all of predictions and ground-truth samples from the test set for an

experiment, calculating the metric for each individual class, and then averaging them together to obtain the

final score (i.e., macro-averaged). It should be noted that the MLC dataset is heavily imbalanced (see Fig.

8) and these metrics do not take into consideration the frequency of each class category.

17

Fig. 8 – The distribution of the nine most abundant class categories used in the three patch-based image

classification experiments associated with the MLC dataset, making up approximately 94% of all sparse

labels. Note the class category ‘Off’ is not included as it is not used in the experiments or when calculating

metrics.

Model Training

For patch-based image classification, after preliminary analysis the NASNet architecture [18] was chosen

to train three different classifiers, one for each of the experiments. Models were initialized with weights

pre-trained on ImageNet and consisted of the encoder followed by a max pooling operation, a dropout layer

(80%) and then finally a single fully connected layer with 10 output nodes. Patches that were extracted

from the original images with dimensions of 112 pixels x 112 pixels were resized to 224 pixels x 224 pixels

to match the input size requirement of each encoder, normalized between 0 and 1 using patch-specific max-

min normalization, and then heavily augmented (e.g., adding noise, blurring, sharpening, altering contrast)

using ImgAug [19] to reduce overfitting.

Categorical-cross entropy was used as the loss function along with the optimizer Adam with an initial

learning rate of 10-3 using the ReduceLROnPlateau callback to reduce the learning rate by a factor of 0.5

for every three epochs in which the validation loss failed to decrease. Because the problem is multi-

categorical classification, the activation function used was softmax; models were trained for 50 epochs with

a batch size of 32 as this represented the maximum amount of memory that could be allocated during

training by the GPU being used.

For semantic segmentation the U-Net architecture was used, which, unlike the original FCN architecture

outlined in [20], gradually upsamples feature maps by using transposed-convolutional layers and skip

connections to increase the resolution of the model’s prediction [21]. Because determining the optimal

encoder for a given dataset is often heuristic, the following eight encoders were experimented with to obtain

a range of performances: DenseNet-201 [22], EfficientNet-b0 and EfficientNet-b4 [23], InceptionV3 [24],

ResNet-34, ResNet-50, ResNet-101 [25], and VGGNet-19 [16]. All segmentation models were

implemented in Python using the Segmentation Models library provided by [26].

Each of the encoders were initialized with pre-trained weights from the ImageNet dataset and were left

frozen (i.e., immutable) for the entire process; only the weights in the decoders were updated during

training. Images were pre-processed using the methodology recommended for each encoder, and dense

labels were converted into one-hot-encoded form with a shape of (B x H x W x C) where B and C represent

the batch size and the number of class categories, respectively. Augmentations were randomly performed

on each sample using ImgAug in the form of simple affine transformations (flips, flops, rotations) and a

channel shuffle operation that randomly swaps the location of each channel in the image.

Preliminary analysis indicated that when training with larger images, the resulting models produced better

predictions, but due to differing computational requirements for each of the encoders and the amount of

memory that could be allocated by the GPU, images were reduced in size to 736 x 736 during training and

testing for all encoders. Consequently, this resulted in the batch size having to be equal to one (i.e., a single

image).

Soft-Jaccard was used as the loss function, which is a differentiable proxy that attempts to maximize the

Intersection-over-Union metric [27]. The optimizer employed was Adam, with an initial learning rate of

10-3 along with the ReduceLROnPlateau callback using the same settings as described before. The

activation function was softmax, and models were trained for 20 epochs.

18

All model training was performed on a PC equipped with a NVIDIA GTX 1080 Ti GPU and an Intel i7-

8700 CPU, using the Keras deep learning framework and the Tensorflow numerical computational library.

RESULTS

Classification Performance

The results of the trained FCNs on the three MLC experiments can be seen in Table 3 and 4. Each of the

encoders were compared, as well as the encoders trained using only the MLC sparse labels against their

counterparts that were trained with the MLC plus the patch-based sparse labels. As seen in Table 3, the

general trend shows that models using the DenseNet and EfficientNet encoders performed with a higher

classification accuracy than the others.

More interesting is the difference in classification accuracy between models that were trained with

additional sparse labels against their counterparts that were trained without them. Models that were trained

with the additional sparse labels provided by the patch-based classifier saw an increase in accuracy by

approximately 3%, on average.

Table 3 – Classification accuracies for each model on all three experiments, trained with and without

additional sparse labels.

Encoder

Accuracy

Exp 1 Exp 2 Exp 3

MLC Sparse Labels

DenseNet-201 0.716 0.626 0.802

EfficientNet-b0 0.709 0.620 0.797

EfficientNet-b4 0.703 0.613 0.827

InceptionV3 0.662 0.580 0.795

ResNet-34 0.676 0.630 0.805

ResNet-50 0.668 0.612 0.787

ResNet-101 0.672 0.612 0.771

VGGNet-19 0.618 0.571 0.771

MLC + Patch-based Sparse Labels

DenseNet-201 0.754 0.614 0.839

EfficientNet-b0 0.737 0.649 0.824

EfficientNet-b4 0.737 0.645 0.836

InceptionV3 0.673 0.570 0.811

ResNet-34 0.714 0.642 0.814

ResNet-50 0.696 0.595 0.809

ResNet-101 0.686 0.617 0.785

VGGNet-19 0.648 0.606 0.773

Note: Encoder scores are colored red, yellow, or green if they are lower, the same, or higher than the score of its counterpart for

the same experiment, respectively. Bold numbers show the best performing encoder over all trials, with 1.0 representing a perfect

score.

19

The same trend among models using the DenseNet and EfficientNet encoders can also be seen with regards

to precision and recall (Table 4). Moreover, the average increase for both of these metrics for models trained

with additional sparse labels was approximately 7% compared to those trained without.

Table 4 – The mean precision and mean recall for each model on all three experiments, trained with

and without additional labels.

Encoder
Precision Recall

Exp 1 Exp 2 Exp 3 Exp 1 Exp 2 Exp 3

MLC Sparse Labels

DenseNet-201 0.598 0.476 0.497 0.549 0.473 0.564

EfficientNet-b0 0.574 0.517 0.493 0.531 0.483 0.521

EfficientNet-b4 0.565 0.523 0.538 0.517 0.485 0.575

InceptionV3 0.500 0.435 0.481 0.457 0.451 0.471

ResNet-34 0.567 0.519 0.478 0.520 0.508 0.472

ResNet-50 0.476 0.505 0.528 0.498 0.503 0.533

ResNet-101 0.533 0.469 0.476 0.491 0.484 0.504

VGGNet-19 0.481 0.402 0.425 0.391 0.401 0.363

MLC + Patch-based

Sparse Labels

DenseNet-201 0.632 0.517 0.584 0.593 0.602 0.604

EfficientNet-b0 0.607 0.561 0.565 0.559 0.494 0.580

EfficientNet-b4 0.631 0.626 0.597 0.563 0.554 0.627

InceptionV3 0.541 0.453 0.535 0.502 0.474 0.494

ResNet-34 0.524 0.547 0.494 0.518 0.475 0.594

ResNet-50 0.540 0.487 0.513 0.520 0.461 0.538

ResNet-101 0.553 0.531 0.560 0.521 0.505 0.499

VGGNet-19 0.518 0.466 0.461 0.397 0.363 0.392

Note: Encoder scores are colored red, yellow, or green if they are lower, the same, or higher than the score of its counterpart for

the same experiment, respectively. Bold numbers show the best performing encoder over all trials, with 1.0 representing a perfect

score.

Discussion

The increase in classification scores between models trained using only the MLC sparse labels against their

counterparts that were trained with the MLC plus the patch-based sparse labels is in agreement with what

was observed from the comparison using the CamVid dataset in Chapter 1: additional sparse labels can

positively affect the quality of the resulting dense labels, and deep learning models trained on them are also

likely to achieve gains in classification scores. This validated the use of the patch-based image classifier in

this study and also provides evidence for its use in future studies, which (as suggested by results presented

in Table 1) may save researchers a significant amount of time and resources by automating the task of

sparse image annotation and improve coral reef monitoring and assessment.

The top scoring FCNs are suitable for many benthic ecology applications, and would be expected to increase

in performance even further if provided with additional images to learn from. Typically, the predicted

segmentation maps (i.e., dense labels) are validated by comparing them to ground-truth segmentation maps,

20

but because the MLC only has sparse labels these were used instead. This form of validation does provide

some indication of performance, although it is not the most beneficial format as it does not take into account

the other 99.5% of labels that were predicted by the deep learning model. Looking at a randomly sampled

segmentation map produced by a DenseNet model, the predicted sparse labels that tend to be misclassified

are those that are located along the borders of different semantic groups (Fig. 9). This is not unexpected as

the transition between neighboring class categories is often not sharp in contrast, but instead is usually

fuzzy and complex.

Fig. 9 – A side-by-side comparison between an image and its labels. From left to right: the original image

with ground-truth sparse labels superimposed, the dense labels predicted by a deep learning model, and

those same dense labels overlaid on top of the original image. The sparse labels in the last two columns are

colored white if predicted correctly, or colored black if incorrectly; note that most of the incorrect

predictions appear along the borders of semantic groups.

However, some of the misclassified predictions made by the FCNs could also be attributed to incorrect

ground-truth labels, which were created in error for the same exact reason. It has already been established

in [17] that ‘Off’ points were labeled inconsistently, where some that were clearly on the quadrat were

provided with labels of different class categories that were nearby; the same is also likely true for labels of

other class categories. Unfortunately, without properly annotated segmentation maps to serve as ground-

truth these questions cannot be completely addressed.

21

CHAPTER 3: SEMANTIC SEGMENTATION WORKFLOW FOR THE CLASSIFICATION OF

3-D RECONSTRUCTED CORAL REEFS

INTRODUCTION

Coral reefs are complex 3-dimensional structures that promote the assemblage of diverse groups of

organisms by providing niche habitats for prey seeking refuge from predation. Although images collected

through benthic quadrat surveys are routinely used to evaluate community composition, they fail to capture

the changes that occur to a coral reef when considering the 3-dimensional structure, arguably one of its

most important attributes.

Fortunately, the new standard for obtaining 3-D measurements has emerged in the form of Structure-

from-Motion (SfM) algorithms, which utilize images collected from multiple angles to estimate depth

and provide the ability to reconstruct 3-D models of coral colonies, or even entire reefs [28, 29, 30].

Because of the relative ease and the accuracy of the models it can produce, SfM has opened new

opportunities for exploring how the physical structure of a reef changes across space and time at

unmatched levels of precision. However, one drawback of SfM is it lacks an inherent mechanism for

denoting which portions of the reconstructed model belong to a particular class category or functional

group. This means that (1), 3-D coverage statistics relating to the composition of species cannot be

calculated and (2), any metric that describes the structure of a reef can only be resolved at the model

scale. This inability severely hinders the potential to understand any connections that may exist between

changes in habitat structure and its community composition, such as those that occur during coral-algal

phase shifts.

Currently, there is only one other known technique that can be used to classify the 3-D reconstruction of a

coral reef. Published in 2020, Hopkinson et al. [31] demonstrated how a CNN can be trained on, and used

to classify the images that are used in the SfM reconstruction. Their methodology involved using the camera

transformation matrices that are created during the camera alignment phase of the reconstruction process

to identify all of the images that correspond to each of the elements that make up the 3-D model. Then, after

training a CNN on a representative subset of those images, it was used to classify all of the remaining

images that are associated with an element; because multiple viewpoints correspond to every element, a

majority-voting scheme was used to determine the final semantic label for each one. Conceptually, this

technique is not unlike a 3-D version of classifying each individual pixel within an image one-by-one, and

can be computationally demanding especially for high resolution models made up of millions of elements,

each of which may be associated with 10+ images.

This study demonstrated a more efficient method that used the pixel-wise labels (i.e., dense labels) for

each of the images used in the reconstruction process to classify a 3-D reconstructed model. Because each

image only needs to be provided with a corresponding set of labels once, this method scales linearly and

can be used to provide semantic labels to a 3-D model regardless of its size or resolution.

Although providing dense labels to thousands of high-resolution images usually requires a significant

amount of time, this study drastically reduced the amount of effort needed by developing a workflow that

used the deep learning and computer vision algorithms that were described in the previous two chapters.

The next section describes how the dataset used in this study was initially collected, and the process in

which the 3-D model was reconstructed using SfM photogrammetry software. Next, a comprehensive

walkthrough for each step of the workflow is provided, followed by an overview of the class categories that

were defined for this study, and then an explanation of how the deep learning models from the workflow

22

were trained. Finally, how the 3-D models were classified is described, followed by an analysis, the results

and lastly, a discussion.

METHODOLOGY

Image acquisition

Video data were collected of a coral patch reef located near Cheeca Rocks (24.9041°N, 80.6168°W) in the

Florida Keys National Marine Sanctuary (Fig. 10) using a custom frame equipped with two GoPro Hero 7

Black video cameras mounted approximately one meter apart, both encased in waterproof housing with a

flat-view port. Videos were collected by SCUBA divers who swam 1-4 m above the patch reef in a

boustrophedonic (i.e., lawnmower) pattern with cameras angled towards nadir followed by a second pass

with cameras angled at approximately 45 degrees to obtain oblique views. Finally, divers were instructed

to swim freely at various depths and distances from the patch reef, completely encircling it in an attempt to

acquire footage of any occluded areas on the reef. Videos were recorded in 4K HD (2160 pixels x 3840

pixels) and at 24 frames per second (fps) in wide field-of-view mode with HyperSmooth stabilization set to

active. Twenty-three coded targets were strategically placed on and around the site to assist in estimating

camera locations and the calibration coefficients during the reconstruction of the 3-D model.

Fig. 10 – A Google Map of the Florida Keys (left) and satellite imagery obtained from Google Earth

showing Cheeca Rocks (right), which is located approximately one mile southeast of the Upper Matecumbe

Key within the Florida Keys National Marine Sanctuary.

The video survey covered an area of approximately 5 m x 5m with divers swimming between 8 ± 2 m deep,

was conducted in July of 2019 while water visibility was greater than 35ft, and used only ambient light.

Post-capture, 2180 images were extracted from the video footage by sequentially sampling one in every

eight frames, allowing for enough forward overlap (> 60%) between successive images.

Structure-from-Motion Photogrammetry (SfM)

The 3-D model in this study was created using the SfM photogrammetry software (Agisoft Metashape Pro

1.6, previously Photoscan) following a similar methodology outlined by [30], with a few additional steps

that were found to enhance model quality [34]. The patch reef, as seen in Fig. 11, was reconstructed using

23

all of the 2180 still images that were extracted from the video footage. The ‘Camera Calibration’ profile

was set to ‘Fisheye lens’ to help account for the refraction caused by the GoPro’s wide-angle lens, and the

‘Detect Markers’ tool was used to automatically create control points for each coded target found within

the image drastically reducing much of the manual work needed; any of the coded targets not detected were

marked manually.

Fig. 11 – A textured mesh representing the example coral patch—which is roughly 1.5 m in diameter and

3 m in height—was reconstructed from still images extracted from video footage using Agisoft Metashape

SfM photogrammetry software. The mesh consisted of 10 million faces, and had an estimated accumulative

error of 1.4 mm after providing absolute scale using the real world dimensions of the coded targets.

The remainder of the reconstruction process followed the standard procedure of (1) photo alignment, (2)

densification, (3) building a mesh and then (4) texturizing it. All quality settings were set to ‘Medium’ with

the exception of photo alignment, which was set to ‘Highest’ resulting in 95% of images being aligned. The

reconstructed model consisted of roughly 10 million triangular faces that approximated the surface of the

patch reef. The model was estimated to have a ground resolution of 0.278 mm/pixel and a reprojection error

(i.e., root-mean square error) equal to 1.6 pixels. Absolute scale was provided to the model in Metashape

by creating scale bars along the length and width of seven coded targets found within the model, and

supplying them with the corresponding real world dimensions (4 ¼ inches x 4 ¼ inches); the estimated

accumulative error was reported to be approximately 1.4 mm.

A Deep Learning and Computer Vision Workflow

The still images used to reconstruct the 3-D model were the same ones used to train a deep learning semantic

segmentation algorithm. However, before they could be used as training data they needed to be provided

with the appropriate annotations. For semantic segmentation every pixel in the image needs to be provided

with a label denoting the class category it belongs to (i.e., dense labels), which is a time-consuming and

expensive process. Even when using commercial image annotation software, providing pixel-wise labels

can cost the annotator 20+ minutes per image.

24

Thus, to reduce the burden of having to manually perform pixel-level annotations for thousands of images,

this study designed a workflow that provided every still image in the dataset with dense labels while also

minimizing the amount of work needed to be performed by the user. The workflow is summarized in Fig.

12, which first required the user to manually create a dataset that could be used to train a patch-based image

classifier. This classifier provided numerous sparse labels to each still image automatically, and then using

Fast-MSS, they were converted into dense labels. These dense labels and their corresponding images

formed a dataset that were then used to train a Fully Convolutional Network (FCN) capable of performing

pixel-level classifications on unannotated images.

Fig. 12 – A diagram illustrating the workflow used to obtain dense labels for each image. Still images were

extracted from the video footage (A) and imported into Rzhanov’s patch-extraction tool (B) where patches

for each class category of interest were extracted (C). These patches and their corresponding labels were

used to train a patch-based image classifier (D) that then provided numerous sparse labels to each image in

the dataset (E). Using Fast-MSS (F), the sparse labels were converted into dense (G) and used as the pixel-

wise labels necessary for training a deep learning semantic segmentation algorithm. (H). With a trained

FCN, novel images collected from the same or similar habitats could be provided with dense labels

automatically (I) and without having to perform any of the previous steps (B-G).

Although there were multiple steps involved in this workflow, only the first step required manual effort

from the user; the remainder of the steps were completed automatically using deep learning and computer

vision algorithms. Thus, this workflow showcased that training data created through almost entirely

automatic processes (as opposed to being done manually) could still produce a deep learning model that

performs with acceptable classification scores to be used in other applications. To evaluate how well these

deep learning models perform, 50 images were first randomly sampled with replacement from the dataset

25

and given an additional set of ground-truth dense labels that were created by hand using the commercial

image annotation software LabelBox [32]. These ground-truth dense labels served as a testing set to gauge

the performance of the patch-based image classifier, the dense labels created by Fast-MSS, and the

predictions made by the FCNs.

1. Creating an Image-Patch Dataset

Beginning the workflow, the first step involved creating a dataset that a patch-based image classifier could

learn from. Unlike a normal image classifier, a patch-based image classifier is trained on sub-images

commonly referred to as ‘patches’ that are cropped on individual class categories. A common method for

creating an image-patch dataset is outlined in [6], where patches are extracted centered on top of the existing

sparse labels that were created manually by a user with a point-based annotation software tool like Coral

Point Count (CPCe).

However, instead of going through the time-consuming process of creating CPCe annotations for each

image, this study used the Center for Coastal and Ocean Mapping (Durham, NH, USA)’s in-house

annotation software tool made by Dr. Yuri Rzhanov specifically for the purpose of extracting patches from

still images. This patch-extraction tool is fast and provides an intuitive interface that allows the user to

easily sample any part of the image, while archiving the location of extraction and assigned class label.

Given the freedom to extract patches using a mouse or trackpad, a user can quickly create a highly

representative dataset. Using this tool, roughly10,000 patches with dimensions of 112 pixels by 112 pixels

were extracted from the still images in the dataset, averaging approximately 50 patch extractions per minute.

2. Training a Classifier to Provide Sparse Labels

This newly created dataset consisting of patches and their corresponding labels served as the training data

for the patch-based image classifier; as in Chapter 2, the classifier was first trained and then used to provide

sparse labels to each still image automatically.

Providing additional labels involved first uniformly extracting patches with dimensions of 112 pixels x 112

pixels from an image following a grid formation. In total, approximately 2800 patches were sampled from

each image in the dataset, representing potentially 2800 additional labels per image, or roughly .035% of

the total number of pixels in the image. Extracted patches were then passed to the classifier as input. The

output for each was a corresponding vector representing the probability distribution of class categories to

which the center-most pixel of the patch likely belonged. For each patch the extracted location, the

presumed class label, and the difference between the two highest probability distributions (i.e., top-1 and

top-2 choices) were recorded.

Again, the difference in probabilities were used to filter out sparse labels that were more likely to have been

misclassified. Determining the ideal threshold involved trying different values and comparing the

classification scores of the sparse labels predicted for the test images against the labels in the corresponding

pixel indices of the ground-truth. As discussed in the results section, the final threshold value that was

chosen balanced the tradeoff between the number of labels that were accepted and their classifications

scores.

With regards to efficiency, the patch-based image classifier assigned roughly 200 sparse labels to an image

per second, as opposed to the one annotation every six seconds that it cost users who used a point-based

annotation software tool [17].

26

3. Converting Sparse Labels to Dense using Fast-MSS

The next step converted the accepted sparse labels that were assigned to each image into dense using Fast-

MSS. For this dataset, the first and last number of superpixels to partition each image into was 5000 and

300, respectively, and across 30 iterations. Each image was downsized by reducing the height and width by

a factor of six after confirming that a reduction in the input image’s dimensions could decrease the time

required to create the dense labels without negatively affecting the classification scores (Table 5). Dense

labels were then upsized using nearest neighbor interpolation so they matched the image’s original

dimensions, a requirement for deep learning model training.

Table 5 – The effect of reducing an input image’s dimensions on the output of Fast-MSS

Reduction

Factor

Dimensions

(pixels)
PA m-PA w-IoU w-Dice Time (Seconds)

1 2160 x 3840 0.8852 0.8051 0.8199 0.8938 260.45

2 1080 x 1920 0.8854 0.8049 0.8197 0.8937 64.42

3 720 x 1280 0.8856 0.8050 0.8195 0.8936 22.21

4 540 x 960 0.8853 0.8053 0.8196 0.8936 13.85

5 432 x 768 0.8853 0.8054 0.8195 0.8933 9.98

6 360 x 640 0.8850 0.8051 0.8192 0.8930 7.79

Abbreviations: PA, pixel accuracy; MPA, mean pixel accuracy; MIoU, mean intersection over union. Cells are colored red,

yellow, or green if they are lower, the same, or higher compared to other dimensions, with 1.0 representing a perfect score for

classification metrics.

Note: All trials were conducted on the same PC with an Intel i7-8700 processor; dense labels were resized using nearest neighbor
interpolation before compared to ground-truth.

4. In the Future, Automate the Boring Stuff

Although the dense labels created could have been used to classify the 3-D reconstructed model directly,

they were instead used as training data to train a deep learning semantic segmentation algorithm. The major

advantage of a FCN is its ability to generalize to images collected from domains that are similar to those

that it was trained on. A researcher could obtain dense labels for images collected from the same or similar

habitats that the FCN was previously trained on without having to perform any of the previous steps in the

workflow. Thus, the objective of this workflow was not just to obtain a set of dense labels for every still

image, but rather it was a means of acquiring dense labels for datasets collected in the future more

efficiently.

This study experimented with five FCNs, all of which used encoders from the EfficientNet series (B0 – B4)

as those were shown to perform with the highest classification scores in the previous study. Each FCN was

used to create an additional set of dense labels for every image in the dataset; these and the set created by

Fast-MSS were validated and compared against the ground-truth dense labels within the testing set.

27

Class Categories

Of the different organisms, substrate types, and objects present in the video footage data, seven class

categories were formed. Four of these were biological (“Branching”, “Fish”, “Massive Coral” and “Algae”)

and consisted of multiple species, one encompassed all of the potential substrate types (“Substrate”),

another was used to denote the coded targets (“Target”), and lastly was the class to represent the background

(“Water”, Fig 13.) The first five class categories served as functional groups to demonstrate the ability to

calculate community composition in both 2-D images and 3-D models, but alternative functional groups

could be chosen for different purposes.

Fig. 13 – A still image (2160 pixels x 3840 pixels) extracted from the video footage showcasing the class

categories used in this study (left), and the distribution of each class category based on their pixel count

calculated from the 50 ground-truth dense labels within the testing set (right).

The majority of the still images in the dataset were made up of pixels that belonged to massive corals

(Oorbicella faveolata, Orbicella annularis and Porites astreoides), followed by different types of substrate

(sand, rubble). The third most represented class category was “Algae”, which contained some crustose

coralline algae (CCA) and filamentous turf algae, but primarily Halimeda spp., which was found in

abundance in crevices between coral colonies. The “Branching” class was comprised of fire coral

(Millepora alcicornis) and various other types of octocorals that included sea plumes, sea rods, and sea

fans; the “Fish” class category incorporated all individuals with no distinction made between genus or

species. To ensure that the coded targets would not be assumed to be associated with one of the functional

groups a class was created for it. Lastly L “Water” served as the background class meant to represent the

pixels in an image where there was nothing as visible as a result of light attenuation through the water

column.

28

These seven class categories could be found in the still images, but only “Branching”, “Massive Coral”,

“Algae”, “Substrate” and “Target” were included in the 3-D model because SfM photogrammetry is only

capable of reconstructing objects that are static within the source images. Thus “Fish” and “Water” would

be excluded.

Model Training

The patch-based image classifier that was used to provide sparse labels to each image as described in the

workflow used the EfficientNet-B0 architecture. Instead of using the typical ‘ImageNet’ weights, the

classifier was initialized with the ‘Noisy-Student’ weights, which were learned using a semi-supervised

training scheme that was demonstrated to outperform the former [33]. The encoder was followed by a max

pooling operation, a dropout layer (80%), and finally a single fully connected layer with seven output nodes

(one for each of the class categories). Patches were resized to 224 pixels x 224 pixels and fed to the model

as training data after heavy augmentation techniques were applied using the ImgAug library, and normalized

to have pixel values between 0 and 1.

Because the task was multi-categorical classification, softmax was chosen as the activation function for the

network, and the batch size was set to 32 as this was the largest amount possible given the network

architecture, the size of the image patches, and the amount of memory that could be allocated by the GPU

being used. The model was trained on 10,000000 image patches that were randomly split into a training

(90%) and validation (10%) set for 25 epochs.

During training the error between the actual and predicted output was calculated using the categorical-cross

entropy loss function. Parameters throughout the network were adjusted using the Adam optimizer with an

initial learning rate of 10-4. Using the ReduceLROnPlateau callback, the learning rate was reduced by a

factor of 0.5 for every three epochs in which the validation loss failed to decrease, and the weights from the

epoch with the lowest validation loss were archived.

Based on the results from Chapter 2, this study experimented with five different FCNs, all of which used

the U-Net architecture and were equipped with one of the five smallest encoders within the EfficientNet

family (i.e., B0 through B4). Again, all deep learning semantic segmentation models were implemented in

Python using the Segmentation Models library provided by [24].

Each of the EfficientNet encoders was initialized with ‘Noisy-Student’ weights, but was left frozen (i.e.,

immutable) for the entire training process, meaning only the weights within the decoder of the FCN were

updated. Images were pre-processed in the same way as the images were when the original encoders were

trained on the ImageNet dataset, while dense labels were converted into one-hot-encoded vectors forming

a shape of (B x H x W x C) where B and C represent the batch size and the number of class categories,

respectively. During preliminary analysis it was found that heavier augmentation techniques (e.g., adding

noise, blurring, sharpening, altering contrast) resulted in lower classification accuracies; instead only

augmentations in the form of simple affine transformations (flips, flops, rotations) were applied to each

sample.

Each successive encoder within the EfficientNet family required an additional amount of memory to train

due to their increasing architectural size and number of parameters. To accommodate the memory

requirements of each of the encoders, all images were reduced in height and width by a factor of three

resulting in dimensions of 736 pixels x 1280 pixels; this was the largest an image could be to work with all

of the encoders, and consequently resulted in the batch size having to be equal to one (i.e., a single image).

29

Models were trained for 25 epochs on all 2180 images, which were randomly split into a training (90%)

and validation (10%) set.

During training of the FCNs the error was calculated using the soft-Jaccard loss function, which acts as a

differentiable proxy that attempts to maximize the Intersection-over-Union metric [25]. Parameters were

updated via backpropagation using the Adam optimizer, which was set with an initial learning rate of 10-4

and used the ReduceLROnPlateau callback with the same settings as described before; after 20 epochs,

only the weights from the epoch with the lowest validation loss were archived.

All deep learning models were trained on a PC equipped with an NVIDIA GTX 1080 Ti GPU and an Intel

i7-8700 CPU, using the Keras deep learning framework and the Tensorflow numerical computational

library.

3-D Model Classification

Following the training process, Fast-MSS and the five FCNs were each used to create a set of dense labels

for each image in the dataset. With each respective set of dense of labels, a separate classified 3-D model

was created, thus allowing the comparison between the five FCN encoders (i.e., EfficientNet B0 – B4) and

Fast-MSS. The technique to assign semantic labels to the 3-D model was straight forward and was done

almost entirely in Agisoft Metashape; the instructions for how this was done are explained below (Fig. 14).

Fig. 14 – A diagram showing step-by-step which tools in Metashape were used to reconstruct the 3-D

model, followed by how semantic labels were provided to it. Once the images are swapped with their

corresponding dense labels, the classified point cloud, shaded mesh, and textured mesh can be created

independently of one another and is not a sequential process like the reconstruction.

30

Once the textured mesh for the 3-D model was created, the entire project was duplicated using the

‘Duplicate Chunk’ action. Within the duplicated project, all information that was created during the

construction of the original model (e.g., the mapping of pixels from image to 3-D space, color components

and UV coordinates) was also copied to the project folder. Following the duplication, images that were used

in the reconstruction process were swapped with their corresponding dense labels using the ‘Change Paths’

tool; because the dimensions of the images and the dense labels were identical, and they both shared the

same filenames, the swap executed without error.

Next the ‘Build Texture’ tool was used to create another textured mesh but using the dense labels as the

source images instead. By default, this tool reused the existing UV coordinates that were copied over during

the duplication. The ‘Texture Type’ was set to diffuse, and ‘Blending’ was disabled to ensure that the

discrete categorical values representing each class in the dense labels would not accidently be averaged

along the borders of neighboring semantic groups in the resulting classified textured mesh (e.g., seamlines).

Alternatively, it was found that if the blending mode was set to ‘average’ or ‘mosaic’—as is recommended

by Agisoft—the model could be corrected using a custom post-processing script, which is explained in a

later passage.

Once completed, the classified textured mesh was identical to the original in appearance, but with textures

that were mapped from the respective set of dense labels that were used as source images instead of the still

images (Fig. 15). A classified shaded mesh and dense point cloud were then created using the ‘Colorize

Vertices’ and ‘Colorize Dense Cloud’ tools, respectively. These tools worked similarly, mapping the color

components from the pixel indices found in the source images (i.e., dense labels) to their corresponding

elements or points within the shaded mesh or dense cloud.

31

Fig. 15 – Comparison between the textured mesh and its corresponding atlas (left) against the classified

version of the mesh and its corresponding atlas after being corrected using the custom post-processing script

(right). Validation for the classified model was obtained by comparing the classified atlas with a manually

annotated texture atlas (not shown) that served as ground-truth.

However, unlike in the ‘Build Texture’ tool, the blending mode could not be disabled in either ‘Colorize

Vertices’ or ‘Colorize Dense Cloud’. This resulted in some of the elements or points having color

components with values that are not within the set of discrete values that denoted the class categories, which

could potentially pose a problem for those attempting to perform spatial analysis using the classified models

in future studies.

Fortunately, Metashape provided a tool called ‘Classify Points’, which selects and then classifies points

based on an individual, or range of color components. After this was done for each class category, the dense

cloud and its corrected classifications were exported as conventional point cloud formats including LAS

and XYZ to confirm that they could be used in other spatial analysis software.

However, the current version of Metashape does not offer the ability to classify the vertices of a mesh based

on color components; instead, this study used a custom script written in Python that performed this task

outside of Metashape, demonstrating that it could be done if needed. After the mesh was colorized using

‘Colorize Vertices’, it was exported as an OBJ file in ASCII format that stored the 3-dimensional

coordinates of each vertex and its color components in an easily parsable format. When provided with the

set of discrete color components that denote each of the class categories, the script was made to first check

if each vertex had one of the correct color components; if the values were not within the set, they were

changed to the color components to which they are closest in RGB color space as measured by their

Euclidean distance. Because the script parsed the file line-by-line, even large models could be corrected

this way without having memory allocation errors. This same script could also be used to adjust each of the

pixel indices in the classified textured atlas if the blending mode of the ‘Build Texture’ tool had been set to

either ‘mosaic’ or ‘average’ instead of being disabled.

Although the classifications were provided to the shaded mesh and dense point cloud within Agisoft

Metashape, there was no tool that could be used to evaluate their accuracies. Instead this was done outside

of Agisoft Metashape, and by using the classification scores of the classified textured mesh as a proxy for

the scores of the classified shaded mesh and dense point cloud. From Agisoft Metashape both the original

and the classified textured mesh were exported as 2-D images (i.e., texture atlases), and then the former

was made into a ‘ground-truth texture atlas’ by manually providing it with semantic labels using the image

annotation software tool LabelBox. As is done when annotating a typical 2-D image, the pixel indices in

the original texture atlas were assigned labels denoting the class category they were thought to belong to

by a trained annotator.

Unfortunately, not all of the textures were discernable to the annotator as some were either too small, or

simply did not resemble any of the class categories when represented in the texture atlas. In an attempt to

provide an accurate form of ground-truth, annotators only assigned labels to the pixel indices that they were

confidently able to identify, resulting in a ground-truth texture atlas (4096 pixels by 4096 pixels) where

88% of the pixels were provided with semantic labels.

32

Experiments

For the analysis, this study validated the results of the patch-based image classifier and its ability to produce

sparse labels, the dense labels that were created by Fast-MSS, the predictions made by the five FCNs

experimented with, and the classification accuracy of the 3-D classified models.

To calculate classification scores, the sparse labels predicted by the patch-based image classifier for each

image in the test set were compared to the labels in the corresponding pixel indices of the ground-truth.

Similarly, the dense labels created by Fast-MSS and the FCNs for each image in the test set were compared

to the ground-truth dense labels. Lastly, each classified 3-D model was evaluated following the process

described in the previous section, where each 3-D model was exported from Agisoft Metashape as a 2-D

image and its semantic labels were compared to the ground-truth labels that were provided by the annotator.

As seen in the bar-chart of Fig. 10, the distribution between class categories was not uniform, which likely

caused predictive models to learn features that favor over-represented classes, at the expense of under-

represented classes. However, because this study did not value one class over any other, two of the metrics

used to evaluate the classification scores were calculated as a weighted average based on the frequency

(i.e., total number of pixels) of each class.

The metrics used include pixel accuracy (PA), mean pixel accuracy (m-PA), weighted Intersection-over-

Union (w-IoU), and weighted Dice coefficient (w-Dice). PA was computed by globally calculating the ratio

of correctly classified pixels to the total number of pixels; this is identical to the overall classification

accuracy and does not take into consideration class imbalances. The m-PA calculates the global accuracy

of each class individually and then averages them together so that each class contributes to the final score

equally, regardless of class imbalances. Last are IoU and Dice (i.e., Jaccard index and F1-Score,

respectively), which are similarity coefficients commonly used for quantifying classification scores of

semantic segmentation tasks. The weighted average for these two metrics were calculated using (10) and

(12), respectively:

(10)

(11)

(12)

where the weight for each class wi, was calculated as ratio of pixels per class over the total number of

pixels in the test set.

33

RESULTS

Classification Scores

First are the results of the patch-based image classifier and how its performance changed as a function of

the confidence threshold value used. Mentioned in the methods section, the confidence score was used to

filter sparse labels that were more likely to have been misclassified; a higher threshold value usually

represents more confidence in a prediction.

Table 6 – Classification scores for the patch-based image classifier compared against ground-truth.

Threshold Accepted PA m-PA w-IoU w-Dice

0.0 100% 0.833 0.786 0.739 0.844

0.25 94% 0.855 0.815 0.769 0.864

0.50 89% 0.875 0.835 0.796 0.882

0.75 83% 0.896 0.857 0.827 0.902

0.90 76% 0.914 0.874 0.855 0.919

0.99 61% 0.941 0.902 0.899 0.944

Abbreviations: PA, pixel accuracy; m-PA, mean pixel accuracy; w-IoU, weighted Intersection-over-Union; w-Dice, weighted
Dice coefficient.

Note: For classification metrics, 1.0 represents a perfect score.

As expected, Table 6 shows that there is an inverse relationship between the amount of points accepted and

the overall classification scores, which can readily be seen in Fig. 16. Based on these results, 0.50 was

chosen as the confidence threshold value for the remainder of the workflow as it was deemed to produce

results that balanced this tradeoff.

34

Fig. 16 – A line-graph displaying the inverse relationship between the confidence threshold value and the

classification scores of the sparse labels accepted. As the threshold value becomes more conservative along

the x-axis, more of the sparse labels the classifier is unsure about are rejected causing the classification

scores of the remaining labels to increase as a result.

Table 7 shows that the dense labels that were produced by Fast-MSS produced classification scores that

were slightly less than those created by any of the FCNs, except for B2, which produced the lowest scores;

among the FCNs, the differences in performance were marginal. With regards to speed, all FCNs performed

substantially faster than Fast-MSS, whose recorded time also included the time required by the patch-based

image classifier to first predict sparse labels for the input image. However, even when the input image was

reduced in dimensions by a factor of 6, the patch-based image classifier and Fast-MSS combo produced a

result in 22.6 seconds, which is still 10x slower than the slowest FCN.

Table 7 – Classification scores of each method for producing dense labels compared against ground-truth.

Method PA m-PA w-IoU w-Dice Time (seconds)

Fast-MSS 0.885 0.805 0.819 0.893 37.06

EfficientNet-B0 0.895 0.809 0.826 0.899 0.99

EfficientNet-B1 0.900 0.811 0.833 0.903 1.34

EfficientNet-B2 0.870 0.797 0.793 0.878 1.78

EfficientNet-B3 0.897 0.817 0.830 0.901 2.14

EfficientNet-B4 0.897 0.811 0.830 0.901 2.31

Abbreviations: PA, pixel accuracy; m-PA, mean pixel accuracy; w-IoU, weighted Intersection-over-Union; w-Dice, weighted Dice
coefficient.

Note: Times to perform are based on input images with dimensions of 736 pixels by 1280 pixels. Scores are colored red, yellow, or green

to represent the worst, the intermediate, and the best methods, respectively, for classification scores and speed. Bold numbers highlight
the best performing method for each metric, with 1.0 representing a perfect score.

Last are the results for the classified 3-D model (Table 8). Overall the classification scores followed the

same general trend that can be seen in Table 7. The classified texture atlas that used the dense labels

produced by Fast-MSS as the source images had scores for PA, w-IoU and w-Dice that were slightly less

than those created by any of the FCNs; the FCNs were equally good with no clear indication that one

outperformed another.

35

Table 8 – Classification scores of 3-D models represented as texture atlases compared against ground-

truth.

Method PA m-PA w-IoU w-Dice

Fast-MSS 0.896 0.775 0.823 0.899

EfficientNet-B0 0.905 0.762 0.836 0.907

EfficientNet-B1 0.910 0.766 0.843 0.911

EfficientNet-B2 0.908 0.781 0.842 0.910

EfficientNet-B3 0.907 0.781 0.840 0.910

EfficientNet-B4 0.913 0.775 0.850 0.915

Abbreviations: PA, pixel accuracy; m-PA, mean pixel accuracy; w-IoU, weighted Intersection-over-Union; w-Dice, weighted
Dice coefficient.

Note: Due to the inability to discern the class category of all the pixels in the ground-truth texture atlas, only those that could

be provided with labels (~88%) were used in the comparison. Scores are colored red, yellow, or green if they are lower, the

same, or higher than the other method’s score, respectively. Bold numbers highlight the best performing method for each metric
with 1.0 representing a perfect score.

Discussion

Table 6 shows the inverse relationship between the confidence threshold value chosen and the percentage

of sparse labels accepted: as the threshold value became more conservative (i.e., increases) more of the

labels that the model was not confident about were rejected. This also created a direct relationship between

the threshold value and the classification scores, because again, as more of the labels the model was not

confident about were rejected, the overall classification accuracy of the remaining labels was likely to

increase as a result.

In Chapter 1 it was shown that Fast-MSS produced dense labels with higher classification scores when it

was provided a greater number of sparse labels. While this remains true, Table 6 shows that supplying more

sparse labels is not necessarily beneficial. By decreasing the confidence threshold, there is an increase in

the number of misclassified labels, whose error would only be compounded when Fast-MSS propagated

the class label to the adjacent pixel indices when creating dense labels. Thus, when using a patch-based

image classifier in conjunction with Fast-MSS there exists a balance between the number of sparse labels

that should be accepted and the resulting classification scores; this can also be used as an indicator to

determine whether or not the classifier requires further training. Table 6 also highlights why developing a

comprehensive and well-representative dataset from the very beginning is important, as the classifier’s

performance has a significant effect on the classification scores of the remaining portions of the workflow

(as seen in Table 7 and 8).

A key takeaway from Table 7 is that even though the FCNs were trained on the dense labels produced by

Fast-MSS, all but B2 achieved higher classification scores. This suggests that as a deep learning algorithm,

a FCN has the potential to develop a better understanding of which features are associated with each class

category by learning from all of the images collectively throughout the training process. This is in contrast

with Fast-MSS, which, although it performed well, is limited by the fact that it can only propagate the label

that it is provided with outwards to neighboring pixel and does not contain a mechanism for learning

36

whether or not those labels are in fact correct. This is not to say that the patch-based image classifier and

Fast-MSS do not serve a valuable role within the context of the workflow, but rather that it would be

preferable to use a trained FCN as the primary method for producing dense labels for novel images collected

in the future. This, combined with the fact that the FCNs performed substantially faster highlight why

researchers should be moving towards the use of deep learning algorithms for the annotation of coral reef

imagery.

Table 8 shows the classification scores for the 3-D classified models that were made from the different sets

of dense labels shown in Table 7. Although the difference in scores between each 3-D model is not

substantial, the fact that they closely resemble the scores in Table 7 suggests three things at a minimum.

The first is that Agisoft Metashape is able to map the textures from the dense labels to create a 3-D classified

model with a high level of accuracy. Secondly, the classification scores of the 3-D models appear to be

largely dependent on the classification scores of the dense labels that were used as source images; this

reinforces what was already assumed to be true and also provides positive validation for this technique of

creating 3-D classified models. Finally, the results suggest that the non-conventional ground-truth texture

atlas that was created is of similar quality when compared to the more conventional ground-truth dense

labels that were created for the images in the test set. This provides validation for this method of evaluating

the classification scores of the 3-D model directly, which could prove useful in future studies.

Although the scores between Table 7 and 8 are similar, there is a pattern of a 1 to 2-point increase for PA,

w-IoU and w-Dice, which may be caused by the blending of color components that occurs during the ‘Build

Texture’ function. For each individual element that comprises the 3-D mesh, there are multiple pixels found

within different source images that all correspond to it, but from different vantage points. When creating

the textured mesh with the blending mode set to either ‘mosaic’ or ‘average’, each element is assigned a

color based on the weighted average of the color components from the pixels that it corresponds to [34].

Thus, by using either of these modes, the blending of source images—in this case, the dense labels—may

serve as a weighted average ensemble that contributes to slightly higher classification scores. However,

Table 8 shows that m-PA drops by approximately 3 to 4-points for each method, but this may be explainable

by the following.

SfM algorithms make the assumption that all parts of the scene are static meaning anything dynamic will

not accurately be incorporated in the reconstruction. For this reason, the two class categories ‘Fish’ and

‘Water’ that were defined for this study cannot be represented in the 3-D model nor the ground-truth texture

atlas. However, the ‘Build Texture’ tool will map the semantic labels from the source images to the 3-D

model regardless of which class category they belong. Because each method still has the potential to

misclassify some pixels in the source image (as seen by their lack of perfect scores in Table 7), their

misclassifications can make their way into the classified texture atlas.

Secondly, by comparing the per-class accuracy between the two top scoring models from tables 7 and 8, it

can be seen that the scores decrease for all of the classes in the classified texture atlas except for ‘Massive’,

the most represented category, whereas ‘Branching’ and ‘Target’ drop in score considerably, which are the

two smallest and least represented class categories that can be found in the 3-D model (Table 9).

37

Table 9 – Comparing the Relative Abundance and Per-Class Accuracy of the Still Images against the

Texture Atlas.

 Relative Abundance Per-Class Accuracy

Class Categories Still Images Texture Atlas Still Images Texture Atlas

Branching 0.02 0.01 0.713 0.406

Fish 0.01 NA 0.773 NA

Massive Coral 0.45 0.50 0.865 0.939

Algae 0.23 0.26 0.965 0.911

Substrate 0.26 0.22 0.911 0.857

Target 0.02 0.01 0.938 0.698

Water 0.01 NA 0.837 NA

Note: the ‘Fish’ and ‘Water’ class categories are not included in the texture atlas due to an inability to reconstruct dynamic

objects within a photogrammetric model. Classification scores for still images and the texture atlas came from models with B1

and B4 as encoders, respectively.

These two reasons suggest that the decrease in m-PA is not necessarily reflective of an issue inherent in the

‘Build Texture’ tool but rather the difficulties in manually providing semantic labels to the ground-truth

texture atlas—especially for classes that are both relatively small in size and less frequent—as well as how

the metric is calculated, which does not take into account the imbalances in class distribution and weighs

each per-class accuracy equally.

In conclusion, these results provide evidence that the ‘Build Texture’ tool is a method to accurately assign

semantic labels from source images to a 3-D model, and that resulting classification accuracy of the

classified texture model is a function of the reconstruction error of the original model, as well as the

classification scores of the method used to produce dense labels. Although the classified textured mesh is

not typically used in spatial analyses, this study showed that it can serve as a useful proxy for validating the

accuracy of the classified shaded mesh and dense point cloud, which often are. Because the elements that

make up the textured mesh store both the texture coordinates and the color components, it stands to reason

that all three model types share similar classification scores (Fig. 17).

Fig. 17 – A side-by-side comparison between the textured mesh (left), the classified textured mesh with

40% transparency (center), and the classified shaded mesh (right). The classified textured mesh was used

as a method for validating the classification results of the classified shaded mesh and dense point cloud (not

shown), which can be used in spatial analyses.

38

GENERAL CONCLUSION

The underlying theme of this thesis was to investigate techniques that can easily be adopted by ecologists

to assist them in their ability to monitor the changes that occur in benthic habitats. Point-based annotations

created by software tools like Coral Point Count (CPCe) are already ubiquitous within this scientific

community as a method for calculating coverage statistics, and help to assess a reef’s general health both

spatially and temporally. Unfortunately, the task of manually providing annotations to each image collected

during a benthic habitat quadrat survey is tedious, time-consuming and prohibitive with regards to cost and

project scale. With computer vision and deep learning algorithms, this thesis demonstrated how an existing

set of sparse labels for an image could be converted into pixel-wise labels, allowing for the calculation of

more robust coverage statistics. By adding improvements to the multilevel superpixel segmentation (MSS)

algorithm, the first chapter of this thesis demonstrated through a comparison using the CamVid semantic

segmentation benchmark dataset that the enhanced implementation (i.e., Fast-MSS) performs significantly

faster and with classification scores that exceed those created by the original.

Chapter 2 further validated the results of Fast-MSS by using it as a method to create dense labels for each

image in the Moorea Labeled Coral (MLC) dataset, a rigorous benchmark for testing computer vision

algorithms in coral reef image recognition. Following the same experimental setup first outlined in [6], this

study trained multiple Fully Convolutional Networks (FCNs) and used them to set the baseline scores for

the task of semantic segmentation. Furthermore, classification scores were shown to increase when

additional sparse labels were provided to each image using a patch-based image classifier. These results

demonstrate the effectiveness of the technique and illustrate how ecologists may be able to augment their

existing datasets through entirely automated processes.

Finally, the methods demonstrated in the first two chapters of this thesis were coupled with Structure-from-

Motion (SfM) photogrammetry to demonstrate how the same techniques applied to 2-D images could also

be applied to 3-D photogrammetric models. The same images that were extracted from video footage and

used to create a 3-D model were provided with dense labels following a workflow designed to minimize

the amount of manual work required by the user. In Agisoft’s Metashape, the source images used in the

reconstruction were swapped with their corresponding dense labels and used to classify the model, which

was post-processed using a custom script written in Python. Classification scores were validated by

comparing the 2-D texture atlas of the classified 3-D model against one that was provided with annotations

manually using an annotation software tool. Overall the results indicate that this method can be used to

classify 3-D models and would be suitable for many ecological applications including calculating coverage

statistics for a reef as a 3-D system, which could provide a more accurate assessment of coral reef cover as

opposed to just using 2-D images.

In the future there are plans to incorporate Fast-MSS into an annotation software tool equipped with a

graphical user interface (GUI) making it accessible to all users regardless of their proficiency in Python or

command-line interfaces, and to disseminate it freely for public use. As demonstrated in the comparison

using the CamVid dataset, this algorithm is not specific to images of coral reefs and instead can be applied

to produce dense labels for images from any domain. The same is also true for the method for classifying

3-D reconstructed models.

In conclusion, this thesis represents a step in the direction towards fully automated assessments and

monitoring systems for coral reefs, and it is hoped that the techniques outlined here can provide at least

some assistance in understanding how the changes that are occurring are affecting the habitat.

39

LIST OF REFERENCES

[1] B. Groombridge, “Coral Reefs,” Global Biodiversity, pp. 307–323, 1992.

[2] “UNEP Report – ‘Reefs at risk revisited,’” Management of Environmental Quality: An International

Journal, vol. 22, no. 4, 2011.

[3] H. Cesar, L. Burke, and L. Pet-Soede, “The Economics of Worldwide Coral Reef Degradation,”

International Coral Reef Action Network, Jan. 2003.

[4] P. L. Jokiel, K. S. Rodgers, E. K. Brown, J. C. Kenyon, G. Aeby, W. R. Smith, and F. Farrell,

“Comparison of methods used to estimate coral cover in the Hawaiian Islands,” PeerJ, vol. 3, Dec.

2015.

[5] K. E. Kohler and S. M. Gill, “Coral Point Count with Excel extensions (CPCe): A Visual Basic program

for the determination of coral and substrate coverage using random point count methodology,”

Computers & Geosciences, vol. 32, no. 9, pp. 1259–1269, 2006.

[6] O. Beijbom, P. J. Edmunds, D. I. Kline, B. G. Mitchell, and D. Kriegman, “Automated annotation of

coral reef survey images,” 2012 IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[7] M. Mahmood, M. Bennamoun, S. An, F. Sohel, F. Boussaid, R. Hovey, G. Kendrick, and R. B. Fisher,

“Coral classification with hybrid feature representations,” 2016 IEEE International Conference on

Image Processing (ICIP), 2016.

[8] M. Modasshir, A. Q. Li, and I. Rekleitis, “MDNet: Multi-Patch Dense Network for Coral

Classification,” OCEANS 2018 MTS/IEEE Charleston, 2018.

[9] Alonso, M. Yuval, G. Eyal, T. Treibitz, and A. C. Murillo, “CoralSeg: Learning coral segmentation

from sparse annotations,” Journal of Field Robotics, vol. 36, no. 8, pp. 1456–1477, Oct. 2019.

[10] King, S. M. Bhandarkar, and B. M. Hopkinson, “A Comparison of Deep Learning Methods for

Semantic Segmentation of Coral Reef Survey Images,” 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW), 2018.

[11] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “SLIC Superpixels

Compared to State-of-the-Art Superpixel Methods,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 34, no. 11, pp. 2274–2282, 2012.

[12] Alonso, A. Cambra, A. Munoz, T. Treibitz, and A. C. Murillo, “Coral-Segmentation: Training

Dense Labeling Models with Sparse Ground Truth,” 2017 IEEE International Conference on Computer

Vision Workshops (ICCVW), 2017.

[13] Mac Queen, J. Some Methods for Classification and Analysis of Multivariate Observations;

University of California: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297.

[14] Alchan, Fast-SLIC, (2019), GitHub repository, https://github.com/Algy/fast-slic

https://github.com/Algy/fast-slic

40

[15] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional Encoder-

Decoder Architecture for Image Segmentation,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 39, no. 12, pp. 2481–2495, Jan. 2017.

[16] Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image

Recognition,” CoRR, vol. abs/1409.1556, 2014.

[17] O. Beijbom, P. J. Edmunds, C. Roelfsema, J. Smith, D. I. Kline, B. P. Neal, M. J. Dunlap, V.

Moriarty, T.-Y. Fan, C.-J. Tan, S. Chan, T. Treibitz, A. Gamst, B. G. Mitchell, and D. Kriegman,

“Towards Automated Annotation of Benthic Survey Images: Variability of Human Experts and

Operational Modes of Automation,” Plos One, vol. 10, no. 7, Aug. 2015.

[18] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning Transferable Architectures for

Scalable Image Recognition,” 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2018.

[19] Jung, ImgAug, (2019), GitHub Repository, https://github.com/aleju/imgaug

[20] Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,”

2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[21] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image

Segmentation,” Lecture Notes in Computer Science Medical Image Computing and Computer-Assisted

Intervention – MICCAI 2015, pp. 234–241, 2015.

[22] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely Connected Convolutional

Networks,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[23] Mingxing Tan and Quoc V Le. EfficientNet: Rethinking model scaling for convolutional neural

networks. International Conference on Machine Learning, 2019.

[24] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the Inception

Architecture for Computer Vision.” 2015.

[25] He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[26] P. Yakubovskiy, Segmentation Models, (2019), GitHub Repository,

https://github.com/qubvel/segmentation_models

[27] Berman, A. R. Triki, and M. B. Blaschko, “The Lovasz-Softmax Loss: A Tractable Surrogate for

the Optimization of the Intersection-Over-Union Measure in Neural Networks,” 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2018.

[28] J. Burns, D. Delparte, L. Kapono, M. Belt, R. Gates, and M. Takabayashi, “Assessing the impact

of acute disturbances on the structure and composition of a coral community using innovative 3D

reconstruction techniques,” Methods in Oceanography, vol. 15-16, pp. 49–59, 2016.

https://github.com/aleju/imgaug
https://github.com/qubvel/segmentation_models

41

[29] R. Harborne, P. J. Mumby, and R. Ferrari, “The effectiveness of different meso-scale rugosity

metrics for predicting intra-habitat variation in coral-reef fish assemblages,” Environmental Biology of

Fishes, vol. 94, no. 2, pp. 431–442, 2011.

[30] G. C. Young, S. Dey, A. D. Rogers, and D. Exton, “Correction: Cost and time-effective method

for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3D

models,” Nos 15, no. 3, 2020.

[31] B. M. Hopkinson, A. C. King, D. P. Owen, M. Johnson-Roberson, M. H. Long, and S. M.

Bhandarkar, “Automated classification of three-dimensional reconstructions of coral reefs using

convolutional neural networks,” Plos One, vol. 15, no. 3, 2020.

[32] Labelbox, "Labelbox," Online, 2020. [Online]. Available: https://labelbox.com

[33] Q. Xie, E. H. Hovy, M.-T. Luong, and Q. V. Le, “Self-training with Noisy Student improves

ImageNet classification.,” CoRR, vol. abs/1911.04252, 2019.

[34] AgiSoft MetaShape Professional (Version 1.6) (Software). (2020*). Retrieved from

http://www.agisoft.com/downloads/installer/

https://labelbox.com/

42

APPENDIX

Structure-from-Motion Photogrammetry (SfM)

As Structure-from-Motion photogrammetry (SfM) is used to reconstruct the 3-D model and also plays a

crucial role in how semantic labels are assigned, this section serves as an overview of the reconstruction

process and is meant to provide context to some of the more important details. SfM uses the fundamental

principal of motion parallax to obtain some estimation of depth of an object or a scene captured from

multiple overlapping images. By measuring the angle from the multiple viewpoints to the object while also

estimating the distance between each viewpoint, the distance to the object can be calculated using basic

trigonometry. Although not all SfM algorithms are identical, many use the same general principles that are

described below.

A. Feature Detection

The first step in a typical SfM algorithm is feature extraction, which is used to detect specific parts within

the object that can also be found in some of the other images. Key points represent local neighborhoods of

pixel groupings in areas of an image with large changes in intensity in all directions (e.g., corners), and

ideally are distinct and can be located within other images regardless of changes in scale, rotation and

brightness. Once detected, information about those key points including a unique identifier, and their

location in image space are stored in a file that is associated with the image that they were found in. Finally,

an algorithm is used to match each of those key points with their corresponding points that were also found

within other images.

B. Camera Alignment

The next step uses the key points to estimate the location of the camera at the time each image was taken.

This process is sequential and starts by finding the two images that contain the most co-registered key

points. Given the X, Y locations in image space of each key point and by assuming that all viewing rays to

the optical sensor of the camera were straight and intersected at the time the image was taken, the Z-location

for each key point can be estimated using trigonometry; consequently, this also provides an approximate

location of the camera at the time the second image was taken relative to the first. This process is repeated

for each additional image, estimating the location of the camera for subsequent images relative to those

preceding it. However, due to refraction, and imprecise key point localization and camera calibration

techniques, an error accumulates for each additional camera; camera locations are refined with a bundle

adjustment algorithm, which uses projection matrices to simultaneously optimize camera and 3-D point

locations.

C. Sparse Point Cloud

Key points are projected into 3-D space to form a sparse point cloud, which primarily serves as an indication

of how well cameras were aligned (Fig. 18). Further refinements can be made to the point cloud by

removing any points that are considered to be outliers as determined by their reconstruction uncertainty, re-

projection error, and projection accuracy.

43

Fig. 18 – The sparse point cloud generated from the 2180 aligned images. Each key point represents a

corresponding location found within two or more images (i.e., co-registered), which is then projected into

3-D space. The sparse point cloud serves as an indicator as to how well the images were aligned, but it is

not used directly to create the dense point cloud in the following step.

D. Dense Point Cloud

This point cloud is then densified by creating depth maps for every pair of images, which determines the

location each pixel should be in 3-dimensional space (Fig. 19). Each point in this dense cloud is assigned

with an X, Y and Z location, as well the color components (i.e., RGB values) averaged from the pixels in

the images that it originated from.

Fig. 19 – The dense point cloud generated from the depth maps created as a result of the images being

aligned. By estimating the relative location of the camera when each image was taken, trigonometry can be

used to create depth maps for pairs of images, thus giving the pixels within each a location in 3-D space.

E. Shaded and Textured Mesh

From this point cloud a triangular mesh is created using the Poisson surface reconstruction algorithm (or

some similar variant) to approximate the surface of the object being modeled (Fig. 20). This mesh is made

up of many elements (vertices, edges, faces, etc.) that also act as data structures storing the associated

attributes such as location, color components, normal vectors, light reflectance values, and texture

coordinates.

44

Fig. 20 – The shaded mesh created from the dense point cloud. Color is provided to the mesh by assigning

the color component values found in the pixel indices to the corresponding elements making up the mesh.

The texture or, “UV” coordinates represent the mesh in two dimensions, which conceptually can be thought

of as flattening or unfolding the 3-D model to form a 2-D image. Through UV mapping, portions from the

source images that were used in the reconstruction process are mapped onto the 2-D representation of the

model creating what is referred to as a ‘texture atlas’; note that these textures are different from the color

components and instead consist of groups of pixels in the shape of a triangle that are grafted from the source

image onto the atlas. When the texture atlas is applied to the mesh and represented in 3-D it forms a textured

mesh and is often used for display purposes (Fig. 21); typically, the underlying mesh and the dense point

cloud that were created in the previous steps are what are used for making precise measurements during

various spatial analyses.

Fig. 21 – The textured mesh created from the images that were used in the reconstruction process. Unlike

the point clouds and the shaded mesh, the appearance of the textured mesh does not come directly from the

color component values of the pixel indices. Instead, groups of pixels that are thought to best represent an

area of the 3-D model are taken from the images and grafted onto it.

	Automating the Boring Stuff: A Deep Learning and Computer Vision Workflow for Coral Reef Habitat Mapping
	Recommended Citation

	tmp.1614868203.pdf.L20uE

