514 research outputs found

    Computer aiding for low-altitude helicopter flight

    Get PDF
    A computer-aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generated algorithm based on dynamic programming, and a head-up display (HUD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor symbol. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission waypoints that minimizes threat exposure by seeking valleys. The pilot evaluation was conducted at NASA Ames Research Center's Sim Lab facility in both the fixed-base Interchangeable Cab (ICAB) simulator and the moving-base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, and the U.S. Air Force. The pilots manually tracked the trajectory generated by the algorithm utilizing the HUD symbology. They were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world

    Helicopter human factors research

    Get PDF
    Helicopter flight is among the most demanding of all human-machine integrations. The inherent manual control complexities of rotorcraft are made even more challenging by the small margin for error created in certain operations, such as nap-of-the-Earth (NOE) flight, by the proximity of the terrain. Accident data recount numerous examples of unintended conflict between helicopters and terrain and attest to the perceptual and control difficulties associated with low altitude flight tasks. Ames Research Center, in cooperation with the U.S. Army Aeroflightdynamics Directorate, has initiated an ambitious research program aimed at increasing safety margins for both civilian and military rotorcraft operations. The program is broad, fundamental, and focused on the development of scientific understandings and technological countermeasures. Research being conducted in several areas is reviewed: workload assessment, prediction, and measure validation; development of advanced displays and effective pilot/automation interfaces; identification of visual cues necessary for low-level, low-visibility flight and modeling of visual flight-path control; and pilot training

    Technical Workshop: Advanced Helicopter Cockpit Design

    Get PDF
    Information processing demands on both civilian and military aircrews have increased enormously as rotorcraft have come to be used for adverse weather, day/night, and remote area missions. Applied psychology, engineering, or operational research for future helicopter cockpit design criteria were identified. Three areas were addressed: (1) operational requirements, (2) advanced avionics, and (3) man-system integration

    Aerospace Medicine and Biology: A continuing bibliography, supplement 191

    Get PDF
    A bibliographical list of 182 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1979 is presented

    Rotorcraft In-Flight Simulation Research at NASA Ames Research Center: A Review of the 1980's and plans for the 1990's

    Get PDF
    A new flight research vehicle, the Rotorcraft-Aircrew System Concepts Airborne Laboratory (RASCAL), is being developed by the U.S. Army and NASA at ARC. The requirements for this new facility stem from a perception of rotorcraft system technology requirements for the next decade together with operational experience with the Boeing Vertol CH-47B research helicopter that was operated as an in-flight simulator at ARC during the past 10 years. Accordingly, both the principal design features of the CH-47B variable-stability system and the flight-control and cockpit-display programs that were conducted using this aircraft at ARC are reviewed. Another U.S Army helicopter, a Sikorsky UH-60A Black Hawk, was selected as the baseline vehicle for the RASCAL. The research programs that influence the design of the RASCAL are summarized, and the resultant requirements for the RASCAL research system are described. These research programs include investigations of advanced, integrated control concepts for achieving high levels of agility and maneuverability, and guidance technologies, employing computer/sensor-aiding, designed to assist the pilot during low-altitude flight in conditions of limited visibility. The approach to the development of the new facility is presented and selected plans for the preliminary design of the RASCAL are described

    Evaluation of the usefulness of various simulation technology options for TERPS enhancement

    Get PDF
    Current approved terminal instrument procedures (TERPS) do not permit the full exploitation of the helicopter's unique flying characteristics. Enhanced TERPS need to be developed for a host of non-standard landing sites and navigation aids. Precision navigation systems such as microwave landing systems (MLS) and the Global Positioning System (GPS) open the possibility of curved paths, steep glide slopes, and decelerating helicopter approaches. This study evaluated the feasibility, benefits, and liabilities of using helicopter cockpit simulators in place of flight testing to develop enhanced TERPS criteria for non-standard flight profiles and navigation equipment. Near-term (2 to 5 year) requirements for conducting simulator studies to verify that they produce suitable data comparable to that obtained from previous flight tests are discussed. The long-term (5 to 10 year) research and development requirements to provide necessary modeling for continued simulator-based testing to develop enhanced TERPS criteria are also outlined

    Some data processing requirements for precision Nap-Of-the-Earth (NOE) guidance and control of rotorcraft

    Get PDF
    Nap-Of-the-Earth (NOE) flight in a conventional helicopter is extremely taxing for two pilots under visual conditions. Developing a single pilot all-weather NOE capability will require a fully automatic NOE navigation and flight control capability for which innovative guidance and control concepts were examined. Constrained time-optimality provides a validated criterion for automatically controlled NOE maneuvers if the pilot is to have confidence in the automated maneuvering technique. A second focus was to organize the storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan. A method is presented for using pre-flight geodetic parameter identification to establish guidance commands for planned flight profiles and alternates. A method is then suggested for interpolating this guidance command information with the aid of forward and side looking sensors within the resolution of the stored data base, enriching the data content with real-time display, guidance, and control purposes. A third focus defined a class of automatic anticipative guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles and to address the effects of processing delays in digital guidance and control system candidates. The results of this three-fold research effort offer promising alternatives designed to gain pilot acceptance for automatic guidance and control of rotorcraft in NOE operations

    Helicopter Handling Qualities

    Get PDF
    Helicopters are used by the military and civilian communities for a variety of tasks and must be capable of operating in poor weather conditions and at night. Accompanying extended helicopter operations is a significant increase in pilot workload and a need for better handling qualities. An overview of the status and problems in the development and specification of helicopter handling-qualities criteria is presented. Topics for future research efforts by government and industry are highlighted

    Flight evaluation of a computer aided low-altitude helicopter flight guidance system

    Get PDF
    The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission waypoints that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system

    Study of helicopterroll control effectiveness criteria

    Get PDF
    A study of helicopter roll control effectiveness based on closed-loop task performance measurement and modeling is presented. Roll control critieria are based on task margin, the excess of vehicle task performance capability over the pilot's task performance demand. Appropriate helicopter roll axis dynamic models are defined for use with analytic models for task performance. Both near-earth and up-and-away large-amplitude maneuvering phases are considered. The results of in-flight and moving-base simulation measurements are presented to support the roll control effectiveness criteria offered. This Volume contains the theoretical analysis, simulation results and criteria development
    • …
    corecore