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Abatxm_

A study of helicopter roll con_ol effectiveness based on

closed-loop task performance measurement and modeling is presented.

i Roll Control criteria are based upon task marglnt the excess of vehicle
task performance capability over the pilot'b task performance demand.

i_ Appropriate helicopter roll axis dynamic models are defined for use with

_ _ analytic models for task performance. Both near-earth and up-and-away

j large-amplitude maneuvering phases are considered. The results of
in-flight and moving-base simulation measurements are presented to

support the roll control effectiveness criteria offered. Volume I

contains the theoretical analysis, simulation results and _riteria

development. - Volume II documents the simulation program hardware pm
;"_ software, protocol and data collection ezE.-rts. . '; ....'
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STUDY OF HELICOPTER

ROLL CONTROL EFFECTIVENESS CRITERIA

VOLUME Z

I. _OURD AND INTRODUCTION _..

This report describes the work conducted by Manudyne Systems, Inc.,

for the U. S. Army Aeromechanice Laboratory and NASA Ames Research

Center under Contract NAS2-11665.

A. Purpose of Study

The purpose of this study is to determine a rational basis for

helicopter handling qualities criteria with regard to roll control

effectiveness for maneuvering. Such criteria are intended to be of use

first to the military in specifying rotorcraft design requirements,

second to the designers in tailoring a vehicle to its iRtended missions,

and finally to both groups in the developmental testing phase.
J

A central theme in this effort is the establishment of the

dependence of roll control effectiveness design criteria on given flight

tasks and mission flight phases. Considerable effort was expended in

defining closed-loop task performance characteristics for discrete

maneuver flight tasks on a task-by-task basis.

|. Baak_round

The present helicopter handling qualltles specification,

MIL-H-8501A (Reference I}, has been in usa since 1952 with a revision in

1961. An analytical review of this epe_ificatlon was made in 1967

(Reference 2) but no changes were made. Presently the Army and Navy are

underway with a systematic effort to develop a new general specification

O0000001-TSB13



for the handling qualities of military rotoraraft (References 3 and 4),

The effort has built upon the £deas_ techniques, _nd technology

developed by the fixed-wing community, as well ec utilizing the

available experience with current helicopter specifications and V/STOL

criteria (e.g., References 5-8).

In developing the new specification, the existing data base has

been used to the maxlmumextent possible. It has also been necessary to

supplement this data base by new data obtalnedunder the auspices of

this and other programs (such as References 9 and I0).

Roll control effectiveness has been _eco_zed as an important and

fundamental aspect of rotorcraft handZingqualitiss, and the decision

was made to support this study in order to gain better definition and

understanding of design specification needs. However, the methodology

applied here is not limited to the roll axis and can also be used to

approach other axes of control and aspects of handling qualities.

Total control effectiveness required consists of the sum of control

requlrsd to trim, suppress or recover from external upsets, and to

m_neuvsr. The amount of control required to trim is determined by the

designer using analytical models of the design configuration and

confirmed by flight test. The amount of control required to suppress or

recover from upsets is not obtained as directly and requires a knowledge

i_ or estimate of the disturbance source. This aspect of control

effectiveness is closely tied to small amplitude, short-term response.

" The amount of control required to perform given maneuveEs has lacked

hi methods for analytical definition but may be the driving factor in -

i large-amplitude control
usage.

_- This study has concentrated on examining the need for roll control

effectiveness to support a variety of important hel_copter maneuvers.

i This has been done in s manner which all_ws a degree of generalization

,4

_7, 2

'j
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]_ in approaching flight tasks and maneuvers beyond those studied directly.
_ In fact it should be understood that the specific maneuvers which a_e

i'_ considered in this study are intended only to be representative of

[_i general classes of flight tasks or maneuvers. There may be special

cases where it is necessa_ to examine other specific flight tasks or

,_ flight conditions in order to extend or modify the results presented

__ here•

i 2. CEitezia and Specification Development

The handling qualities criteria and specification development

_' process is a ma_or issue in this study• There is a calculated effort to
2.._'

_' perform this process in a rational manner wherein the operational needs

;_. are quantified and serve as the basis for required vehicle capabilities•

Specification development has traditionally been carried out in two

ways• One has been to simply take stock of the characteristics
.- possessed by existing vehicles in order to set standards for new ones.

_-" This was apparent in early civil airworthiness standards and military

_ specifications (e•g•, References 11 and 12) A second more prevalent

._ approach has been to perform systematic flight or simulation experiments

_'i wherein pilot opinion has been used to establish useful boundaries and
_,_ criteria. This latter approach has formed the basis of refined versions

:_" of specifications sucl, as References 5t 13, 14..j

•_ One notable handling qualities study was the flight-test based

:_ determination of armed-helicopter requirements cited in Reference 15.

This involved the use of fairly realistic tactical flight maneuvers with

_ exleting flight vehicles. Boundaries were _et for short-term response

?. characteristics which seem to remain reasonably valid today.

i?.

i_ Unfortunately, neither of the above approaches has resulted in a

good analytic understanding of how mission _erformance factors really
A'

3

'%

!
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)
may dictate design characteristics. This study has concentrated

on

-- improving this situation and establishing a general procedure for

approaching handling qualities rsqulr_ments in a more deliberate and

rational manner than has been done heretofore.

N
3. New Apl_oaches to _14.g Qualities Researoh

-- A fundamental feature of this approach to specification development

is in the quantification of flight task and maneuver performance in a

form--compatlble with traditional analysls of vehicle flight dynamics.

Thus handllngquallties can be quantlfled in terms of the net difference

between vehicle capability and task performance demands.

Manual control theory (as presently summarized by Reference 16)

serves as an important basis for quantifying and explaining control

i effectiveness needs, but has traditionally been focused more on pilot
control strategy than on defining the task, per se. The distinction

between "task dynamics,, and "pilot-" or "vehicle-dynamics,, is important.

As illustrated in Figure I-I, "task dynamics,, represent the overall,

_" lumped, closed-loop pilot-vehicle combination. It _ppears useful to

examine thl8 aspect in contrast to either the pilot or vehicle

individually because of the potential simplification and the relevance

of the task itself.

In mathematically modeling the dynamics of flight task execution,

one of the importa_lt features ks Ehe presence of "discrete maneuver"

effects. This refers to the non-continuous behavior of the pilot in

switching from one task to another or in performing one task via a

series of several discrete commands. Discrete maneuver behavior ks

nearly analogous to sampled-data control operation. Reference 17

describes early work in addressing such effects in helicopters.

4
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__ Figure 1-1, Block Diagram of Ptlot-Veh£cle-Taek System.

The analysis of discrete maneuver tasks is not
necessarily more

- difficult than continuous tasks. Discrete tasks can be portrayed using
_4

-," oonventlonal feedback control block diagrams and Laplace trensfor_
.q*

.& operators Thls will be discussed in considerable detail in connection

i with the pilot-in-the-loop theory presented in Section ZI. The
, methodology for the approach is based on applications to complex Navy

flight tasks given in Reference 18.

B, V£ews oE Ranufactuzars and Uses
_, During the oou:ie of this study a number of individuals

. representing both helicopter manufacturers and helicopter users were

_ contacted. Their respective views on helicopter handling criteria were

._ 5
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solicited along with requests for appropriate data and relevant

experiences.

I. Needs of M£J.%taEF Users

Military users are concerned with procuring rotorcraft which are

effective in caEz_ing out their intended missions. This is a difficult

process because each new aircraft development usually involves an

_dvancement in vehicle performancem increased difficulty of misslonsm

and use of new or improved pilot-asslstance systemSo In short, the

lessons learned in a previous generation aircraft may not be sufficient

for designing the next. Therefore, it appears valuable to establish a

means for generalizing vehicle response requirements in terms of mission

requirements to pez_it extrapolation to new flight conditions and

mission performance requirements.

Reference 19 represents a good suR_a=7of how the military views

the role of handling qualities specifications and the current status of

helicopter specification. There is an emphasis on the use of handling

qualities specifications as design guides and the usefulness of

concentrating on characteristics that influence basic configuration

design such as static and d_mmlc stabilitT, end moment and thrust

control power.

In the case of roll control effectiveness, the desire to

incorporate the capability for air coL_at maneuvering (a relatively new

mission for helicopters) in the next gene=st_on of attack and scout

helicopters (e.g., the LHX family of light helicopte=s) raises questions

about the adeq,_acy of previous speci_icetions. It seems unwise to base 1LHX requirements solely on the air comber flight experience with present

e
i, elrcreft such as 0H-58, AH-I, end AH-64. Yet there is little to use as

w
a basis for extrapolating to a new level of performance. Further, it is

not known whether human limits exist even if the vehicle were to have d

i

J
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i'/

i i 9_eatly enhanced capabilities.

While there is an interest in air combat by the Marine Corps, the

_ Navy regards shipboard operation as a critical mission. Reference 20

I states that hover control power criteria are inadequate for variations
in both mission and vehicle configuration•

2. Cm_ewmw o£ Designers and Nanufa_ers

!
_._ Rotorcraft designers and manufacturers are concerned with

successfully producing flight vehicles capable of their intended

missions but doing so with sufficient latitude in choosing design

i solutions. There is a fear of over-speoificati¢)n or unnecessarily
ruling out viable system design_.

!4

In general, the design of roll-axle control for flight 18 based on

i consideration of trim and maneuver requl:ements. The cross-slope
takeoff and landing maneuver is seen as a particularly orittcal design

point• There 18 considarabla attantton being devoted to the con_ol

_" power requirements for aerobatic maneuvers associated with air-to-air

combat •

-" One designer points out that combinations of flight conditions can

present especially interesting and diffiuult demands on the level of

control available For example in one roll controldestgn noJ

deficiencies appeared until a flight in which the pilot performed

stmultaneo',aly a decelerating, tufting flare through transition airspeed

+'" in a cross wind. All available roll control was used in this case.

i.:.-; Another designer believes that it is the maximum effort collision

"_ avoidance maneuver which, if planned for, would set the most

:,, conservative standards for overall control effectiveness. Other views

j on this are that unde: such conditions, • pilot would simply use all the
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control that is available and that there is no eat value for •uch •

maneuv•r anyway.

Reference 21 addressee helicopter large-amplitude maneuvering from

• nanufactureres viewpoint. There i8 • major concern over how the

customer defines maneuvering flight performance and thus sets

requ:L_ement8.

The use of equivalent systems models for expressing aircraft

characteristics has been applied to fixed-wing aircraft (References 22

and 23]. Some mmufaoturers believe that such an approach _or

helicopter hand:Ltng qualities is not appropriate, however. The n_Ln

8hortco_Lng cited is the lack of important rotor-related dyns_Lcs. For

example, the t_adLtt£onal first-order lag roll response txansfer function

(which may be useful for fixed-w_ng a_planes) does not include rotor

l_Lp-path-plane lags wl_tch are normally visible in helicopter roll

response. Other d3nls_Lc effects which can play a role in handling

qual£1_Les are rotor lag modes and possibly pylon structural modes.

Co Teaha.£mt._ &ppr_

This study addresses the roll cont_ol requirements for maneuvering.

The need for basic design cr£ter£• is recogn£zedD but there 18 also •

belief that the p_ootss of criteria development should be improved and

made more rational than £n the past. Thus the resulting technkc•l

approach cent•ins titres major slesmnt8:

(1) Theoretical treatment of the dFnamlc8 of the vehicle and the

pilot.

(2) Analytical examination of the flight tasks and naneuver8

involving roll control effect£venene.

8
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(3) Experimental study of vehicle and task features and parameter•.

The purpose of tl_Ls •ppro•ch i• to provide • bro•d t•tional

found•t.ton for the ¢r£ter£•j t_e quantkt•t£ve def£n£t_Lon which £• needed

for ongo£ng spec£f£c•t£on development, •nd• means for •naly_£c•lly

• ppro•ch£ng new •£tuatkon• and design need• in the futur•.

1 • 2_moretl-_al Development

Th• vehicle-related theoret_Lcal development portion of this study

£s concerned w£thunder•tandkng those feature• of helicopter• which are

involved An providing or detracting from roll control effect.tvene•s.

The contrLbut£ons of the rotor, fusel•ge, and flight control• ar•

examined zt•=t£ng vith det•£1ed model• •nd enclkng with concise models

which sunnar£ze the fundamental system dynamic•. One aspect of the

technical approach As to work with math models which •re sample enough

to provide insight £nto cause and effect relationship• while at the same

tkme sufficiently tempi•t• to provide • reason•b1• lev•l of •ccuzecF in

predicting h•ndling qualities effect•.

For example, it i8 shorn th•t the main contribution of the high

frequency rotor dynamic• to roll •xle handling qualities effects c•n be

effecti,ely modeled using only • first order flapping eqnat.ton. Such •

model adequately repr••ents • tracLttkonal second order regressing

flapping mode but ignore• th• coning and advancing flapping modes which

are usually out•ida the frequency ranges of interest.

&erodynanAc effects involve • combination of rotor hub dynaaAcs and

coupling with the fuselage. In fo_ard flight the major aerodynamic

contributions to roll control ere the vertical position of the hub

relative to the center of gravity, the amount of flapping hinge offset,

end any direct flapping restraints such as • spring or rigid hub design.

In 8£deward flight the dihedral effect of the rotor system can become

9
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s£gn£f£cant but can also be modeled An a eLmple and concise manner.

Following an exa_Lna_Lon of the primary vehicle dynamics, the

second area of theoret£cal development As concerned with the

p£1ot-Ln-the-loop effects. This £s studied using manual control theory

and dLtscrete maneuver modeling techniques. This accomplishes two

th£nge, f_st the roles of the LndAv£dual vehicle dynamics are put into

the proper operating context and second a methodology As defined for the

flight task analys£a part of th£s study whLch is presented An Section

Ill.

The most fundamental pAlot-£n-the-loop effect As the control and

regulation of bank angle using lateral cyclic control. This loop £s the

most effectkve An revealing potent£al handLt£ng qual£tAes problems. The

relative success in applying a manual cToss-over model An th£s loop can

reveal PXO tendencies, the need for lead compensation and the potent£al

destabLlAz£ng effects of higher frequency vehAcle d_ma_Lcs.

The next aspect of the manual control theoretical analysis As the

cuter-loop control, and £s closely amsocAated with the particular flAght

task being analyzed. Outer-loop control detex_Anes whether the s£de

veloc£ty degree of freedom of the helicopter £e important. Further the

outer-loop control sets the basic bandh,£dth requArement_m fo= £uner-loop

bank angle management.

A methodology is then proposed re: the analysis of task performance

An discrete maneuvers. For each task a "task signature- As def£ned by

plotting maneuver data An tem of peak roll rate ver,ua attitude

change. The features of this signature are then quantitatively def£ned

In tam of amplitude and aggressiveness parameters. A clear audAt

trail is then established between the key lateral vehicle design

parameters, awash-plate authority and rotor hub type, and closed-loop

task performance capability.

10
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Finally: a review of past and current handling qualities criteria

le presented. The philosophy behind criteria such aJ time to x degrees

and roll attitude change after x seconds Is detailed.

2. _k and Maneuver AnaAysia

The main purpose of analyzing flight tasks is to obtain a

methodology for quantifying operationally useful flight tasks and

maneuvers. Further. flight task analysis plays a c=ucial role in the

development of roll con_ol effec_Lveness cri_eria. The approach to

flight task analysis is aimed at the quantification of flight task and

maneuver performance features and the connection between those features

and vehlc_.eresponse characterlstlcs.

Kneed on theoretical development of the methodology for describing

flight tasks and maneuvers, a set of several lateral maneuvers are

defamed. Each of the maneuvers represents a condition whe:e some level

of lateral control effectiveness is required by the pilot. Collectively

thls set of maneuvers covers the range of performance demanded by the

pilot in carrying outs isaiah and flight phase objectives.

As part of this prog:amseveral flight data bases were reviewed to

define pilot-vehicle perfozlNnce characteristics representative of

operational missions. These cloaedoloop task performance

• characteristics can be generally considered to be independent of

individual pilot or helicopter open-loop dyna_4c8. A spectrum of

m4selon scenarios were analyzed ranging from Nap-of-the Earth (NOE) to

_Lr Combat Maneuvering (ACM). Several of these data bases were

generated under the auspices of this program using a UH-1H helicopter

and two experienced research pilots. Other flight data bases examined

include data from the Deutsche Forschungs- and Versucheanstalt fur Luft-

and Raumfahrt e.V. (DFVLR) involving a UH-! and BO-105 (Reference 24).

11
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Those data are presented to define possible task perfo_nce differences

due to rotor hub types. Particularly valuable data from the

Army-sponsored evasive maneuvering flight test program (Reference 25)

are p:esented to indicate levels of aggressiveness and maneuver

amplitudes in air combat situations. Other data include X-22 sidestep

imneuver perfo:unce (Refe:ence 26) end NASA variable stability UH-1H

_l£ghts through a runway slalom course (Reference 27).

3. lbq)azJ.mantal 5J:mlato: XnveaIULgatJ.on

An sxpe:J_nental progra:was conducted using the NASA Ames large

amplitude Vertical Motion SJJulator (VMS) in order to extend criteria

development efforts under controlled con_Lttone. The sJJnulation was run

using a number of pilots with various backgroundsD a variety of

helicopter configu:a_Lon8 and compel system types, and a wide range of

flight tasks and maneuvers.

The basis of the experimental design is to exa_dne the levels of

helicopter roll con_ol effectiveness needed to perform realistic and

crucial flight tasks and maneuvers. The fundamental element of the

experimental design is perfornance of a given flight task or maneuver in

a manner considered realist.to by the pilot. No artificial test

procedures 8:e int.:educed and all measuztments made of the pilot are

non-int=usive.

A review of roll control simulat_ton experiments prior to this

showed a wide variation in results. These variations may be connected

with motion and visual system fidelity as well as task features. An

example of the effects of motion are given in References 27, 28, 29.

The effects of narrow field of view are considerable also (Reference

30). Other simulation effects regarded as potentially damaging include

effective lags and delays associated with digital co_putation and

digital visual systems (Reference 31).

12
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m
There is a calculated balance between the number of pilots,

configurations, and maneuvers run and the general quality of the results

obtained. The most important overall concern is to gain a good

perspective view of the factors involved in piloting, vehicle responsej

and task performance.

k variety of data were acquired in the simulator. Qualitative or

subjective data include transcribed pilot commentary as well as

_t- Cooper/Harper ratings {Reference 32). Pilot commentary is standardized

end structured in a manner to lead the pilot into the Cooper/Harper

rating scale.

Many forms of quantitative data hays been gathered. These include

stored time l_istories of all of the variables involved in the helicopter

! _ math model _s well as a range of performance measurements for the

closed-loop pilot vehicle system. These qudntitative data were expected

to reveal the relat.tonsh£p between task performance and roll control

I:

r effectiveness criteria parameters. A special algorithm was designed toit_i
__ measure _pecific task performance parametersj namely the size of ,_

discrete maneuver excursions and the peek rates developed during each i

ezcursion. Finally dtatlstloal data were obtained for lateral control

excursions. -'

4. Criteria Development

i The philosophy and fundamental ob3ectives of lateral control
effectiveness criteria ar,t addressed. The closed-loop task performance

modeling structure is proposed as the unifying approach to all past end II
present lateral handling qualities data bases. |i

Task margin, the excess cspab£11ty of the closed-loop pilot/vehicle

system over the task demand is proposed an the fundamental handling

13 ,.'
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qualities parameter. This closed-loop performance modeling approach

unifies the concepts of short-term response and control power

requirements and clearly establishes the relationship between key

vehicle design parameters and task performance capability.

Data from the simulation program are used to define closed-loop

amplitude and aggressiveness chaEacterietloe on a task-by-task basis.

Control power results from the simulation are presented in terms of theI°
L

task margin parameter. This approach enables a control power (maximum

roll rate) criteria specification to be made independent of the specific

task in question. The same philosophy is applied to the short-term

. response issue. However, in this case the limited data available from
r_

the simulation did not allow quantitative definition of a criteria.

Finally, t_e current open-loop specification criteria are reviewed

in comparison with the task margin approach. Limitations of the current

criteria are dle_ussedp and tasks which cannot be accommodated within

the current Level I boundaries are identified.

14
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IZo _EORI_ZCAZ, DK'VlI_,OL_IT

The p'r,,UCl:X_eeof this section ie to provide a broad understanding of

the aircraft and pilot dyna_Lcs connected with helicopter roll control

effectiveness. Four general areas are discussed. First the helicopter

roll axis dyna_Lcs are described at various levels of modeling

oomplex£ty. Second the effects of the pilot-in-the-loop are derived

using conventional pilot modeling techniques. Third the methodology £or

discrete maneuver analysis is presented together with an approach to

clearly define the au_Lt Hail between key vehicle design parameters and

task performance capability. Finally, a review of handling qualities

criteria and the philosophy behind criteria development is given.

Ao HOIJ.COl_O.E RC_I1-AziS Dynam:i.c8

The purpose of the following pages is to derive the equations of

motion pertinent to roll axis stability and control for a helicopter

vehlole and to expose the essential parameters which describe vehicle

" performance. The material presented is based on standard forms of

equations of motion. These basic relationships are then simplified into

a general model form whloh lends itself to roll-axls handling qualities

analysis. Finally a survey is made of roll-axle stability and control

characteristics for extstin_ helicopters.

1. lsportant Considerations LnCrJLterla Develolment

There are at least two main conoe=ns in choosing or developing

vehicle math models. First is understanding the role of the math model

in criteria development. The second concern is how to appropriately

tailor the level ¢,f model complexity.

Here the role of the vehicle math model is to provide an

i understanding of the effect of individual design features on roll-axis

!
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handling qualities. Hence there must be a reasonably expliclt .audit

trail,' connecting identifiable handling characteristics to physically

understandable vehicle features.

Another role of the vehicle model is its use in pilot-in-the-loop

analyses. Hence the model must contain those features involved in

manual control and reflect response characteristics over the spectral

range important to the pilot.

The third role of the model is to serve as a framework for

identification of sys_emparameters.

The issue of model complexity is crucial. Most model forth of

helicopter equations of motion or stability and control characteristics

are too complex to allow a good understanding of design features. It is

necessary to strike a balance in model complexity in order to adequately

represent important effects and yet not inhibit reasonable understanding

of those effects. Also, it should be recognized that model complexity

alone does not provide the panacea for model fidelity and vaL%dlty. In

fact, model complexity in a 811nalator application can precipitate

unwanted side effects such as excessive computational delays and lags.

2. Rotor-BodyModels

A variety of model forms ate available to describe helicopter

flight dynamlos, but in view of the above considerations, some forms are

more appealing and useful.

The purpose here is to show the evolution of an appropriate _odel

form starting with a comprehensive but overly-complex form for most

purDoses in examining roll-ax_.s handling qualities. The discussion

indicates modeling alternatives leading to the choice of a streamlined

pri_v analysis model used for subsequent flight task and maneuver

16
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a_lysis.

The chief deteL_Lnant of in-flight rotorcraft rol_-axis dyr_Lcs is

the rotor-body comb_ation. Motion involves the combined rotor flapping

and coning _eaponae modes along with coupled roll-rate damping and

side-velocity damping modes.

Rotor-alone Response. The first step in exa_Lnkng the rotoz-body

¢ombLnaJ_on is to view the rotor alone. Tb£e aids in understan_Lng

where the rotor response modes occur with respect to the general

spectra_ range of interest.

Reference 33 provides a comprehensive derival_Lon of rotor tip-path-

plane equations of motion and the components of the response with

respect to various rotor system design features. These include hinge

placement, h_nge compliance, pitch-flap coupl£ngj and the proportion of

aerodyna_Lc to blade tnsr_Lal forces (Lock number).

The general assumptions made An Reference 33 are:

(1) Rigid blades in bending and torsion.

(2) Small flapping and inflow angles applied to strip theory.

(3) Reverse flow ignored, compressibility and stall disregarded.

(4) UnAforn inflow and zero t_p los3.

Each of these assumptions is pez_Aasible for the purpose of gaining an

understandAag of general response features.

The complete set Qf tip-path-plane equations of motion are given in

kefsrence 34. For the special case of hover and zero pitch-flap

coupling the equations of motion art summarized in Table 2-1. Note that

frequency is normalized with respect to rotor angular velocity, _. The

thzee ds_rees of freedom include coning, longitudinal flapping, and

17
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lateraZ fZapp£ng. F£nally the two input states are roli rate, p, and

ZateraZ swashpZate defZect£on angZe, _.
s

Zmportant response features are 8unmar£zed £n Table 2-2 as

parl_LaZZy factored numerate= and denoatnator polynomtaZs. Note that the

second order root representkng conlng £s:

{I,.__.2

Flapp£ng conta£n8 two sets of second order roots w£th the same

settling frequency (6 --- _ _n ) as conkng but subatants'Lally dkfferent

natural frequenc4es. It can be shown that the poles 1£e on a c_rcle

w£th rad:Lus P. A set Of second order zeros occurs at the con.J,ng poles.

F£nally, the renat_Lnq zero £n the £1app£ng response to lateral cycl£c

swashplate ks very ne_ly equal to the common settl£ng frequency.

F£gu:e 2-1 summ_c£ze3 the a.'rangeaent of flapp£ng poles and zeros.

Note that the regress4ng fl_pplng wbkch zepresents the lateral

p:ecess£on of the rotor £s the doaknant low frequency response node and

£s very nea:ly fLrst order. The advanc£ng flappLuq £s a nutat£onal

effect on the t£p-path-planc or£entat_Lon and occu:8 at about 2_.

F£nally the conkng mode £e essent4ally cancelled by a cont_ol zero.

It £s £mportant to conclude t_et the complete transfer L_nct£on

shown here closely resembles a S:Lmple f£rst order 18g to frequenc£es

well beyond T_/16 red/set, i.e. about 10 red/set.

Coupling th..ee Body t_othe.._. Rotor. The next step £s to demonstrate the

effect of coupl£nq the body to the rotor shaft. Th£e :Lnvolves

cons£derable compl£cat£on £f fa£rly exact exprees£ons are used to

represent the eppl£ed forces and no_ents. Referenc- 35 descr£bes the

body-ax£8 forces end moments acting at the hub based on the Reference 33

math model. Teb_a 2-3 £ndlcates Just the hub s£de force and rollln9

19
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rant exl_•ssIons _.tch _re thmmelves fo_d.dable.

Some s£mpl_'Lf£cat_.on Is po•slbl.e by coM£d•rJ.ng only the •ffecta of

Usrust •c_Lng nonu_l the tJp-patl_-plane and the •pplJ, ed ro_£ng monnt.

TabZe 2-4 presents the overall equa_Lorm of motJLon vith this reduced

number of couplAnq earls.

Figure 2-2 from Reference 34 _Lllust_•tes how th• rotor-body

coupl_Lng •ffects the original rotor response modes. It £8 clear th•t

the naAn effects •r• mu_Lfested in the regressing fl•ppAng r•sponse

w.des, further, nearly the sane effects would occur _8£ng an equAv•lent

f_Lr•t-order l•g co model the bl•d• flapping.

Higher o_der and hAgh•r frequency coupling •fleets must be

• cknovlodged, however. Instead of approximating th• y-force •s the

thrust force tipped through the 1•torsi fl•pping angl•, b ls, the more
complete for_ contains may more tom. A number of the •d_Lt£onal

terms represent direct •erodynamAc feedi_cks. N•v•rthsZes•, th•

dominance of the regressing flapping mode per•Isis •nd all other t4p -

path-plane nodes reaain small.

3. prsmry anys xbz

The •bove discussion 1••d8 to the choice of th• relieving model

form to represent Important roll-axis handling effects. This node1

opens • vide spectral range vhlch Includes el•sale81 hovering cubic

effects In the lay-frequency spectral range and rotor regressing

fleppLno effects An the high-frequency range. This typLc•lly covers

frequencies from 0.5 to 15 r•d/sec--a range adequate for most handling

qualltles cassia•rations not concerned with vibration.

the model equation| of motion &re suJnirited In Table 2-5. The

state variables are later•l flapping angle, his; roll rate, p; and side

23
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velocity, v. The four model coefficients lncludQ tip-path-plane lag, _,;

the partial of flapping angle with rmmpect to side velocity, av ;

flapping stiffness, Lbls; and the gravity constant, g. Table 2-5 lists
all basic transfer ftmot£o_ n_wersto_ and deno_Lnator te_s _,d

important approximate factors relationships. Finally in Tnbla 2_6 ther_

is a breakdown of the vehicle configuration features which cont_ibute to

the equation of motion coefficients.

Several important features of helicopter roll response should be

noted. First, the general response can be viewed as second order, not

f_st order as impaled by quasi-static models (L.eo, as assumed in

References 36 and 37). The effective rotor tip-path-plane lag,

represents a kind of control actuator lag. For low flapping stiffness

(e.g. teetering rotors) it cont_ributee a control lag in series with the

body roll dynamics; for high stiffness designs the flapping and body

mode couple to give an oscillatory roll mode. Next, the effective roll

rate sensitivity per unit sw_shplate deflect.ton is a function of tip-

path-plane lag and nearly equal to _/16. Further, this relationship

appears to be highly l_nsar and, therefore, can be used to sstJ_ate

mu_Lmwaoontrol power baaed o_ full-th_ow control authority.

An estimate of unauomented vehicle bandwidth can be obtained from

the above modal and ks plotted in Figure 2-3. Note that it £s nearly

linear to the square root of flapping 8t£ffneas, L_l s.

m

4. 8urvmy of Kx£st.tJag Helicopters

It i8 instructive to view the characteristics of a variety of

existing helicopters. This i8 done by systematically applying the model

font and method for estimating coefficients presented previously.

Table 2-7 lists the basic characteristics for each vehicle followed

by computed values of various factors. Although these are estimations,
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they are nevertheless based on a consistent set of assu6pttone and

computational methods. The following Is a brief discussion of some of

the more notable features of this survey.

Vehicle Size. A wide range of vehicle size £8 spanned from the light

Hughes TH-55 (Model 269) to the Sikorsky CH-53D transport helicopter.

_oto__rHubTypt. The designs represented Include teetering, articulated,

and rigid hubs. Both conventional single rotor designs as well as

tandems are Included. All are described An text8 of the model

previously presented. This requires _dmt the rigid rotors be described

In terms of an equivalent hinge offset and flapping spring.

Lock Number RPM Product. One notable feature of nearly 811 the designs

As then arrow range of the Look number-RPM product (all An the vicinity

of 220). Since this Is the main deteL_knant of effecl_kve tAp-path-plane

lag, it can be concluded that wade experimental variations An tJ_is

parameter are of ii_tle practical Interest. An Inspection of the

eat.lusted tAp-path-plane bream frequency shows a range of only 10 to 14

rad/sec.

Effective Flapping Stiffness. Three components of this are estimated:

that due to the hub relative to the center of gravity "L_ )' that due tols

hinge offset Lbl" s and that due to an effective hinge flapping spring
L(s) • These component8 are plotted An Figure 2-4. The magnitudes vary

bl s
substan_tally (from about 15 to 80) thus reflecting a wade range of

vehicle short-term respunse. This suggests that flapping stiffness

should be a primary experimental variable with regard to configuration.

Dihedral Effect. Thls feature varies over a large range, but when

viewed in terms of the natural frequency of the hovering cubic there i8

a _uprisingly narrow range. This represents another feature which, when

viewed in terms of practical designs, appears to be of little interest

33
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in terns of expez:inental variation.

Comparison w£.___ _ Orde......_rModels. Table 2-8 lists a set of transfer

functions computed for higher order flappi,_g effects. This shove first

that the advancing flapping mode is far above the range of £ntezeet to

handling qualities. Next the table _ndkcete8 the goodness of a simple

approximation for the effective tip-path-plane _ag.

Summar_ OfROII-Ax_s Response Trends. FigUre 2-5a shows the locations

of dosd_nt short-term unauguented response modes for a vo_£ety of

helicopters. For low values of flapping stiffness, there is a

conventional f_st-order roll damping mode. For large values of

flapping stiffness the f_cst-order pole Jo_m with the tip-path-plane

lag to form • dead.ant second order response mode. This t_end is

summarized in Figuza 2-5b. An additional feature noted is loss of

damping for roll-rate feedback augmentation systems where there is some

significant lag or digital delay. This general effect As discussed in

detail in Reference 38end is backed up by actual flight measurements

involving variable stability helicopters. The main impl:Lcat:£on8 of

these trends for the study conducted here are the indication of vehicle

response ranges that are of practical importance to helicopter design.

This is reflected in the experimental simulator investigation as

described in Section XV.

B. Ef£eat8 of the P_Ltot-in-the_Loop

The following discussion describes the effects of basic pilot loop

closures on the vehicle flight dynam4cs. This provides a theoretical

basis for subsequent analysis of flight tasks and maneuvers.

1. lnaez-Loop Contxol and Re_alat.ton of Roll Attitude

The most fundamental role of the pilot is to stabilize and control
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roll attitude. Without an automat4e roll stabilization system there is

no natural roll attitude preference or tattering noment (except for vary

woak ground effects). Beyond that, roll attitude comund i8 8 basic

support4ng tlemont for most latorel fl4ght path tasks and naneuvert.

I generic view of _mk-anglt loop cloeuret It thou in Figure 2-6

for two cater, one having a 8nLtl 8mount of roll danping (flapping

Jeff feels) and the other a large amount. Note that this includes both

the short-tern response (consisting of roll denp£ng and tip-path-plane

leg affects) and the lov-froquen_ hovering cubic (phugo£d-_tke effect).

The general effect of an eta.feuds loop cloture i8 to tt_i_Lze and

deep 811 response nodes vith£n the bend_dth l_JELtations of the

_creft. Where closed-loop retponse demands exceed the vehicle

I_ndvidth at in Figure 2.6a0 the pilot must begin to supply significant

amounts of "lead compansa_Lon-. This is equivalent to the £nclnsion of

roll rate in the basic attitude feedback end nornally hat an associated

cost in terns of pilot vork_oad.

The net :at_t of an ettLtudt lo_p Is to provide an attitude

contend support function for a nunber of basic flight teaks. The

response of this command i8 determined by the tightness of the attitude

loop and mint be qu_ck enough to satisfy the demands of the outer-loop

f_Lght tnsk. This task ucLght be con_ol of pomition_ side velocity,

ihead£ngj or possibly lateral acceleration.

2. Outer-Loop Coatro.t of VLto_Lty and Poeit£an

b

As _ndioeted abQvt, the control and regulation of lateral velocity i
!and petition 8hou_d be viewed in the context of an inner roll attitude

loop, This It not only realistic but a18o serves to simplify the
q

essential equations of notion and response characteristics. *q
q

I
,i
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The .cont_ol. for the outer-loop task ahould be vie_md am the

IJmor-loop bank angle aom_nd (not the letere_ cyclic input, p_r so).

The vehicle dymm_oe £_portant to the out_r loop are therefore

represented by the eret4o of numoratore" of the outer-loop task v_rieble

(e.g. : yopoait£0n or turn rate) and bank angle. _roquently thi8 Is

approximated well by alaple k4nesmtic relat40nshipa (see Reference 37).

The import, me _Jq_l£mmt_Lona ere tba_ the pilot demands on bank angle

cmlll:rol (4.e., roll coatrol effect_voneee) depend heavily on the nature |

mof the outer-loop tmLko If thc--e Is no cute loop teJke roll control

and reg_et.ton con be far lees erue:Lal then If there Is a _Lght lateral

pos4t.too holding teSko To be more general, ro_l control roq_trmmnta

ere dependent upon the outer-loop task. thither the task should be well

quant_tf4ed 4f quant-Lficet4on of the rol_ cheractariat4c8 are expected.

c. _e nnneuvez' msd 5quJk_ _ty _deLLng

1. n:l,Nzeta mJ.ght nsneavmrHode_tng

p41ot-_-theoloop analye4s As made acre relevant by cons4derel_Lon L

flight naneuvers rather then vieving only long-tern j
of d4screte

I
cont_Lnuous tracking Seeks. The follo_ng discussion reviev8 some of the q

aspects of discrete-nsneuver nodel4ng and analys48 techniques.

A discrete maneuver 4a one 4n v_Lch there Is a s4ngle ldentAfAable

command. Th4a applies not only to the outer-loop task, but also So the

inner support loop. A lateral sidestep As an example of a discrete

naneuver lnvolv4ng a d4stAnct, 4dent_Lfiable corned In lateral pos£t40n.

However, 4n She process of perfonLtng th48, there wi_l be • 8er4e8 of

two or more d4ecrcte commands of b4u_ angle. The first change In bank

angle starts the lateral tranalalr£on, and the second 48 usually 8 bank

in She opposite d:Lrsct4on SO arrest the s£devard velocity. A tl_Lrd

,_. bank-angle command So nearly level attitude might then be made in order

40
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to madntaln the new commanded position. Each command might typ4cally

occur every tJ_ea or four seconds, and the closed-loop response to 8

command need be only 8bout one half cycle of the donlr_nt node of the

bank angle task. F_nally, bank angle commands nay not be very per4odlc.

Sees of these features 8re il_ust:sted in a tlalng diagram of an actual

sidestep maneuver 8e shown _n Figure 2-7. The team -tJ_lng dlag_aa" l•

used because of the resemblance to t_e sequence of commands of • digital

coI_ter softy•re tJJ_tng sequence. The outer-loop lateral posit.ton

comMmds cozTespond to 8 klnd of slav duty cycle while the inner-loop

bank angle commands occur much more frequently. Hovaver, a typical

flight tesk may involve only 8 few cycles of commands, and it Is

therefore necessary to use response identification techniques vhich vJ.11

work over a fairly short sample.

Discrete maneuver behavior can be better analyzed 88 8

"sampled-data- system than as a t.ra_Lt_Lonsl continuous control system.

However, the analysis of any elngled_sc:ets maneuver occurrence can

a_tll be done in conventional cont.tnuous cont_ol terns.

One of the benefits of v£evLugwanual control as a series of

discrete maneuvers As that each maneuver elemant can De considered

separately. There is not the need to treat long sequances of cont.:el

activity in order to 8c_Leve an£dent£ftcatlon of system pa:aaeters and

porfo=manca. _n fact, assuming a series of discrete maneuver activity

to be continue, us behav£or can load to signlf£cant distortions and

obscure or 8vL_age out _mpoz"cant events. Th£8 £s especially t:ue if

there are dwell period• during one flight task when the pilot is perhaps

attending to another flight task.

The analysis of di:crste maneuver 8ct£vity can be 8 relatively

simple proce:•. On# method for handling ln&Lvidusl ehort-termd:Lscrsts

maneuvers is illustrated in F£gu:e 2-8. If the features of 8 roll

maneuver 8_• to be studied, the first step £8 s_mply to obtain time

41
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I_,i! history infomt£on vl_ch _n_Lcatas the magnitudes of roll rate and

! cor_dponding bank angle change. Alternatively, this can be expressed

'_ on a phase-plane port_ra£t in which wee two £uportant features can be

, clearly seen- (1) The net bank ang]Le change and (2) the pekk roll rate
i

_i_ during that change. F_nally, these tvo festurss can be cross-plotted in
e

a discrete maneuver performance dkagram to yield a concise summary of a

i-5, _

;_ single discrete _neuver task axecut_Lon.

•_ Roll rata versus net bank angle change can be £nte_eted £n at

P
_._ l_aet two ways. Firsts as expla£ned :Ln Reference 17, the proport:Lon of_ q

...._ peak rate to the net change An displacement £8 propo_ona to

_.; closed-loop natuzal frequency or apl:_OX:Lmatt l_8nd_dth. For a broad

range of closed-loop damping ral=Los, the band_dth As about t_v£ce therattle of peak rate to the net cosmmd. Table 2-9 defines thks

,.. rslat_Lonshkp for an ideal second order 8ysten. Re£erence 39 provides a

;_:_': £%wther _t£scuss_on of thks relatJLonsh£p. The £npl_L_tt_on8 of systa

ii closed-loop bandvkdth on the dksc_ete maneuver performance dkag_am _eclearly illustrated £n Figure 2-9.

Uskng thks method a unkque task signature can be constructed for

each maneuver. The maneuver l_Lme history data 4s examined and for each

att_Ltude change identified the a_so_iated peak roll rate As detern£ned.

__.j These d£s_ete maneuver data point pa_s a_e then plotted on the

__" dkscrete maneuver po_:formancs (pea_ roll rate versus att_Ltude change)

• " dkag_am to form the task signature. FLgu_s 2-10 411ustratss this_:_ process for an air co.bat track._ng task.

•.o quantify the task signature two metrics have been chosen: the .
amplktude and the aggressiveness. The anpL'Ltude £s rspresented by tvo

parameters ths nmxkmum peak rol._ _ate, PPK' and the maxkmum commanded

bank angle change, A_c ; both parameters are shown in Figure 2-1 1. The
m_x

_" aggressiveness parameter £s a measure of the _x_mum closed-loop

_" bandw£dth sought, .by the pilot £n making prec._.sion attitude con_=ol.

i!i 44
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This is quantified through identification of an equivalent second order

modml for small attitude changes; the resulting parameters are the

identified natural frequency and damping ratio. This approach allows

definition of a limit o£ task demands unique to each maneuver, This is

illustrated An Figure 2-11.

2. Def2n2ag _ Temk l_E£OZlmnce Capab21ity

The objective is to define an upper bound on closed-loop task

performance capability for given vehicle dynamics. In helicopter

lateral control the keF design parameters are: swashplate authority, A1._

and rotor stiffness, Lbl s

The mL_J_um task performance capabLtity is assumed to correspond to

sax_mm bandwidth operation in the closed loop. This is associated with

a switching contxol strategy on the part of the pilot. For the class of

vehicle dynamics involved here it ks proposed that the maximum

_. (bandwidth) capability can be defined using a family of square wave

inputs of different dwell times T 1 and amplitude equal to the swaehplate

authority, k .

The appropriate class of vehicle dynamics are:

SL
bl$ K

'_ r _ P ( S ) : :

S2. 1 S t s S2_

,_. The response characteristics to a square wave input are defined in

Figure 2-12, Because the low order model involved closed-form solutions
r', can be obtained for those characteristics, these are summarized in Table

2-10.

For an articulated rotor helicopter, with roll rate capability of

approximately 17 deg/sec/stick inch, the appropriate dynamics are:

i
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D (S) x 736.0
AI| S2• 10.3 $ • 45

Th• result4ng naxlmum bandwidth Capab£1Lty (fron Table 2-1 O) e•n be

computed •a • functlon of svsshplet• authority, A , the results ippee

£n Figure 2-13,

It £s noted that the highest banchrldth capability (,,,ppK/A_) £8

asmoe_atsd _lth precision attitude control. _.nsl_Lcal expressions for

U_L• feature can be obtu_Lned by 8pplteat_Lon of lisle theory to the

rslatkonshlp• of Table 2-10. The resulting express40ns _ce g4ven _n

Table 2-11.

The above predicted _ o•pab/£Jty is based solely on ro_l

dy_,umJ.c response. The IxLlot esn however •ugnent or attenuate t_ls

response by usJ_g _Lhe(Lral effect (vJ_t pedals), The p41ot 18 thus able

to exceed the above capability _ndtusted when necessary go do so.

D. I_termZ Comllnco]LE£/_lLtLvemommCrJL_ Reviem

I, Purposes of Baadllag CrJLter£•

The purpose of handling criteria •re to serve as specification

stanclm:ds, design cjutdes, and demonst_:a_Lon objectives for des:L:able

closed-loo_ handZing qualities. Th=y take the fogm of convenient

aetrics suanarJ.zing complicated characteristics whlch •fleet manual

piloting tasks. They represent • specification of what constitutes good

design practices based upon past design attempts. In general the bed,

of tnforaatton on vhlch the specification £s written provides _nadequate

coverage for the complete flight envelope and £s not always consistent

w_th£n itself.
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laa_Lt_ng Cha.-iotexd_Ir.tcs foz Sqmu_ Wan Znl)ut Response for at

Seoond Order System

Tlrl_ to Maximum Roll Rate

_. ( ¢

Tme)¢ =

w._/I . ¢2

Time to Maximum Attitude Chan_

11
TO =

wn_* I . ¢2

Peak Roll Rate/Attitude Chan(jl_

"! " 't/*waexp(J - [_ - tan - 111P ,, I ¢2 I ¢2
pk =immm

Am -Cn
I + exp(_ )

v|-¢-
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Significant probles_ in specification re-definition are encountered

when the vehicle role changes aignif_cantly from paat applications. The

evolution of the qraed helicopter in nap-of-the-earth and air-to-air

combat ecenoxioa has provided a challenge to the p_eaent revision

attempt of MIL-H-8501A which was last updated in 1962.

2. S_sz'y of Roll Coatzol Sf£am_tLvwnes8 Cr£tez£a

Handling qualities specifications and design guidelines pertinent

to the operational requirements of helicopters have been reviewed. The

six sources reviewed are: MZI_H-8501A, Helicopter Flying and Ground

Handling Qualities (Reference 1); Edenborough and Wernicke,.Control and

Maneuver Requirements for Armed Helicopters (Reference 15); MIL-F-8785C,

Flying Qualities of Piloted Airplanes (Reference 40); NIL-F-83300,

Flying Qualities of Piloted V/STOL AircTaft (Reference 5); AGARD-R-577,

V/STOL Handling (Reference 41); MIL-H-8501A Proposed Update, Mission

Oriented Requirements (Reference 3). A summary of the lateral control

effectiveness requirements appearing on these sources is given in Table

2-12o

3. Criteria Specification PhJ_Loeophy

As noted in Table 2-12 there is a preference for open-loop handling

criteria over closed-loop, this is because of the presumed vagueness and

variability of pilot involvement. Most criteria are stated in terms of

response to step inputs which is well suited for demonstration of

compliance.

The criteria address the issues of long term and" short term

response, controller sensitivity and time delay issues. The time delay

problem has become important throu3h the widespread use of digital

flight control systems. The response issue has been addressed primarily

by • search in the control powerD _max D versus roll dampingD LpD domain.
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Figure 2-14 illustrates the diversity of Lso-opinLon cu:ves in such

investigations as a function of task and investigation.

The long term response or control power criteria is usually

specified in teems of time to x degrees, t:: s or attitude change in x

seconds, _(x), following maximum eon_ol input. The arg_uaent for

adoption of these paramters is they provide a better "fit" to

iso-opinion data boundaries than steady-state roll rate for example.

The short term response criteria address how quickly a commanded

rolling motion can be obtained., The metric normally used is the

flrst-order roll time constant, _R' or equivalently the roll damping?

derivative, -Lp . A lower bound exists on Lp due to the lead

equalization limits of the pilot.

-._|,_ The proposed 850 IA update (Reference 3) defines the _aneuverlng

,__ It30). One major issue at the present time is the appropriateness of 30

i_ deg to maneuvering requlz_nents and whether a steady state roll rate

h ' requirement may be more appropriate. Fixed-wlng maneuvering criteriaI)

] foe ground attack and alr-to-alr combat specifications use t30 , t50' t90

_, and even t360 . These criteria based upon large attitude changes

_, basically constitut_ a steady-state roll rate specification.
,

] The u_Lllty of t30 versus steady-state roll rate will be discussed
,, in depth in Section V following p_esentatlon of simulation results.
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J

7
' )

' 1

.t
I

,}
) 58

O0000001-TSF14



!T*

_'_ I. Corltss and Car_co, UH-1H, Slalom, NASA rM-84376, Ref 27

2 Edanboroug,endWerntcke,NO[,Ref 15
i_' 3 PousOar, VSS BO-105, Slalom. Informal Transmittal to,-. MonudynaSustarns.Inc..fromDFVLR
_.: 4 Foye,Hover.10,0) movinqae#e Simulation,NASATND-792
_-- 5 Twecott and Sommer, IFR Hover, In-Flight, Large Single Rotor
,, Heltcoptlr, NASA TN D-3600

Note Dote for 4 onO5 above Is taken from BUI6 MIL-F-03300
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ZZZ. FLIGHT TASK AN,_.YSZS

The purpose of this section is to provide an understanding of the

operational context of the pilot-alrcrafl system. First, lateral

maneuvers are classified and described in general terms. Next actual

flight examples are analyzed end flight task analysis results are

presented.

A. Classification and Desc_p4uLon of Lateral Maneuvers

The fundamental classes of lateral flight tasks and maneuvers are

defined in terms of:

• Roll attitude regulation.

• Bank-to-turn maneuvers.

• Bank-to-translate maneuvers.

• Ground contact flight tasks.

Each of these classes represents a different type of closed-loop

response and influence of the vehicle dynamics.

1. Roll Attitu4e Regulation

This category of lateral task applies only to the task of basic

bank angle control and regulation. It is assumed that there Is no

support role for an outer-loop task. As such the general utility of

this task alone is limited and normally not crucial.

One example of this kind of task is manually controlled flight

where course or heading is essentially unregulated. Thl8 particular

example is not generally of interest, thoughm because only very loose

roll attitude regulation is required. _amely, the objective is no lore

than rlLnJ.ng "right side up'.
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A mote crucial va=iety of roll attitude te_lation is the tracking

of a lateral flight director command bar for the purpose of lateral

guidance or weapon delivery. Here there can be sufficient urgency to

induce fairly tight, aggressive tracking of commanded roll attitude.

This task was examined An the simulator experiment using a series

of bank angle command steps and is discussed in Section IV. It is

partlculaEly interesting in terms of its distinction from tasks

involving an outer lateral control Ioog.

The roll attitude task covers a wlde spectral range. -The high end

is associated with the general level of aggressiveness, and the _ow end

by the trimabil_ty or accommodation of unattended operation. In general

the amplitude of roll attitude control and regulation tasks is small

elthoughj strictly speaking0 barrel rolls or aileron rolls are included

in this category.

20 Bmnk-_.-TurnMmnmuvorm

In this manuuver the objective is to control or regulate heading or

course using a bank-angle support loop and maintaining near-zero side

velocity or lateral acceleration. The benefits are maintenance of a

deck-level specific f_rce vector and the use of normP.l acceleration _

achieve a change An lateral flight path. _n 2act bank-to-turn maneuvers

permit the use of the maxlmumevailable normal acceleration for turning.

Where the turn is coordinated, the tightness of the turn is a direct

function of co_ndsdbank angle.

The bank-to-turn maneuver is useft_ only where thece is a

:'.asc_L_Ic f=_ar_ v......s''" cor_on&_. U_&_thilem. vilots often

e:_lb_t coordinated banked turns even while taxiing at speeds of only

•bout 25 kS. The rsamon fez applying the technique at low speed may be
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i

l_riaarily comfort. At higher speeds the use of bank-to-turn maneuveringpredonknates wAth few exceptAons.

i
-%" In a bank-to-_ranslate maneuver the 1Aft vector As tAlted to

°: achAeve a s4deward acceleral_Lon component but _Lthout a sAgnAfAcant
_-._

• change An headAng. The maneuver is moat common An hover but can also be

effectAve in forward flAght. _n general the bank-to-t_anslate maneuver

-_ does not 4nvolve (or peruAt) large 4ncreases £n thrust. _hu8 4t 4s

"_ e88enl_Lally a lg maneuver (unlike the beak-to-turn).

%,
_ The most t3rp£cal use of bank-toot_rauslate 4s during precAston hover

:_ above the ground. The counterpart longAtudAnai tschnAque As

Z_. stJmltaneously applAsd for fore-and-aft pos£tAon. In thAs condA_ton the

_: chAef rigid body dynaa£cs are deecrib:d by the classAcal "hover cubic"

_'" which Anvolves a hAgher frequency roll t4ae constant and a lover

frequency oscAllatory phugoAd-like mode. In thAs study the effects of

the tAp-path-plane lag er_ added to the hover cubAc (thus nakAng £t

really a "hover quartAc').

_ In forward flight the bank-to-translate maneuver can be used vhere

._ there As s desAre to aaAntaAn a steady headAng. ThAs could £nclude a

,_ "v4ng-low" approach vhere lAne-up As regulated by bank angle and headAng

held cnn_tsnt or an eAr-to-ground gunnery task vhere heedAn9 As used to

_,... sam and bank angle used to control lateral position,

'_"' Even An forward flAght, the roll-exAm dynamics for

Dark-to-transAa:e maneuvers ere s£aAlar to those st hover 4ncludAng the

__ lover t_equency osc411story node. The "hover cub£c" 4s no. limited toJust hover as demonstrated £n Table 3-1 based on data from Reference 36,

-_, 6 3
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4. Ground Contact Flkght Tasks

Th£s class of late:el maneuver includes cross-slope takeoff and

landing and ts radically dtffe:ent from the in-flight t__sks described

above. Here the pJ.tot ts mo:e concerned w4th control of the rotor

tip-path-plane attitude then with fuselage attitude. The main factor £n

g_-ound contact tasks is that the ao_Lon of the vehicle 4s const:a£ned by

contact with • skld or wheel. In effect the essential canter of

:station £s about the landing gear rather than the center of gravity.

As a result the dymmlcs of the controlled element are radically

different.

Cross-slope takeoff end l_g e:e cons£de:ed cruclal maneuvers

but are hazardous end involve the same dynamkc cheracter£st£cs of the

Ndyl_llalC :ollover" condition. The execution of the task depends upon

the mount of ground slope end is ltakted by the amount of lateral

fleppJ_g evaAlable An the rotor system.

Statically, the roll cont_:ol should be capable of producing • level

tip-path-plane while the fuselage is aligned with the cross slope. In

add£tl_n, there shou£d be adequate margin of control to stabilize the

statir_slly unstable rotor-body system in the presence of any upsets

du_£ng the t_ans£t£on from ground contact to Li_borne flight.

a. rLLght _ta

The maneuvers considered Ln t_La sect/on _s_:esent those fo= which

flight date are available as well as those which were studied in the

simulator experiment. F£=st, measurement tech_Lques are described.

Thks As followed by an examination of actual flight date obtained.
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1. nemNzemmt

14easurenent techniques used in this study were li_Ltod to those

which were enon-JJIt_usive, to pilot perfOZlance. In general, flight

data are 1JJLtted to te-a history plots of state variables associated

with lat_el maneuvers _nclud_ng rol1 attitude, roll rate, lateral

cycLtc, and heading. In some cases lateral position data ere avaLlable

from radar tracking.

Al1 the maneuvers 8tud£od were considered to be discrete, thus the

discrete maneuver analysis method discussed in Section II is used.

2. rl£ght Data Obta/ned

The flight data bases l185:ed in Teals 3-2 have been analyzed in an

effort to define lateral con_ol usage requirements in operational

flLght phases. As shown an in-flight evaluation was conducted under the

auspices of this progran using a UH-1H helicopter. However, a dlverse

collection of data from other sources has also been reviewed. Each

evaluation date base is detailed belay.

NASA/Az_ UH-I___._HFlights (lennud]rne Rol_.__lControl) Two expe_ienced test

pilots flew a NASA Ufl-IH through a series of aggressive turns, slalom

couEse8, lateral sidesteps end lateral 3inking maneuvers. The objective

was tO observe the magnitude and aggressiveness end possible variations

in piloting tectmlque anong these various maneuvers. Each maneuver Is

described along with • summary of data obtained.

Turns of 50 deg, 130 deg, and 180 deg were performed at low

altitude 30-40 ft (g-12 n) end at a speed of 60 Kt. The grass edges of

the runway were used an vlsus_ cues, and both left and right turns were

performed. Figure 3-1 illustrates the 130 deg end U-turn maneuvers as

they were flown at HALF Crow's Landing.
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Tib.ll.o 3-2. Nimouver rl:t.ght Detit nalos

Alrr.rMt Ilenevver Remarks

__:nv uH-IH so° en4130° Tmu 6O_t. 30-40'(g-n2m)
05mmdipm Low mltltuclo U-turn dJ4)tt, 30-40" (9-12 m) AGl.
roll control) 210• turn at lliUtuQ 60 ft, 1000"(305 m) AGi.

Slclewerli trlmlmUon i4ovlr, 15-20" (4-6 m) AGL
lit-line IIIolllm 4150"(137 m) IGec*rqi. 60 & 80 kt
JInlfln8 _ 30 kt, 30-40" (g-12 m)AGL

IM:VI.R UH-ID& "U.S. slalom" 60 kt. IOO' (30 m) AGL
m-105 =6m'm_ llilom" (|ink)

_ghl turn

NATC/AVSCOIq I_l-_. S¢18110rSmlnevver 0-310 cMtebase
UH-60o
S-76, &
AH-!

NAOC X-22A Llltlrll sidestep Nooiptlmlc tu_ulence

NASA/Arlnv UH-IH "U.$. sllllom" _000"(305 m) spacing,60kt,

(Corllss and (variable Lp endLiA vorlatlonsc_c_) ,tab0;,tV)
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The data obtained for the turn :aneuvera are summrlzed in the

•Lacrete laneuver performance plots in Fi_e 3-2.

A 210 degree turn waa flown at an altitude of 1000 ft (305 m) and

60 Kt. The target bank angle was 45 deg, and both left and right tur_m

were evaluated. These era summarized in Pi.rure 3-3.

An in-line slalom (Figure 3-4a) was perforled along ILrkers placed

approx/Jatel__4SO feet (137 a) apart along the aide of the runway.

P./_apeeds of 60 and 80 kt were used, and the _t£tude was nikntakned at

30 to 40 ft (9-12 n) AGL. The result_ are plotted in FigUre 3-5.

A lateral jJ_.tng maneuver defLned by dimensions similar to the

D_'4I_ "German Slalou= was flown around runway markers. The speed was

epprox_ltely 30 Kt and the altitude 30 to 40 ft (9-12 m). Data awe

sunswrized in Pi_e 3-6.

& sldevard tra_slatlon (sidestep) maneuver was flown along a runway

edge as shown in Pigure 3-4b. The sidestep commands varied over 40, 80,

and 160 ft {12, 24, and 48 n). A nearly constant heading was held and

altitude was naknta£ned at IS to 20 ft (4-6 n}. Data describing the

egillty are plotted in Figure 3-7. In addition, data describing the

outer-loop lateral translation lineuver are given in Pigure 3-8.

D___._ Flight Data _o research pilots performed the following tasks

using both the UX-ID teetering rotor helicopter (essentially Identical

to the UX-1H) end the BO-10S rigid rotor helicopter. Data from the

flights described in Reference 24 were supplied by the D_rLR for

analysis in this study.

A "U. S. slalom" maneuver (based on that flown in Reference 27) was

flown around 3round markers spaced 300 meters apart as shown in Figure
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3-9e. The pilot minimized the lateral displacement from imaglnarypoles

located at the ground markers. During the task airspeed and altitude

were maintained at 60 kt and 100 ft (30 m)p respectlvly. The reaults

are plotted in Figure 3-10.

A "German Slalom", or lateral Jinklng maneuver, as shown in Figure

3-9b was flown around two ten meter high obstacles placed 350 meters

apart and offset 10 meters from the course centerllne. The pilot

followed the course centerllne as long as possible until forced to avoid

the first obstacle. The second obstacle was then handled similarly. An

airspeed of 60 kt and an altitude of 30 ft (9 m) were maintained. Data

are shown in Figure 3-11.

High-g left turns were performedj and the data are shown in Figure

3-12.

NATC/AVSCOM D-318 Data Base As a result of the program d@scribed in

Reference 25, flight data for maneuvers resembling "horizontal scissors"

air combat maneuvers were obtained from the U. S. Navy Test Pilot

School. The maneuver is described in Reference 42 and an abstract of

this is shown in Figure 3-13 . An annotated plot of flight paths is

shown in Figure 3-14 from data presented in Reference 25. Flight data

for a variety of helicopters are shown in Figure 3-15.

NADC X-22A Data Base Reference 26 presents the results of an evaluation

of a translational rate command control system for VTOL shipboard

landing tasks using the X-22A ducted-fan VTOL aircraft.

One element of the evaluation required the pilot to track a pad

which made discrete 25 ft (7.5 m) lateral Jumps every 25 to 30 8ec. The

task was conducted at altitude with reference only to a head-up display.

V_st of the tests were conducted with the aircraft forced wJth synthetic

turbulence representing wind-over-deck conditions in Sea State 5_
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TASK"PerformHorizontalScissors

COtiOITiON:inonArmWhelicopterwithonACMIP/UTorACI'tquoltfiid
pilot,VItC,stor _ovo tO0ft AHO,withodeslinatndbogeyoircmft;
performhorizontalscissors.

STANDARDS:

i. CleorthedesignotsdtrolninOorso
" 2.Positivecommuntcottons

3.EntrUoltltudssodesired
4,EntryOIropend*/- IOKnots
5.rteintoinproperseporstion

• 6.Correctentrypoint
7.Bankenolenotto exceed60deoreesor-I0 limitsfor oircroft

cunfiOurotion

DISCUSSION:ThehorizontalscissorsIs odefensivemlmeuverwhich
normM|Usll_id beovoided,it conbeusedIf oirspeedendnose-toll
soperottondoessot permit(mothermoneuvor.

DESCRIPTION:

I. O06[Y-inthetoll choseposition

2.fRIENDLY-Incronsotheroteof turnintotheottocksruntilhe
oversllootsor movesoutsideyourturn,Asheposses,executeo
horlzuntolrsverool(herdturnIn theoppositedirection).Repeot
theroverooleochtimetheopponentcrossesyourfllOhtpothto
theout,_ldeof yourturn. If Umlnit behindtheenemy,ottempt
to turntnpheNwithhimendmoreoverintothe toil chose
position.

F:l.gu.l:e 3-13. ZD,bis_act: of 8o:Liiiio:8 Haneuv,= f:om the RoCaz'y

NJ.ng _ CoJbat Naneuvez':Lng Guide
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•'J however data presented here were obtained without eynthetic turbulence.

FigUre 3-16 shows a typical time history for the pad tracking task,

,_ and Figure 3-17 shows a summary of the outer-lQop and inner-loop

performance. The maxlmumrates are significantly lower than those found .
in the UH-IH lateral positioning data, which was a product of the design

goals for the translational rata control system.

NASA/Arm_ (CoEliss an_dCarico) Dat..aBas.___eA brief review of the results
of the flight data from the roll damping and control sensitivity studies

;_ reported An Reference 27 was made. Typical maneuver performance data is

i shown in Figure 3-18.
_, C. Cbaz_ct;erJLsti_ of F14ght Data
t_

i_ The following observations are appropriate based upon the above

flight data presentations:

Rol.___Irat....eellmitin_ is apparent An most maneuvers. The existence of a

roll rata limit is clearly seen in the slalom maneuver (Figures 3-5 and

3-10) and the scissors air-to-alr combat maneuver data (Figure 3-15).

The lateral sidestep is the only maneuver where bandwidth requirements

do not reduce with maneuver amplitude; a near straight-line relationship

exists between peak rate and roll attitude change. It should be noted
however that this maneuver is of small amplitude, less than 40 degrees

u

_" roll attitude change.

_ Table 3-3 defines the peak roll rate characteEistlcs for the flight -

data presented, most are limited to 40 degrees/second or less. The

!% helicopter may be capable of substantially greater roll rates yet the

_ pilot does not exploit them. In certain cases the roll rate limits

• ?_ 92
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Table 3-3. Lateral Haneuver Flight Data Cl_m_acterist£ue

NASA/Wmy'IL_-lH(_nuom,_,,iIStralght-l,nesla,m.. . 6080I _ '
Oontrol) ,50" Intersectionturn 60 46

'130" " " 60 30
I 30 ft LateralJlr_ 30 40
Sl_step Hover 37

OFVLR UH-IO Straight-lineslalom 60 25
BO-105 : • • • 23
UH-ID , '_)rma_slalom' 47
BO-IOS • • 32
UX-IO& Ht_- 9 turn 33
BO-10S

NATC/ SclssoraManeuver - 40
AYSCOM (VariousHe._pters)

NN)C X-22A Stdestep Hover 18

NASA/Mmy UH-IH Slalom 60 20
(CorltssandCartco)

!
I1'

,. result: from safety limitations _nposed in the evaluation such as in the

.-_ alr-to-air combat engagements. However_ this limiting characteristic is

i also seen in the absence oE constraining safety restrictions such as in- the slalom maneuver o

4

_ In section IX the audit trail between the key ._atsral vehicle

-_ design parameters and closed-loop task performance capability was

established. The phenomemon of roll rate limiting thus has signlficant

implica*.ions on the swashplate and flapplng stiffness required to
achieve desired task psrfozmancs.

i
-_,
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Effects of Rotor Stiffness The DFVLR data aomp_rlng the UH-ID and

BO-I05 helicopters in the U.S. slalom (Pigure 3-I0) and the German

slalom (Figure 3-11} are interesting, The UH-ID is characterized by a

modest level of roll damping with some quickening provided by the

mechanical stabilizer bar. The BO-I05 has considerably faster

short-term response as a result of the directly applied flapping moment

at the rotor hub. The data indicates that the two helicopters were

operated with comparable maneu-_er performance levels in the evaluations.

The only significant difference was the peak roll rate demand of 40

degs/sec for the UH-ID in the German slalom while the BO-I05 used 30

degs/sec. There may however be a dlfference in pilot technique in task

execution between the BO-I05 and UH-ID hellccpters. This is suggested

by the differences in relative clustering of the discrete maneuver data

points between the two aircraft.

D, Implications for Si_la_Lon Program Deslgn

The analysis of the flight d_ta was affected prior to the

simulation phase to provide a rational basis for naneuver and 7ehlcle

configuration selection. This analysis has provided _he opportunity to

define a collection of maneuvers which cover the range of performance

demanded by the pilot in carrying out mission and flight phase

objectives.
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IV. EXPERIMENTAL SIMU'r._TOR INVESTIGATION

A. Simulation ObJectlve_ and Experimental Design

1. ObJec'_Lves

The analysis presented in Sections II and Ill provides a rational

basis for a general approach to the lateral effectiveness issue on the

simulator.

Section Ii of this report quantified closed-loop task performance

characteristics in terns of the aggressiveness and amplitude parameters.

The relationship between the key lateral design parameters and these

closed-loop task performance characteristics was clearly established.

The two parameters fundamental to this study are: maximum available roll

rate (a control power issue) which affects the amplitude characteristic,

and vehicle bandwidth, i.e.,rotor type (a short-term response issue)

which affects the aggressiveness characteristics in the closed loop.

These two aspects can be exemlned independently and under controlled

conditions in the simulator.

The analysis of the flight data (Section III) provided a rational

basis for the choice of tasks to be simulatedD and most importantly

provided a one-to-one comparison capability between flight and

simulation. To achieve this objective the NASA/Army evaluation tasks

flown at NALF Crow's Landing (see Section IIl) were used tQ construct a

Computer Generated Imagery (CGI) data base for use in the simulation

program,

Furthermore, the basic helluopter analysis of Section II showed

flapping stiffness to be the sole determinant of response dynamics.

This 8enslbly limited the number of configurations to be examined during
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the program• The flight data analysis of the UH-ID and BO-I05

helicopters provided speGific configurations to be evaluated.

Up to this point there has been no mention of higher augmentation

and response types such as rate and attitude command systems. Much of

the structure of the proposed MIL-H-8501A update (Reference 3) addresses

the requirements for higher order response types under high workload

conditions requiring unattended operation. So a certain proportion of

the simulation was set aside to look at the task performance capability

of these higher order response types for the spectrum of flight tasks

chosen.

Fizmlly, there was an interest in studying the effects of pilot

variation on task execution and the variety of pilot opinion with

zespect to vehicle configuration changes and task.

These ambitious and multifaceted objectives were at variance with

the limited time devoted to simulation, however. An occupancy period of

six weeks was allotted to this study of which about two were devoted

mainly to checkout and refinement of test procedures. The remaining

four weeks were divided between examination of near-earth, small-

amplitude maneuvers and up-and-away, large amplitude maneuvers. The

latter catagory was predominantly air combat maneuvering.

As illustrated in Figure 4-I, the main dimensions of the

experimental design were the flight tasks and maneuvers, the vehicle

configurations, and the pilots. Each of these plays a fundamental role

in determination of the required levels of roll control effectiveness.

In order to provide a uniform guide tc the conduct of the

simulation an information package was prepared and distributed to

participating pilots. This information package is documented An Volume

II of this report.
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"" _ rtt _m

-" -"so,,.."_ T_.,_ _.I ...,,,'_._f

.'-

-_- Figure 4-I. Prlusry Dimensions of the Experimental Matrix.

_J

2. Flight Tasks

"°', The array of flight tasks considered for the simulator experiment

_ spanned the full spectrum of operational maneuvers, however not all were

_ possible to execute in the simulator.

_: The tasks which were ultimately examined are listed in Table 4-Ii.,_ •

These are classified as "near-earths li_4,,ted-amplitud_" and "up-and-

_-'_ awaym large-ampli_de maneuvers,,. Most of these tasks were patterned

after counterpart tasks already performed and analyzed in actual flight.r"

,_ 101
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_1 Table 4-1. Suu_y of Flight Tasks Chosen for SJJnu_a_Ono
J

Ne_-_th Ilmlttbd-smnllh*d_msn_vo_

Llml_-to-tum

In*lineslalomturns

Jl_t_ (Germanslalom)

Sidesteps

.., Precisionhovertngusts

:1 ,FR---,.O

_l_i_ lsm.ne-mmnltt_ m_uvers_., AircombattracktnO

HUObankangletracktng:i
:_ Aircombatfreeengagment

'e

_ The following set of figures reproduced from VoluNe II show the

task defin_tions provided to each pilot participating in the sim¢._ation

program. The vezeions shown here reflect refinements of the task

' descriptions and per_oz_nance standards made by the pilots and engineers

i_ during the simulation period.

:! i'

,_ _02
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Bank-to-Turn Figure 4-2 shows the task description furnished for a

bank-to-tuEn maneuver at a runway intersection, This maneuver was

designed to closely approximate the corresponding task flown at NALF

Crow=s Landing with the UH-IH and discussed in the previous section.

hnk-te-turu renewersvii1 beflovnelongtheedgesof interNctingrunveW.The

pilotsheuldtraituntilthe1rotpmibletimetointtietetheturn,thenepjre_tvelUexecute

it, endrolloutelongtherunvqdefiningthenw¢ourm.Theturningmenewershouldbe

level,¢oordtnetnd,andflwn et¢=mtentspeed.

150'

3. I_INTAINSO'AGL __*10'

4. MAINTAIN60 KTt. 10KT

Figure 4-2. HeadingTuznlqaneuver Dteer_pt_on

103

00000002-TSC05



Slalom Turns. Figure 4-3 _s the task description provided to pilots for

the runway In-line slalom maneuver performed in the simulator. This

also was patterned after the slalom flown at Crow_s Landing.

Slalom turn _!! beflovn,bothate nora|hal:peedof60 ktendetmaximumpo,_ible

speed,aroundpyloMpiecedin thecenterof therun_,tayevery600ft. Minimumrotor

clearanceshouldbematntairmlvhile roundin9pylon. Pilot'seyeheightshouldbeator

belowpylonheightvhtlem|ntetning1we1flight.Theaircraftshouldnotintrudebeyond

therurtveywhiteiir_e_vMlenegotia_n9thepylor_.

I.. FU_LAOEIN, DEOFRUNWAYLINES

21LFORMAX.,SPEED,CLEARPYLOI_BYTIP-PATH-PLANE

• 0. FOR60 KT. CLEARPYLONSBY I O' t ROTOR0tADIUS

3. MAINTAIN50' A01.t I0'

_l_uce 4-3. Slalom Maaauve: DesotipCLon
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J£nk_ng Maneuvers. F£gure 4-4 gives the task description for the

lateral Jlnkt a maneuver flown at Crow's Landing and similar to the

"German slalom". The large obstacles placed in the ¢omputer-geneEated

visual scane were a substantial difference from the markers used for the

flight maneuvers.

JiiktN mNwers _ill beflovn levelat 40 kt aroundol_tocl_ approximately60 ft

,,daleInd 40 ft high. Thenominalflight pith 18the runveycenterltne.H0Etechnique

shouldbeusedkeepingthel op_tutlirmlaxlsofthehelicoi)teralignedwtth thearoundtrack

whileclee_ thepylonswith thetataret minimumdistance.Meinteinpilotageheight

otor belovo_tac]eheight.

'I)IrRFQRI4N4_STANDNtD_

I. CLf,Nt GaSTN:L[SBYATLf,_T ONEROTOR
DtN'RTI[R,REI_INIH8 WITHINTHERUHW/WEDeES

2. MINIMIZ[(XGURSI(]I_FIKR_II"HECENTERI,"HE

rJi.gure 4-4. ,_lJ.xdrJ_g Neneuvez" i)ea_c:lLpt:Lon
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Sidesteps. Figure 4-5 shows the sidestep task description. This also

was flown at C=ow,s Landing but without the CGZ tress which we=e used as

position cues.

Sidutepsviii be_ _re#tvely ste_n_Inehoverconditionendrapidlytrenslet(ng

d_rd toe$1_ifl_lI_itton _th m|n|melover=lint.

TREE

P_RF_ __5

I. PIINIMI_ THEEXP0_JI_ TIME BETWEENTREES

2. LIMITOVER_'I00TTOkE_k_THI_ !O'BEYONDTREE

3. MAINTAIN25' AOLBUTREMAINBEL(M TREE-T0PLEVEL

4. I_NTAINHE/_INIB£ 150_0

i'.
._ _guze 4-5o 8id_ntep _nneuver Des_ip_on

: ;

I ':

?'l
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Bank Angle Tracking. This task consisted of the pilot aggressively

following a Head-Up Display (HUD) ¢ommnd bar and only loosely

controlling airspeed and altitude. Figure 4-6 describes the HUD format

used. Figure 4-7 shows the sequence of roll commands. The roll

attitude command signal was structured along the lines of the discrete

bank angle tracking task used in the Lateral Higher Order System

(LATHOS) fixed wing evaluations (Reference 44). The sequence used was

the same throughout the program. Significant learning effects, i.e.

precognitive pilot operation were not observed during the simulation.

Velocity (Kts) Altitude (?eet)

V 60 H 2000

A1.rplane _7mbol

O-O..,.I
Roll Comman(_ _C " _
Bar

FiguEe 4-6. HOD TEackingTamk Description
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IFR Heading Change. An IFR heading change task was conducted in order

to a_unlna and document a maneuver involving minimal agility. This was

done strictly with reference to standard flight instruments.

Air Combat Trackin_ Maneuvers. The one-on-one Helicopter Air Combat

(SAC) simulation developed by the UoS. Army Aaromechanics Laboratory,

NASA Amos Research Center was used for this task. The de,_ails of the

head-up displays, firing and scoring logic for boCh alrcr#Lft, the NeE

data base developed for the simulation and visual charact_rlstlce are

discussed in detail in Reference 45.

A modification to the HAC target (Red) aircraft allowed operation

in either a manually ten.oiled or automated mode. In the latter case

the target was constrained to constant altitude and controlled by a

series of command bank angles through a desired series of heading

changes. Since the target aircraft is affecting co-ordinated turns

_hEough specified azimuth headi_,g changes at specified bank angles the

timing of the maneuver can be recovered easily using relationships for

coordinated flight. Three automated turn schedules were used; The

command bank angle and heading change schedules are shown in Table 4-2.

3. Vehicle Configura'c:l.ons

The vehicle configurations studied represent a wide r_nge of basic

helicopter rotor hub and alrframe designs and flight control system

types. It was intended to generally limit configurations to those which

would be physically realizable and likely An view of anticlpa_ed design

trends. The fl_,,|htconfigurations used in the simulation program are

documented thoroughly in teems of flight control system parameters,

stability derivatives, trim conditions and dynamic checks in Volume II

of this report. A summary of configuration types and response

characteristics appear below. The classification of configurations is

shown in Table 4-3.
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Table 4-2. Sequence of Target _Lrcraft Heading Change and Bank Angle

Col:mklnds.

i

Trajectory Trajectory I Trajectory 2 Trajectory 3
Element ..,

I (de,)I(,e_)._,o_ ,o, A,o ,oz ..... (decj) (deck) (decj5
b

! 100 45 100 -<5 120 45
2 90 -30 90 30 80 60
3 150 40 150 -40 9G -50
4 80 -50 80 50 30 20
5 60 20 60 -20 100 -40
6 100 -40 100 40 200 60 .
7 40 20 40 -20 120 -40 --
8 180 60 !30 -60 60 20
9 210 -45 210 45 - 0

Table 4-3. Classifkcation of SimULated Veh£cle Conf£gm:atJ.ons.

Basic Helicopter Type
TeeteringRotor

TeeteringRotor+ Bell-Bar
ArticulatedRotor

Rigid-Rotor

Rate-Command/Attitude-Hold
withTurnCoordinationOption

Attitude-Command/Attitude-Hold
withTurnCoordinationOption
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The ARMCOP helicopter math model generally described in Reference

35, and particuls_J_d for the UH-60 Black Hawk (Reference 46), was the

baseline vehicle ussd for evaluation. This helicopter was chosen

because it represents a current generation design and has generally good

roll control charac'crlstios even without augmentation, its articulated

rotor hub represents a configuration intermediate to a teetering rotor

and a rigid rotor.

Basic Helicopter Types. The basic unaugmsnted UH-60 has generally good

roll control characteristics. The pitch and yaw axes, however, require

augmentation to provide a suitable baseline evaluation model. The

minimal complexity washed-out rate feedback design used on the YUH-60A

and reported in Reference 47 was implemented in the pitch and yaw axes.

The feedback transfer functions for this are:

_. _b!s = 0.283 7s
"_ q 7s* 1

"-...._

"'"---. eTR 2s- 042g ,m

--.. r 2s+ 1

During the simulation significant problems were encountered in

hover due to rapidly changing signs in side velocity end the consequence

. of solving flapping equations in the hub-wind axis system. A

modification solved this problem by solution of the flapping equations

in the hub-bed7 axis system. This fix made by Mr. R. L. Fortenbaugh of

Bell Helicopters, Textron is documented in Volume II of this report.

Basic helicopter types were created within the stucture shown in

: Figure 4-8. Rotor flapping stiffness variations were made varying the
,a

i parameter Lbl _ while the lag parameter TL allowed variation of the
b .
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Libeled Inorementol
F_sppm_iStiffness

Llll. -
I'i_ _'IStick Gain

P
I'lodtflclltlon DII _L Roll Rate

Fm'cesund _of EqJotlons( I *()K, Flsppln9
EquotlOnll / of r'lotlo_ -ti Moments

l.ate_l Contr_l

Input., |p,

Ll_;19eaRoll-Rite
Feedback

Figure 4-8. Ba84c HelJ.copter Configuration Parameters

amount of lag applied to the incremental st:ffness. The lagged roll

rate feedback loop (Figure 4-8) also allowed simulation of the Bell

meohaniual stabilizer bar (Bell-bar) found on the UH- I. Four baslc

helluopter oonflgurations were constructed with steady-state roll rate

sensitivity in the range 17-20 degs/seo/stiok inoh. The four

configurations were representative of a teetering rotor, a teetering

rotor plus a Bell-bar (UH-I type)j an articulated rotor (UH-60 type) and

a rigid rotor (BO-I05 type). Table 4-4 defines the parameters used to

realize these configurations.

_ Table 4-4 Basic Hel/¢opter Conf:Lgu.Eatlons "

,.._ Configuration OeecripUon ALI)I| TL Kp Tp G •

I £rtlculote{1Rotor(UH*60Type) 0.0 0 0001 0 0 - 0 0
r-_ 7 Rig|d-Rotor(BO-105Type) 100.0 0 0001 0 0 0 0

I0 Teetering Rotor -30.0 O.O00t O0 O0
15 TeeteringRotor• Bell-Bar (UH-! Type) -24.0 0.000! O.16 30 044

I
-1
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The dominant roll response mode eigenvalues for the configurations

are defined in Figure 4-9. Step input responses to lateral cyclic are

shown for the configurations in Figure 4-10.

.16

Imlk)

?
• -12

"8

10 '4

4'2 4
ReO,_

Figure 4-9. Roll Mode Eigenvalue Locations for Basio Helicopter

Configurations

Attitude Command Response TyPes. One class of augmented response types

investigated was the "attitude-command" or "attitude-command/-

attltude-hold" system. This provides the pilot with automatic attitude

maintenance during unattended operation and a change in attitude in

proportion to lateral cTclic stick deflection.

These response types were obtained using a generic automatic flight

control system stru,=ture developed under the Advanced Digital/Optical
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3.0

LATERALSTICK
2.0

DEFLECTION

(cm)

1.0

I i i I I | | I I i

0
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TIMEFRAMES K,_T
J

25ROLLRATE

(Oegslsec) 20 /.,,,.._......,_
I •.e6
| oe

10

i I • i I i I I i i I

0
0 2 4 6 O I0 12 Id 16 10 20

TIMEFRAMES K,AT

Configuration SWmbol
I

15 .........

AT = b4 msecs

FLgtce 4-10. Step Response for Basic HelLcoptet Conf£guzal_Lorm
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Flight Control System (ADOCS) work conducted by Boeing-retie1 (Reference
_ I0). The structure consists of 'ewe main elements, stabilization

,_ feedback structure and feedforward command structure. Response-tFpe
'I

variation was obtained by using the model-follower concept. The

ii stabilization loops were closed around the vehicle to provide adequate• stabilization characteristics with regard to disturbance. The

feedforward structure wa_ then used to effect any required pole/zero

_ cancellation in the closed-loop model and to generate the required
i!
_ response-type command signal.

' The parameters in the feedforward command generator structure were
_: -

set to yield the configurations shown in Figure 4-I I. The steady-state

_ sensitivity for all configurations was set at 0.25 reds/stick inch in

•_ accordance with the data appearing in Reference 48 for Level I handling

'i_ quali_ies. Table 4-5 defines the lateral feed-forward command

_ generator stucture and the parameter values set for each configuration.

_ A typical response to lateral control for the attitude-command/attitude-

J hold family is shown in Figure 4-12.

, 4

l Wn
,, IRQd/S)3 A12,: Figure 4-I I Attltu_e-CoiRand/

_': Att.tLtude-Hold Configurations

:,,._ Ols) K
2

.! !

:I 2 & g i

'_ 2¢wn,_ •

]
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T_ed)le 4-5

&tl_tt_e Co_d Synt_ P_t_m

Loteral Sttck • •

Input6& PSK13
• To Control I'llxer

• , end$woshplote

ASKO4A ASK14A

Roll RoLe
P

ASKOSA ASKOTA

Roll Attitude
J

ASKeOA

 �ASKOIA

ASKO2A

COMIC. P'Jl(lll ItSKOI& ItSKOZ&diSK04# ItSKOSA ItSK$OA ItSl(O?& dtSKI41t

2 0.40 4 0 1.0 0.?0 2 8 1.65 20 0 6.0

e 063 2.0 22S 2.60 6.53 183 20.0 6.0

I I 053 $.0 2.26 2.60 6.63 ! .e3 200 60

12 0.40 4.5 90 ?2 25.2 1.65 20.0 6.0

13 0.40 !//5 4.0 4.48 ! ! 2 ! .6S 200 6.0

14 0.0 1.0 !,0 0 93 2.00 ! .6S 20.0 6.0
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Loterel Stick Deflectton, 6_4(cm)

5

i

• l 10 i I I i P

0 5 I0 15 20 25 30

• Time (Secs)
-5

Roll Rote p. (dogs/see)
20

0 5 10 15 20 25 30

Time (Secs)
"20

ROll AttituOe. B (¢leg$)
20

i i

o s Io Is 20 2s 30

Time (Secs)
-20

l'£guce 4-12. Late¢a2 Cant.co2 ltosponse ClULVaOteCJ.mtLCmfoe

-_. &ill.rude CoafiguzatJ.on AT&T8

|
117

1

00000002-TSD05



Rata-Command/&tt4tuds-Hold Response Types. Another class of augmented

response typos implemented was the "rate-¢ommand/att4tuds-hold e system.

The 4ntent of tl_ts design was to provide a controlled element considered

ideal for so_e kinds of flight tasks.

For tl_ts k_tnd of response, a t4ght at_Ltude stab4_tzat£0n loop was

provided w4th a proport£0nal plus integral feed-forward command path.

TI_L8 4s £11us_ated in Figure 4o13.

s, P

ProportJonel
Plus Integrel
FeedforwerO

I_JLgure 4-13. GeaeraZ Form for 8 Rate-Camand/&tlLtLtude-Hold System.

ConfAgurat£ons were constructed having break frequencies at 1.0,

2.0 and 3.0 rads/sec in the roll rate response to lateral stick. The

design roll rate serm£t£vity was 17 de_s/sec/st£ok inch to provide

comps=able sensitivity to the basic helicopter types. The configuration

parameters used £n the ADOCS lateral control system are defined in Table

4-6. Figure 4-14 shows a typical response to lateral stick input.
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Tab2e 4--6

LalI_ Coa_2 Symt_ P_t_ £_ Rato-Cou_d/&tt_t-_h_Ho2d

_t_£gt_al_t.onm

Loterol Sttck

Input 6_ PSK13
./,'-_j % To Control rlixer
_./ _ o en(lSwosflplote

ASK04A ASK14A

_ .:_ - (__ RollR.tep

ASKOSA ASKO?A

ASKgOA

ASK02A

!

; CemfIQ MK13!&SI(OIA_IlISKOZ&AS 04AqASI(OSA&Sg(qlQ_&Sl(O?& ASI(14A

:'_ I ! 22 I0 O0 1 )? ' 167 457 200 60

,._, 2 ! S6 2 0 0 0 30 $ 3S 4 80 20 0 6 0

* I 90 30 00 64 499 4S? 200 60

!
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Loterol Stick Deflection. 6A (¢m)
S

o ] , , i , ,
0 l 2 3 4 S

Time (Secs)
-5

Roll Rote p, (deOs/sec)
2O

o_
0 I 2 3 4 S

Tlrne (Se_s)
-2o

Roll _ttltude, B (dogs)

0 I 2 3 4 S

Time (Sees)
-So

ri_aze 4-14. Res_e to Mttrll Co.Uol Pot itate-Com4nd/-

AtttLtadl-Ilold ComJ_tL_atlcm RAAT2
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An obJect£ve of tht 8is_lation progras was to dof£no roll control

power require_nts £n mneuvor£ng tasks. IA_ttat£on of the roll control

power avaLlable to the pilot was ach£eved in each vehicle configuration

without the deleterious effects of hard stops (i.e. reducing cont_ol

throw) by satura_ng the la¢oral control s¢£¢k input es shown in Figure

" 4-15. The se_uretlonpolnt_nm _ouJ.d be 8peclfled as deelred.a

Control Saturated Lateral Control
Saturation Input to SwashplateandControl

LateralControl I'llxer

t_

|
_ t_gm_ 4-15. Sat_ratlcm of Lat_t Coatzo_ Input for Contzo$

Pmmr InvostLga_oa8

|,
t _

I, "l

'_7",

_ 3

:', 121
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4, l_.Zote

Pilots participating in the experimental program represented a

variety of users and backgrounds. Each of the pilots are described in

Table 4-7 in terms of their present affiliation, their qual£f£cationsj

and their experience with various aircraft types and pert£cuAar

rotorcraft.

So i_rLL-onmm_t._ CoadJ.tJ.mw

The environmental condAt.ion8 vere not a propel-/ variable An the

test na_£x. The hemal operating condA_ons vere unrestricted

visibility and calaa£r. The flight maneuvers theuelves provided the

major "forcing func_Lonn to the pilot. In nest cases visual cues vere

alzeady substantially degraded because of the limitations of the visual

system. A limited evaluation of the effects o£ turbulence on

maneuvering vas conducted. TurbuAence environments characterized by

root mean square lateraZ gust velocities of 3.0, 4.5 and 6.0 ft/aec were

eAmuAated. The specific turbuAance parameters used in the st_uAat£on

are documented in Volume II of this report.

B. SAmu_r _eratua

This section on s4nuAator hardware requirements is reproduced froa

Volume XX of this report. The NASA ^mes Vertical Motion SAen_ator with

the RCAB modu_e shown in F£guze 4-16 was used in the simulation.

The cockpit was configursd to represent a conventional helicopter

in te_ns of instruments and controllers. A layout of cockpit

instruments i8 shown in Figure 4-17. Controller characteristicm are

listed in Table 4-8.
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Table 4-7

8LllOJJtJ_)Jl Progrit _lit P4_otl

ne)ee Jam_ _ U. 8. nLr_o ¢o_. N_. N_tnd 8oeoeJ_g, 895_R

Test PL_o_0 L). S. H6vy Toot P£_ot SchooZ C_LOf too_ PL_ot DPV_R

To_8_ No,re )3H u_ _ _Une - n_

To_41 Xoti_y v_ng TLmo 3100 I_ TO?AIX ROtAry wLmg TJmo - I_

PIt&lAIty IltolLll_y VLIt9 AIJ_Sft: CH046, AH-1, UH-1 Plr_llOZ7 ItotJkTy NJJtg JULrOTilZ_: Ult-1, IIO-_OS

Evasive ItNeuvoRLng 5_ae 30 Hr 1_4sLve PllmeuvezLNI TLae 0 it:

Ja_8 A. rites, go 8. Nnrf ell4 t_8 _0 g. 8. Mly

hCH Xnetru_or P_Xot 2oot PLIot, go 8. Navy ?ont P_ot 8_oo_

Toto_ ?Lao 1000 Hr Tot4_ no_8 S?O0 II_

?o_X tqot_ry WXn9 TLSO tSO Itr TO_ RoTdury IILI_I TLBe 47vO Iflr

PrWmlry Ilto_ll_ wLn9 AJJrOc4_t: OHoSO, UH-1H, AH-IS IPIdAMllry RO_A&'y IU_g /kLlrc_lift: KII-I * _11-1 * UK-40

tvss_vo _neuv*_Lng _M ?S fir tvamAvo nsneu_ez_ng ?iN 30

I_. VIJ_Ln 8. IULadO_, S_oc4 U_tLveX_L_y I_. Oooc_o _ake_, _ _oo

Rooooreh P_lot _S& /_es te_wah PL_ot NASA _o

_ To_4_ _L_o 4100 Hr _ot4_L _ 4?40 I_

Tot_ Not4_y W_ng ?_Lao ?SO Hx Tot41 Itot4ry vLn| TIM 11GO It:

IPr_LIl_l_y L_OtSty t_Lng A_lrc_aft • UH- 1H, 01_-._A PIrLN_y IItotglk'y ffJ_g AJ_mrsft: II- 1, U- I, gH-30 IIH- 3

i ICvilLve v_no_vor_Lng _oo 0 _r CH-4?, Oil-SE• vsaLve n_ne_ve:_ng T_ne - b

CH30o_L4 ILUm_, U,8, JUn_

A_q _l_dlt_VC:tO_rP&_Ot0 Lug* IAVL8 , tIA _o C_* _ ql_L_o Oe So

,_! TO_Z Tl, ne )000 Nr ROoe_roh PLI_ , Ao&'ome_om ;Abo_at'JJry,'l_NIA _8
Tort1 I_O?.Uy NILUS T_ll 1000 V_ _0_ _l_ 6|00 I_

_. Plrlt_lry Itot41ry tfLng k_JrCZGft: AH*I ,UH-_ ,OH-_)8 5_0t4_ Jtolrdiz_ IlLng TLI_ 1507 )U:

i I[wN&vt RMouvOl:,tnl ?SJte 2SO HZ IPIrLSM7 Itot4z7 tlLwl A_:ra:t: Ull-lli, Cil-47, 011-580 AR-1
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I

/
/

/

l_gure 4-16o NASA Ames V_rC.toal Nor.ton SJJn_ator _th RCAB

tqodule
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F£guze 4-17. Cab XnstzuaentatJ.on
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Table 4-8. Controller C_ractarist_Lcs.

Peremtor Lo_itudiMI Letere! qudmr Ceilecttvl
I

Trwtl (cm) .t IS.2 .t 15.2 z 7.6 0-2S.4

OrmkoutForce(N) 4,45 4.45 I 3,mS 0.0

ForceGraient (N/era) 2.! g 1.40 12.26 0.0

CoulombFMctlon(N) 0.0 0.0 0.0 13.3S

2. Visual System

A four winOow computer generated image (CGZ) display was used in

W the performance of all flight tasks except for the ZFR turns and the

_ up-and-away large amplitude maneuvering phase. In the latter task the

_* chin window had to be disabled in order to allow the target helicopter

image to be added to the visual scene.

n
The visual system computation, interface, and refresh delays result

in considerable time delay in addition to the basic time step for model

integration. Figure 4-18 from Reference 49 defines the relationship

between overall throughput time delay and cycle time. Cycle times were
i_ 64 and 72 msec for the near-earth and up-and-away maneuvering phases,

respectively. This resulted in the estimates of the throughput time

delay (control input to visual update) for the simulation shown in Table

4-9.

°

_, Table 4-9. Estimated Vilmal System T:Um DelAty.

Cycle Ttme Throughput
Slmulotton Dolor Time DoloU

(msec) (msec)
Phoeo

fleor-Eorth 64 Iog

Up-on4-Awo9 72 202

C_ 126

v_
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• 25O

_¢ o I_<_ ,oo I

,-°e L I
I-- c 50o

i , ii ,i i ,
0 20 40 60 80 100

CYCLE TIME, T, msec

P£gure 4-18. Effect of Cycle TJ.me on Throughput T_.me Delay

from Reference 49
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The 12 msec increase in time frame from the near-earth to the up-and-

away maneuvering phases is associated with the added software

requirements for the adversary (Red) helicopter in the air combat

maneuvering tasks.

To allow a one-on-one comparison of task execution between

simulation and flight a Computer Generated Imagery (CGI) data base was

built specifically for this simulation program. The data base modeled

the NALF Crow's Landing area and tasks examined in the NASA/Army

evaluations reported in Section Ill. Special concern was given to

providing adequate relative velocity, position and height cues through

the use of detail eogo trees_ markers, texturep eto° The other data

base used during the simulation program was the HAC terrain for air

combat and nap-of-the earth exercises.

3. Notion System

The motion system conslstcd of full travel (within electrical

stops) of the NASA Ames Vertical Motion Simulator (VMS) shown in Figure

4-16. Nominal motion limits are given in Table 4-10 from Reference 49.

Table 4-10. VHS Motion System Limits.

Frequenc_ot
Motion Otsplecement Yeloctty Acceleration 30 Phe#Leg

Hz

Lateral = 5. I 8 m =2.44 m/s =4.57 m/s 2 1.6
Verttcal = 7.62 m *-4.67 m/s =7.31rn/s z 1.1
Ro11 = 19.50 ±19.5O/s *--57.3°Is2 1.2
Pitch + 20.00,-24.50 ± 19.5°/s ,57.3°/s 2_ 1.1
Yaw =34.00 ±19.5°Is =57.30ls2 1.1

: i
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Motion parameters defining the second-order washout scheme are

shown in Table 4-11. These were adjusted individually for the near-

earth maneuvers, air combat maneuvers, and the HUD tracking task. The

values used appear in Table 4-12

• 4. Cemputer

The general-purpose simulator computer used for this experiment was

a Xerox Sigma 8. The frame time used for the near-earth maneuvering

phase was 62 msec and, for the up-and-away tasks, 74 msec. The larger

frame times associated with up-and-away air combat maneuvering tasks

results from the additional software requirements for the target

aircraft. This was considered marginal and may have affected results

for some vehicle configurations representing quick short-term response.

!-

C• Data Acquisition

Data were acquired to provide both quantitative and qualitative

_ definition of simulator results. A special emphasis was placed on on-

line data acquisition although this was o_ly partially successful

because of limitations in computing and plotting facilities.

|
1. Quantitative Data

4

The primary purpose of quantitative data acquistion was to providefor on-line and post aimulatlon analysis of task execution, pilot

control usage, and vehicle response characteristics. Stats variables

from most runs were stored on magnetic tape using RUNDUM format

(Reference 50). Selected portions of these data were translated to IBM

I PC floppy disk format for later analysis.

- Automated recover_ of discrete maneuver data. A discrete maneuver

analysis algorithm was implemented to compute the time of maneuver
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T_le 4-11

__on o£ _on System Washout Pazane_,t

Motion WashoutFilter Formfor all Six Axes:

MotionBaseAcceleration _ 6 S2: (S) :
ModelAcceleration V 2 3

*_M_I s- �2¢ws • w
It It

: 0.707 for oil filters

The washout filter gains(G) endnature1frequencu(wn)
ore scheduledin the x degree of freedom with airspeed
from low airspeed values of 6xS andOMEGxSrespecttvelU
to the higher airspeed values GxFandOMEGxFin accordance
with the functional relationship:

Gain

GxS _ OMEGxF

I

VWOL VWOF

EQUIVALENTAIRSPEED (KtS)

Schedulingthe motion sustain parameters with airspeed
allows optimization of motion fidelity subject to the
system limits throughoutthe maneuverenvelope, eg,
nap-of-the-earth and air combat mo.euvering.
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Table 4-12

itoll Cont:zol S2m,_lLat.tonNot.l.oc_Ga.tL_;

Motionfilter Peremter Lay-Level Up-end-&vly
Plme Plme

Lev SlXm4

GP5 0.4 0.7
GQS 0.7 0.7
GRS 0.3 0.3
GXS 1.0 1.0
GYS O.S 1.0
GZS 0.0 1.0
OM[GPS 0.7 0.6
OH[GQS 0.5 0.5
Orl[GR5 0.7 0.5
OPI[G_ 0.6 0.6
0PI[G'YS 1.0 1.0
01"1[0Z5 0.2 0.2
YWOL I 0.0 I 0.0

Hillk Speed

GPF 0.2 0.33
GQF 0.5 0.40
GRF 0.3 0.40
GXF 0.5 0.0
GYF 0.35 0.50
GZF 0.80 0.40
OI'I[GPF 0.65 0.00
OMEGQF 0.50 0.60
OMEGRF 0.50 0.60
OI'I[GXF 0.60 1.00
OMEGYF 0.70 0.70
OM[GZF 0.30 0.00
YWOF 20.00 20.00

Note: Parameters are def|ned in Table 4- I I
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initAntion, peak roll rate, connanded Man]: angle change, tans between

bank angle changes and the bandwidth of the maneuver. Figure 4-19 shows

an example of operat_Lon in the slalom maneuver task. Efforts were made

to plot the peak roll rate versus amplitude change data on-lAne however

the computer capability was found to be _ufficient An the real tame
o

environment. This algorithm was applAed to both inner- and outer- loop

task vJ,r£ables.

i

Cont_col usage dat...._a A h£stog=am and probability of exceedence dAagram

for lateral stack activity was recovered for each run. Examples are

prawn in Figure 4-20.

2. £maXAtatAve Data

Qualitativs data consisted of recorded pilot comments following a

carefully structured checklist and culminating in use of the standard

Cooper-Harper pilot opinion rating scale (Reference 32). This provided

• high degree of uniformity in the form of pilot commentary and a

systematic means of addressing the topics of interest.

Pilo=___t Commentary Checklist. This guide to pilot commentary is shown in

Figure 4-21. It is divided into three topics which correspond to task,

vehicle, and pilot issues, respectively. Each topic also Is

fundamentally related to the Cooper-Harper rating sca_e system. A

numerical rating scheme (one to three) was established for each of the

individual characteristics but was not used consistently throughout the

experiment.

As shown in the above figure, flight task or maneuver objectives

are classified in terms of the general task performance factors

discussed earlier. The pilot was asked to comment on both the desired

task objectives and those actually realized with a given configuration.

This was intended to help the pilot determine a rational basis for
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_: Roll Rate. p (¢legsleec)

-5o[ 2 T_m_e_Sees)

R011Attltu4e, iS (¢leg$) _

o.
,_. .

0 I , i i i
0 2 4

*-_ -50 Time (Secs)i
On-Line Inner Loop Performance hto

Maneuver Common(lea BankAngle Peak Roll Time

i Inttatlon Att_tu(le Change Rote Between

A*c R Commancls
(secs) (aeg) ((leg) ((le_sec) (secs)

;_ 0,0 30.94 30 94 2736 -
st

3 02 -6.37 -45.31 -27.08 302
"_ 0.74 -5.65 0.72 4.52 5.7 I

9 29 -45.40 -42.74 -25.6,_ 0 56
12.54 6.09 55,20 28.33 3.24

_: l%gume 4-1g. ApplJ.oal_onto8lJLl.om°fthe 141meuvorDJ'sc"tie DIlr.aNanettve¢AnaXyBi.s A.l.gorLthm
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PILOTCOrlI'IENTARYCHECKLIST
I,,,m

i FLIGHT TASK OR MANEUVER 06JECTIVES
_j /. A_6J$$/YIP/IdP$$.. • Thequicknessor speedof taskexecution( I- quJck).

-_ 2 i_'eC/$1"011" FIilefless and exactness of task execution ( I • high),

[!_ _. Am#Ilium.. Sizeof maneweror amountof motion( I- large),

4 Overshoot.. Amountof dampingor settlingto a etea_yconditionIt- none).
_. 5 Trav_/t/o_," Gracefulnessor endinga tasksegmentandI)eglnnlngnext(l- easy)

.,at

-_ AIRCRAFT CHARACTERISTICS

6. .CaPri te/Yr_.' Immedlateneee of response with Initial control Input ( I• fast).
_. Control #owef:., Amount Of response without saturation or Ilritlt ( I • sufftclent).

-" 8 C_/I,_' Unwantedaxle Interactionsasa resultor control or motion( I- none).

9. O$cl//at/ons.. Tendencyfor sustainednuisancemotions( I- flone).

_ /oJr_'ce$: Controller ieel _ sensitivityusefulto obtainingresponse( I- good).

,_.: DEMANDS ON PILOT (TECHNIQUE OR STRATEGY)
_: //. COII;#onSaPt/O/;." Amouflt or antlclpatlonor lead required11- none).

/,2. workload." frontal andphysicaleffort requiredto dotask11=Iow),

"-'_ mnu,qmeSyttam. le,¢. gKemNr 19e4

%
..-. L_J.gu_re4-21. Gu.tLde to Pllol; _t;az-y

, ;_ 135
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!

)
i

exprees£ng the "task or requ£red oporat£on m aspect of the Cooper-Harper

31 :at:Lng scale.

i _lLrcra_t character£et£c8 £nalude those features of the veh£clewi_ch related to some aspect of r011 conl_ol effect£venees. Each p410t

E_, was requested to d£scus8 the 8ptc£f£c conf£guratlon being exo_Lned
._ w41rJ_n the frsmswo=k of the features 14sted. _Ls prov£ded a basis for

i evsluat£ng "aLlr_raft characterislr.tcs- w£_ the Cooper-Harper scale.

._ Demands on the p41ot rsp=esented those featu_e8 of-p£1ot technkque

-_* or conl_ol st=stagy to wh£ch the p£10t should be sensitive. Th4s was

Intended 1:0 prov4de a basils fo= the Cooper-Harper evaluation of -demands

I on the p£1ot e , the last stop :Ln dstoz_Lntng • p_Llot ratLng.

-_ Coo_tr-Kaz_e= RatJ_n_ Scaleo A =eproduct£on of the standard =etJ.ng scale

., £8 shown £n F£gure 4-22. The Cooper-He:pe= scale yes used to rate each

task and vel_Lcle confJ.guratJ.on comb_.nat:Lon following a se=£es of
e

--; tra£rcLng or fam£_ar4zat_on runs.
,mR

. ,q

.
-

:2
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Do Raqplt_lmoa_l Resultse

The axper_aental results which are d_scussad her¢ are divided into

those perta_ning, f_:st, to the issues of roll control effectiveness

criteria developnent and second, to the use of this particular flight

simulator apparatus for accomplishing the previously stated objectives.

A complete sumnaryof sJ_nulatton usage and test matrix coverage is

l_:ovided in Volume El O_ this report. Volume II also contains a catalog

of raw pilot opJ_ton rating data and coamenta:y. The raw data

compilation is 1J_tted to data runs taken after an extensive traJ_Lng

pertod duz_ng which the pilot attained es_qaptotic perfoz_ance.

1. General Results

The following results ere presented in terms of first _he general

f_ndtng, next 8 detailed d_scussion of the finding, and finally the

implication with regard to =oll control effectiveness criteria

development.

aax£amm Roll Rate Feat_are

F_ndtn_: A max£mum commanded roll rate is an obvious feature in nearly

all discrete maneuver data.

Oiscussion: There is a consistent trend toward roll-rate lim4t_ng in

all plots of peak _oll rate versus bank angle command for each sot of

data exam4ned. This applies to both simulator and flight results.

This feature is signkficant in that the peak roll rate li:4t

appears to be usually imposed by the pilot rather thegn by_vehicle roll

rat..__e _limtt" The limlt established is, however, a function of the

particular task involved, and may be influenced by simulator
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limitations. This latter topic will be discussed In Section IV-F.
0

F£gure 4-23 Illustrates this phenomenon with a typical HUD tracking

case. Note how the discrete maneuver points lie well below the boundary

representing maximum vehicle capability.

• Implication: The existence of this feature in discrete maneuver

performance reflects a point of diminishing returns for provision of

roll control effect_Lvena_s for s given flight task or maneuver

capabillty.

,¶

Upeet Ca_ed by Maneuver va Gusts

Finding: Performance of significan_ discrete maneuvers outweighs the

effect of random atmospheric turbvlence on pilot opinion rating.

Discussion: The execution of a significant discrete maneuver such as a

sidestep does Itself represent an upset from which the pilot must

recover. The 81ze of this maneuver "disturbance" was compared to the

effect of random _usts.

The simulator experiment consisted of performing and rating a

series of sidestep maneuvers in varying levels of random turbulence, rms

lateral gulf conditions of 3.0, 4.5 and 6.0 ft/seo were simulated.

Ratings were also given for the task of hovering at one position in the

presence of turbulence. The pilot ratings are summarized in Figure

4-24. The results show thaE where a significant maneuver Is involved

such as a sidestep, the pilot ratings are essentla.1.17 un_Lffected by the .4

gust disturbance.

lm_lic:ation: The specification of an atmospheric disturbance level is

probably unnecessary when specifying the control effectiveness needed _,

for significant maneuvorsj but is necessary where precise control of _,

attitude is needed such as in gun tracking. ','
1
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Pre¢ismn Hover and Sidestep Tasks
Pilot HinOson

• Configuration 1
" Runs 1163, 1164, 1165, 1166,
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2. HUD T_:acY.t.ng Task Results

The HUD tracking task was found to be a useful laboratory means for

studying roll control effectiveness requirements because it involves no

lateral outer loop and its command sequence is precisely defined. Thus

the results can be used to identify and map general characteristics and

relationships among v_hIcle, pilot, and task. The HUD tracking task may

also have an application to large evasive maneuvering such as collision

avoidance.

Critical Aspects of the HUD Task
_g

Finding: The HUD tracking task represents a critical design maneuver

with respect to aggressiveness and amplitude of maneuver.

Discussion: For all of the tasks studied, including helicopter air

¢ombatp the HUD tracking task yielded the highest peak roll rates and at

least matched levels of aggressiveness found elsewhere. The specific

quantitative values representing task performance are indicated in

Figure 4-25. These consist of a maximum roll rate of 90 deg/sec and a

maximum commanded bank angle of 90 deg.

The HUD tracking task represents a fairly pure single loop task, '_

i.e._ there is not outer-loop control of flight path or heading. It may

resemble a large-ampl_.tude evasive or collision avoidance maneuver.

Implication: Where the HUD tracking task is representative of a useful

mission-oriented maneuver, then it can be considered as a critical

design point with respect to overall control effectiveness. "

Control Power Saturation Effect on Pilot Rating

Finding: Pilot rating in the HUD tracking maneuver did not degrade
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significantly until available maxlmumroll rates ware limited to 50-67

degs/seconda (equivalent cyclic deflection of 7.5 to 90.0 cms)t see

Figure 4-26.

Discussion: Lateral control power (maximum roll rata) limitation was

achieved by saturation of the lateral stick input. The HUD tracking

task was the most demanding task evaluated with regard to aggressiveness

and amplitude demands. Pilot opinion degraded sharply when maximum

available roll rata was limited to 66 dags/seo for Wilson and 50

dags/sa¢ for Elton. In both cases the degradation represented a

transition to Level 3 in terms of absolute Cooper-Harper rating.

The effect of progressive control power (maximum roll rata)

reduction on maneuver performance can be seen in Figure 4-27. Figure

4-27a shows the nominal HUD tracking performance with maximum available

roll rata of 100 degs/sec. Figure 4-27b through d shows the performance

as the available control power is cut back through saturation of the

lateral stick input. The limitation of the maximum bandwidth capability

of the closed-loop system with control power reduction is apparent from

these figures.

The affect of control power limitation is primarily on the larg':_

amplitude commands. To an extant, the pilot can compensate by

broadanlng the duration of the roll rata command (or control input).

However, this lowers the effective closed-loop bandwidth and ultimately
precipitates a short-term control effectiveness problem. •

The pilot, howaver_ has the capability to compensate for maximum

roll rata de£1ciencies using dihedral affect (via pedals) to generate
_ additional roiling moment. Thus it is possible to exceed the vehicle
_A

capability _.ndicated by the maximum roll rate boundaries as seen in

Figure 4-_'_b.

,I
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Figure 4-26. Effeot of Control Power Saturation on HUD Tracking.
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Implication: These date fo_a portion of the basis for a control power

criterion based on • margin between vehicle capability end the nominal

maneuver demand.

Maintenanae of Closed-Loop Duping )

Finding: With control p_wtr li_Ltetion in the HUD track.tng task closed-

loop damping levels are maintained, however there is an eventual 1o8s of

closed-loop natural frequency for large-amplitude maneuvers.

Discussion: Closed-loop natural frequency and damping information for

an equivalent second order system were recovered for individual discrete

roll maneuvers for different levels of available control po, ar. These

data are shown as a function of bank angle command amplitude in Figure

4-28. These correspond to the respective roll rate performance plots in

Figure 4-27. Note that damping ratio i8 maintained even when the

available roll rate is limited to 33 degs/sec (Pilot Rating 7). As

predict:4, however, natural frequency (i.e., aggze_siveness) must

ultimately suffer because of the reduced proportion of peak roll rate to

bank angle change. Thl8 18 shown in Figure 4-27c.

Maintenance of Tracking Precision

Finding: NUD tracking precision is maintained with control power

degradation until the available roll rate is less than 33 deg/sec. This

corresponds to the Level 3 control power boundary.

Discussion: This is not a new finding but is included here to again

Point out the fact that pilot rating degrades before precision. Figure

4-29 shows the degradation of tracking precision with limitation of

available control power. The normalized rms attituae error and percent

time on target metrics show insignificant variation until roll rate

capability ks limited to less than 33 degs/sec. Below this value the
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percent time on target appears to be tha more sensitive performance'.I

metric with control power degradation.

Effect of Short-Term Response

- ' Finding: Short-term response affected HUD tracking pilot opinion only

in the case of Configuration I0.

i2, Discussion: _igure 4-30 indicates that the configurations run resulted

in no adverse pilot opinion effects for the HUD tracking task until the

_.-. bandwidth was degraded to that of Configuration I0. The point of

:_ degradation generally corresponds to the level of task aggressiveness in

_ terms of natural frequency.

• Figure 4-31a through c illustrates the peak roll rate performance

for the varying short-term response cases. There is only slight

: , variation in the signature shown for Configuration I0 (Figure 4-31c).

Thus there is fairl] _ood evidence of pilot compensation for the

_ degraded bandwidth _ust as there was in the cases of control saturation.

Unfortunately there wa_ not sufficient u_ab!e dato _o define the

nature of this effect with more precision. It is believed that the HUD

- tracking task damands a fairly high level of aggressivenessj thus th_s

result is worthy of further investlg_tion.

_! Essential Features of Attitude Command and Rate Command Systems

;_. Finding: Use of an attitude command system produces essentially

constant bandwidth performance while a high _ain rate system leads to

)-_),_ the same type of performance seen for basin helic-_ter configurations. !

h
:_, Discussion: Typical HUD tracking results are presented An Ficure 4-32. qi I

",) Results for an attitude command system are shown l.n Figure 4-328 and for
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• r•te command systea in 4-32b. Note th•t the proportion of peak roll

r•ts to b•nk •ngle ch•nge is nearly const•nt for the •tt£tuds system

whil• it is s£mll•r to previous cases for the r•te system.

Unfortunately high •ngle of •track •nd sideslip difficulties in the

ba•£c math uodel led to poor pilot r•t_ngs and pr•vented a good

assessment of the high gain SCAS char•or•tie.Los in l•rge •mpl£tude

mmeuvers. Therefore the va_£•t£ons £s SCAS dynm_cs could not be

addressed f•J_ly. This is •n •re• which shou£d be considered for future

reeearcho

3. _ Combat Naneuvez Task Results

Two n•£n types of air combat e_neuvers were s£nul•ted. The "ACH

tracking" task consisted of the elaul•tor p£1ot tr•ck.tng and f£:£ng •

gun •ga£nst •n •utommt£oa_ly controlled target flying •t constant speed

end altitude. The second _ype task was a "free engagement" wherein •

manually controlled target was flown in response to the simulator pilot

and configuration being stud£ed.

Nest of the analysis was perfo_aed on the ACH tracking task results

because they were nora structured and consistent, and J_rt•nt for

• xaalnst£on of control saturation. _he free engagement results were

sore random but were interesting insofar as any increase in maneuver

eapl£tude perforasnce par•asters.

AOI Maneuver aaplltmle ;I

F£ndkn_: The ACH track_Lng task £s ch•r•cter£zed by • mex£mua roll rate II

range of 40 to 60 deg/sec and • maximum commanded bank angle of 100 deg. _,_
4

°4

Discussion: Figure 4-33 shows six sets of air combat tracking ',_

pergor=ance data. These are typical of results obtained and show some

P
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variation in the maxlaumpeak roll rates.

The task is a combination of large-amplitude maneuvering and

precision tracking, therefore there are fairly large values of peak roll

rates along with high aggressiveness. The variation in maneuver

amplitude will be discussed next and requires special attention when

analyzing control power satu:atkon results.

Finding: The ACM tracking task depends upon the distance maintained

from the target.

Discussion: The data for Scott (Figure 4-33a) show generally higher

peak roll rates than for Klindt (Figure 4-33b). This was found to be a

stzong function of the dlstanue maintained from the target. The former

set of data are representative of those obtained by saving within 500 ft

of the target while the latter correspord to a distance of 500 to 750

ft. This factor represents an £_portant dimension to the ACM task.

Hose _enerally, this is a good example of the value of highly

quantitative task performance aeasure_nts when studying a specific

maneuver or cle_. nf m_n_tver_.

Flndlng: Pilot rating in the ACM tracking task does not degrade until

steady state roll rate capability is limited to less than 35 deg/sec.

Discussion: The results of control power llLttation in the ACM tracking

t_ak are p_esentsd in Figures 4-34a and -34b for the same two pilots

discussed above.

Compared to the HUD tracking task, the ACM tracking task (for both

of these pilots) Permits considerably greater reduction of steady-state

roll rate before pilot opinion is degraded. This lends apport to the

concept of weighting or conditioning handling qualities #equirements to

the type of task representative of a given mission or aircraft design
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ob_ective,

A_Rt Frut 8_geatnt

Flnd£n_: ACM free engagements result in peak roll rates of 40 deg/eec

and maximum command bank angle changes of 7U dee.

Discussion: The task signature for a typicaZ free engagement £s shown

in Figure 4-35. Thin £ndkcatel that the ACN track.tng tank provides

comparable task amplitude information with raged to roll rate demand.

The t_ack.tng task has the advantage that the task structure is defined

and repeatable for each run, a useful ateribute for handling qualities

evalua_Lona.

Alt_Ltude and speed management is also a key element to the free

engagement whereas _he ACN l_acl_Ln; task umed here was restricted to a

hori:ontal plane. Simulator visual system I£_LtI restrict unlinkted

free engagment tactics.

Naaeuve_ Aggrem_l._maeaa

F£ndLtn_: Closed-loop natural frequency and damping ratio representative

of fans attitude control ace 2.5 reds/sec and 0.4_ respectively, with

aeeoc£ated standard deviation of 0.3 rads/sec and 0,11 respectively.

_£scusslon: Identification of these parameters was made on attitude

changes lees than 10 degrees. The sample was snail, only three _Lsc_ste

attitude changes. Nevertheless, the data appear significant An view of

the standard deviation of the sample set.

4. Sidestep Maneuver ResULts

The sidestep maneuver was a near-earth bank-to-translate task which

165
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was found difficult as a result of CGI deficiencies. The primary visual

difficulty was in the perception of depth and relative motion cues.

Steps were taken to provide the highest texturing possible in the

sidestep maneuver area yet fore and aft position cues were especlally

deficient. This resulted in the maneuver being very artificial from a

task cue point of view.

Sidestep Maneuver Amplltude

Finding: The sidestep task is characterized by a peak roll rate of 50

degs/sec and a maximum commanded Bank angle change of 60 deg.

Discussion: The characterizing amplitude data were derived from Figure

4-36. Again there is noted a reduction in closed-loop bandwidth for

larger attitude changes. The large attitude changes are associated with

roll reversals to decelerate the vehicle. Attitude changes of order 20

degrees indicate sidestep initiation and termination phases in the

maneuver. There are however many points associated with small attitude

changes which are made with high aggressiveness. These points represent

precision attitude control in, for example, the hover phase. Many of

these points lie on or close to the predicted maximum bandwidth

capability ¢f the vehicle. This suggests that short-term response

requirements for the vehicle may be sized on precision control

requirements alone.

Effects of Control Power Limitation in the Sidestep

Finding: Pilot opinion degraded sharply when steady state roll rate

capability was limited to less than 25 dege/sec.

Discussion: Figure 4-37 defines the pilot opinion variation with

control power limitat_.on for the sidestep task. With available steady

state roll rate limited to less that 25 deg/sec the pilot cannot quickly
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establish lateral acceleration_ being limited by the low bandwidth of

the attitude dynamics. The degradation in authorit7 appears to the

pilot to be asymmetric. This arises from the beneficial effects of

dihedral in the deceleration phase at high sideslip velocities. At 1.3

cm (005") daturatlon the pilot is essentially acting as a switching

controller between the saturation limits. Time history data for this

case suggests that the closed-loop system is in a limit cycle during the

attempts to establish hover.

!
Performance degradation with control saturation is observed

primarily in the outer position loop. Damping of the closed loop system

reduces with saturation leading to large overshoots and _.ong settling

times.
|

Sidestep Maneuver Aggressiveness Effects

l Finding: Closed-loop natural frequencies can be as high as 4.5 rads/sec
for small attitude changes.

Discussion: The closed-loop roll dynamics were again identified within

i the second order equivalent structure using the least squares technique.
The identified natural frequency and damping ratio as a function of

commanded bank angle change are shown in Figure 4-38. As seen in
4

previous closed-loop identification results the following trends are

evident:

i-_ • Reduction of closed-loop natural frequency with amplitude of

the maneuver

• Maximum natural frequencies in the range 4.0 to 5.0 reds/see..ii
_-_, • Signlflcant scatter in the natural frequency data but largest

for fine attitude control, -Q

ii

• Large scatter in the closed-loop damping ratio data.
b

I

It
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Rata and AtJ'_Ltude Command Response Types 4n the Sidestep Task

The attributes of vehicle stabilization and decoupled response

_ associated with augmentation realizes an improvement over the basic

helicopter r_sponse type for certain tasks. This is especially true for
attitude systems with regard to unattended operation since they

essentially relieve the pilot of inner-loop compensation duties.
i,

Baseline attitude systems show a 1.5 to 2 Cooper-Harper rating

i improvement over the baseline helicopter in hover and the sidestep task.
The pure time delay inherent in simulation computation and the visual

system tends to highlight the improvement between the two response

types. Indeed, an attitude system is significantly easier to hover in

simulation then the basic helicopter.

'_. Analysis of the attitude and rate command response types was

limited in scope and depth. The simulation provided adequate response

fidelity in the low speed regime even though the high speed range was

limited by the anomalous vehicle characteristics described in Section

i V-Eo A bandwidth limitation was also encountered in simulation. Due to

the relatively high cycle times (64 msec) augmentation system bandwidths

could not be increased much beyond 3.5 reds/see without encountering a

stability boundary.

'_ Finding: Level I handling qualities are assured in the sidestep task

provided:

_. o The closed-loop pilot compensated performance for attitude

,_ changes up to 30 deg8. can satisfy the bandwidth requirement:

_ o Adequate open loop damping exists in the vehicle..e
i. 175
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Discussion Figure 4-39 shows pilot opinlcn variation with attitude

system configuration in the sidestep task. Figure 4-40 defines the

associated closed-loop performance characteristics. It is noted that

the bandwidth relationship in the peak roll rate versus attitude change
Q

is typically linear. This linearity relates to the unquickened basic

vehicle bandwidth capability which is linear and defined by:

w exp( "_" [ 05- 7 ] ) where (s) = _2
p,, gl-,'

_e -_.
1+ exp( ) -1

e= tan (_)

: This relationship is shown on Figure 4-40 for the configurations• It is

observed that th_ pilot is quickening his input to enhance the closed-

loop bandwidth _n most cases. The closed-loop compensated bandwidth

i_ requirement specified above for Level 1 handling qualities is based upon

;_ the trends noted in Figure 4-40•

Im_llcation This result re-emphaslzes the requirement for

tailoring of the vehicle capability to the closed-loop task
i,_ requirements• In this case the objectives are to ensure adequate

open-loop vehicle damping and mlnlmze the quickening compensation

required of the pilot to achieve desired pezformance•

i
Futher analysis should be made to quantify the quickening

=

compensation versus task performance trade-off. Also the maximum task

i_ execution bandwidth available with pilot compensation should be defined

theoretically. This can be approached in the same way as used to

I evaluate basic helicopter capability. This would provide a theoretical

"_ basis for a specification of handling qualities criteria for attitude

,._ response type vehicles.
_

1
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Finding: Amplitude and aggressiveness characteristics of task

performance are generally lower than those seen for the basic helicopter

type.

Discussion: Figure 4-41 defines task performance for the attitude system
e

in the sidestep task and compares it to the amplitude characteristics

observed for the basic helicopter response type. The essentially lower

closed-loop bandwidth is related to the uncompensated capabilty of the

attitude system and the willingness of the pilot to increase closed-loop

bandwidth by overdriving and leading the system. Futhermore, the

augmentation of the vehicle to provide attitude command response negates

any dihedral effect present in the vehicle. It has been observed in the

HUD tracking task, for example, that the pilot will enhance his roll

rate capability in the basic helicopter using dihedral effect to achieve

desired task performance.

Finding: A high gain rate system leads to essentially the same

performance as seen for basic helicopter types.

Discussion: This finding is ba_ed upon the task signature shown in

Figure 4-42.

5. Tur_MeneuverReeults ...........

This task is characterized by having both open- and closed-loop

control policies_ and b7 both heading and course control elements. The

heading change element is basically effected using a co-ordinated turn.

The airspeed and effective turn radius define apriori the attitude

excursion required. The pilot rolls into the turn and holds the desired

bank angle until roll-out. Since the task requires him to align with a

certain course on roll-out he may have to effect a series of closed-loop

course change maneuvers to satisfy desired performance.
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_zn _euvat _pl_tude

Finding: The task performance signature is shown in Figure 4-43. The

_aneuver is characterized by a maximum roll rate of 40 dogs/sac and a

maximum commanded roll attitude change of 40 dogs.

Discussion: Significant reduction in aggressiveness with amplltudo is

not apparent, although the attitude changes involved in this maneuver

. are relatively small.

Turn MoneuvorAggrossivoness

Finding: Bandwidths comparable to the fine attltudo control bandwidths

seen in the HUD tracking data are observable. Significant scatter in

the fine attitude control aggressiveness is again observed, consistent

with previous data.

Discussion: The consistency between maximum observed bandwidths and

aggressiveness between diverse tasks such as HUD and ACM trackingD

sidestep and turn maneuvers gives support to the hypothesis that this

mode of control 18 independent of the outer-loop task. This has some

far reaching implications regarding definition of short-term response

criteria. This concept will be discussed more thoroughly in Section V.

Other Con_ol Response Types

Finding: The task performance for an attitude system is essentially the

same as that defined for the basic helicopter type.

Discussion: The task signature is shown in Figure 4-44. The

uncompensated vehicle capability is also shown. Since vehicle

capability end task demand are comparable the observed result is not

ouprising. A provision needs to be added to the above finding. That
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is, task performance can be expected to be comparable between basic

helicopter and attitude response types provided:

• Significant sideslip is not involved

• Vehicle uncompensated capability is not siguificantly

less than task performance demands

60 S_a_omNaneuver Results

The slalom maneuver is an interesting maneuver because of the

likely presence of a primarily pursuit pilot control strategy. Roll

commands tend to become well synchronized with the rounding of pylons.

Thus, there Is a modification in the usual partitioning of inner- and

outer-loop control behavior.

A 60 Kt airspeed and 450' separation of the pylons results in a

relatively low outer-loop bandwidth requirement for task execut%on.

Furthermore, the relaxed preview times and no requirement on a precise

ground track result An the maneuver having a ¢haracteristicall:, low

inner loop bandwidth and hence low peak roll rates.

Slalom MaueuverAmplitude

Finding: Amplitude characteristics for the task are a maximum roll rate

of 30 degs/sec and a maximum commanded attitude change of 50 degs.

Discussion: These figures are based upon the task signature in Figure

4-45. Of all the data looked at to date the slalom task has the most

pronounced roll rate limiting characteristic at large amplitudes. The

data for fine attitude control are comparable to that seen in the HUD,

ACM and sidestep tasks both in maximum bandwidths observed and the

scatter noted. This again suggests that precise attitude control may be

independent of the nature of the outer-loop task. The distinct roll
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r_

rate saturation feature may thus result from the relative bandwidth

!_ requirements between fine attitude control and mid- to large-amplitude

'_ requirements to support the outer-loop task.:'e

F_

_", Slalom Maneuver Aggressiveness

_. Finding: The peak roll rates and scatter in the fine attitude control

:_ aggressiveness data are comparable to those observed in the HUD, ACM end

sidestep tasks.

|
"_ Discussion: A limited sample of small bank angle commands (less than 20

_, degrees in amplitude) were identified within the second order equivalent

iS_ system structure. The mean values realized were a natural frequency of

J 2.0 rads/sec and a damping ratio of 0.6. Obtaining identifiable

.-_ precision attitude control data tends to be difficult for this task.

_ The propensity of fine attitude command changes tends to be low because

",_ a precise ground track is not required. The identified sample are

however consistent with the identification results for the HUD tracking

_ task.

?
_3
:_ 70 JinkManeuvoE

_, This maneuver suffers from significant simulation fidelity

._ limitations. Problems in depth perception on approach to the walls are

:i encountered. Furthermore, the maneuver is characteristically

un-coordinated involving large amounts of sideslip and extensive pedal

activity. This degree of un-coordination leads to problems in motion

fidelity and conflicting motl_n and visual cues are apparent.

OinkManeuverP_plitud¢
._'

Finding: The representative maneuver amplitude characteristics for the
:_ task are a maximum roll rate of 40 degs/sec and a maximum command

M
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attitude change of 50 degs.

Discussion: The task amplitude characteristics are evalu&ted from the

task signature in Figure 4-46. The limiting of roll rate is again

apparent in the maneuver.

Jink Maneu_zeE Ag_resulveness

i Finding: Small amplitude maneuver control for attitude changes of 15

degrees realize a closed-loop natural frequency of 2.0 reds/see and a

damping ratio of 006. For attitude changes of 5 degrees the natural

i frequency was identified at 4.5 fads/see and damping ratio at 0.4.Discussion: The dat& obtained from the second order equivalent system

_ identification are again comparable with the data obtained in HUD, ACM

_ and tasks for fine attitude
sidestep control.

Attitude Co_d Performan=eCharauterlstlus in the

Slalom andJink

Finding: Task performance with attitude systems is comparable to basic
helicopter response types provJded the pilot does not have to effect

_ substantial compensation.

i Discussion: Figure 4-47 compares attitude command system performance in

the slalom task to performance characteristics requi_od from a basic

_. helicopter response type. Provided that the uncompensated vehicle

_% bandwidth capability is not significantly deficient compared to the

_ close,d-loop task performance characteristics the pilot appears to

_, demand very similar performance. This will only be true if the task

does not require extensive use of sideslip dynamics.

_4 a
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Finding: Performance in the jink maneuver shows a slight reduction of

the amplitude characteristics compared to conventional helicopter

dynamics. Maximum roll rates are reduced from 40 to 30 degs/sec and

commanded bank angle changes from 50 to 40 degrees.

Discussion: Figure 4-48 compares the task performance in the jink

maneuver for the two vehicle response tTpes. It is noted that the task

performance differences are not associated with deficient vehicle

bandwidth capability. The muted amplitude characteristics may be the

result of loss of dihedral effect following augmentation of the vehicle.

The outer-loop task performance metrics of minimum approach distances to

the walls need to be assessed for an adequate comparison to be made.

8. IFR Heading Change Results

The IFR heading change flight task represents the lower extreme in

terms of maneuver aggressiveness and amplitude.

IFR Heading Change Amplitude

Finding: The characteristic maneuver amplitude requirements are a

maximum roll rate of 10 degs/se¢ and a maximum commanded attitude change

of 25 degso

Discussion: The task performance data are shown in Figure 4-49. The

t_sk sxhibit_ the lowest amplitude characteristics of all the tasks

simulated.

IFR Heading Change Aggressiveness

Finding: The maximum bandwidths observed in the small amplitude control

are much lower than those observed in HUD and ACM tracking tasks.
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Discussion: There is in fact no precision attitude control requirement

for this task. The pilot basically establishes a coordinated turn and

holds it until rollout.

Eo Simulation Fidelity Issues

The simulator provides a controlled envLronment for the analysis of

handling qualities issues. The validity of the results can however be

compromised by fidelity deficiencies of the simulation. The following

is a brief summary of fidelity issues encountered during this simulation

program.

Mathematical Model Fidelit_ The ARMCOPmathematical model exhibited a

number of response characteristics not representative of helicopter

I aeromechanlcs, and not associated with visual or motion fidelity issues.

Spurious force inputs were noted due to solution of the flapping

equations in the hub-wlnd axis system which switches orientation rapidly

with sideslip in hover. So adequate hover stabilization and control was
_ not possible for the baseline vehicle. Solution to this problem was

i_ provided by Mr. R. L. Fortei_hough of Bell Helicopter Textron by solution
of the flapping equations in the hub-body axis system. This fix is

documented in Volume lI of this _'eport.

The model demonstrated some uncharacteristic helicopter qualities

during maneuvering. This was apparent in maneuvers such as the _Ink

where un-coordlnatsd flight led to uncharacteristically high lateral

acceleration demands by the model. This problem wss attenuated by
I: °

increasing the related motion washouts. Thus motion fidelity was

degrado_ to make-u| for a mathematical modeling problem! Furthermore, the

high bank angle flight, in such tasks as the HUD tracking and ACM

trackingD the basic ARMCOP vehicle exhibits tendencies of airspeed _oss

in left turns and acceleration in right turns. With implementation of
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feedback loop closures around the basic vehicle to obtain attitude

response systems the severity of this auy_unetry increased. Response is

then typified by very a_normal airspeed loss and extreme angle-of-attack

and sideslip excursions in left turns. Up to 40 kts of airspeed could

be lost within a vary short period. Figure 4-50 shoos time histories of

alrspesd_ slldellp, angle-of-attack and ba_angla for left and right

turns. This phenomenon was significantly reduced if the tail-rotor cant

inherent in the UH-60 model was removed, and an improvement of

' Coopsr-Harp6r rating form 6 to 3 was obtained in the HUD trackJ.ng task.

These maneuvering flight issues need to be investigated thoroughly.

Comparison between In-flight maneuver and coordinated turn data from the

AEFA UH-60 and ARMCOP model response would be instructive.

Throughput Tim_.._eDelay The usual solution to the model fidelity issue is

to increase model complexity. This however usually entails an increase

in tlme-frame requirements which increases the overall throughput delay

(control input to visual update) time. The exlstence of pure time delay

in vehicle response has significant effect on pilot opinion. This is

best seen by examlnatlon of time delay effects from i_-flight

investigations (Reference 51). The current MIL-F-8785C (Reference 40)

criteria requires less than 100 maec for Level I, and pilot opinion

degrades about 1 Cooper-Harper per 33 meets delay beyond this value.

The estimated throughput time delays for this simulation were in the

range of 180-200 msecs, so Level 2 evaluations are not suprlslng.

The frame-time, and overall throughput delay effects, limited the

dynamic rsponse characteristics that could be simulated. For the

lateral axis, bandwidthe above 4.0 reds/sac, could not be perceived as

increased short-term response by the pl'ct. This severqly restricted

short-term response evaluations I, this program. Furthermore, for

higher response types augmented system bandwidths could not be increased

beyond 3.5 cads/sac without encountering a stability boundary.
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_an£pulator an_d Motion Bae_._.eeOpt_Lmdzation Significant effort had to be

expended to achieve desirable characteristics in both these areas. In

msneuverlng flight llmb/manlpulator interaction can result in pilot

induced oscillations (Reference 52), Low stick damping causing

llmb/manlpulator coupling was seen in the slalom task early in the

simulation program causing very uncharacterlstic lateral acceleration

response.

Motion base filter gain and washout frequency assignment is still

very much a cut-and-try rat_er than an analytical optimization approach

with regard to task cues and the pilots sensory system. Motion cues were

"optimized" for the up-and-away and near-earth maneuvering phases.

Reductions in lateral washout frequencies were made in the near-earth

phase to compensate for uncharacteristic lateral acceleration model

demands.

visual System The current generation Computer Generated Imagery (CGI)

systems provide good macro texture but poor fine grained detail. This

has Gignificant effect on the pilot's control strategy and task

performance in such tasks as hover and sidesteps.

In the nap-of-the-earth maneuvers such as slalom and Sink the

absence of 8 tip-path-plane J:eJulted in the inability of the pilot to

detenLtne rotor clearance. This cue is vital to any future simulation

evaluation .'f these tasks.

The Field-of-View (FOV) from the RCAB module Is limited to

approximately +-65 degrsss _aterally, end 8 degrees up and 15 degrees

down. The p_tch axis view severely liLtt8 maneuvers lnvolvinq

substantial pitch-up e.g, air-to-air free engagements. The

field-of-view can have significant effect on task execution strategy as

wt11 be discussed in the next section.

201

O0000003-TSC07



F. Tuk P_formanca Co_Mu_ison between S_mlator and Fl/ght

The simulator not only suffers from f_dality issues such as motion

and visual :tscuep but is devoid of safety of flight considerations.

The latter fact can lead to a "video-game" approach to task execution,

which undermines the validity of using simulationdata for handling

qualities criteria development. The visual end motion system

characteristics can lead to the adoption of different pilot strategies

and task performance between the two environments. Flight data analysis

was limited to maneuver amplitude characteristics so no comparison of

aggressiveness characteristics is possible between the two environments.

A number of specific examples will be discussed.

Figure 4-51 compares task performance for pilot X in the slalom and

jlnk maneuvers. It is noted that the task amplitude characteristics are

well matched between the two environments for thl8 pilot. Figure 4-52

compares the performance for the same two manuevere for pilot Y. Two

prominent features are observed:

Slalom Tas.._kkPerformance There has been a notable change in the strategy

from flight to simulator. The pilot Is no longer willing to make 90

degree roll reversals, and negotiates the course with a series of small

attitude changes of about 30 degrees amplitude. This may be due to the

flald-oZovlew characteristics which llmlt8 the ability to maintain

spatial awareness in large amplitude maneuvering close to the ground.

Jink Task Performance The pilot described this run as • "Yahoo maneuver

with no comparison to the real world visual and motion cues". As noted|
the roll rates demanded were about twice that used in flight.

Coeparison of the sidestep performance between flight and simulator

j 18 made in Figure 4-53. It is noted that the linear relationship
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•rI

ii between roll rate and bank angle (i.e. constant bandwidth) is reliaa'--d
,._ in the simulator. However, there again tends to be larger roll _tes

_=_ and attitude changes commanded in the simulator. This may be due t_ the

_.- safety-of-flight fidelity problem.

_,_' For the air combat maneuvering tasks direct comparisons un e

_ specific maneuver-by-maneuver basis is not possible. However, the data

_ presented in Figure 4-54 compares ACM tracking data from the simulator ,

with in-flight scissors maneuver data. Good agreement in peak roll rate
demand is observed between the two. This supports the claim by the ACH

,_ qualified pilots participating in the simulation that their performance

i__ generally resembled their flight experience.
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V° Crlterla Development

The objective of this section is to present a new _ethodology for

the examination of roll control effectiveness based upon closed-loop

- task execution and suited for criteria specification. This approach

will be supported by the theoretical development of Section IX and the

s4mulation results of Section V. The following concepts provide the

foundation for this methodology:

o Task maneuver demands can be defined quantitatively, and

un£quely on a task-by-task basis

o The relationship oetween key vel_icls design parameters and an

upper-bound on closed-loop task execution can be defined

analytically.

The objectives sought in methodology develot_nent are to un£fy the

concepts of short-term and long-term response, to clearly define the

reletions_Lp between key vehicle design parameters and response

characteristics, and to relate each clearly to task execution and

performance.

Finally a comp_Lcison will be made between the current open-loop

response based criteria and the closed-loop approach. Deficiencies in

the ou_ent criteria will be identified.

A, Task l_rfoz_nce ltodeltn9

Based upon the discrete maneuver analysis approach presented in

section IX a unique task signature can be constructed for each task

evaluated in the simulation. These signatures are consistent with those

of the flight talks studied end are reasonably £ndwpendent of the : ilot.

Furthermore, the form of the signature applies to tasks which are truly
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discrete maneuvers as well as those characterized as continuous tracking

tasks.

The parameters important to characterizing the closed-loop task

performance are:

(1) Aggressiveness

(2) Amplitude

(3) Settling

(4) Precision

(5) Task Duration

The two prominent characteristics of the task signature are the

aggressiveness and the amplitude. These were assesseed in Section V for

each of the maneuvers evaluated in the simulation. These are proposed

to be the two fundamental parameters governing the control effQctiveness

issue. Tho task performance catalog determined from the simulation

results appears in Table 5-1, where examples of the unique task demand

limits are shown for different tasks. The attributes of several of the

Peramatera listed above will now be discussed.

1. &ggzmmLtveaelm Cbazacterimt.tr_
k

Aggressiveness of response reduces with the maneuver amplitude.

Maximum aggressiveness is associated with precision control of attitude.

As shown in Section lI a metric of closad-loop bandwidth In the ratio of

the Peak roll rate to the bank angle change. The signature shown in

Figure 5-! is common to all maneuvers analyzed in the simulation

program. The prominence of maxtm_ aggressiveness with the precision

control of attitude is clearly Illustrated. Another prominent

characteristic is that maximum variability or scatter in aggressiveness

in bandwidth is associated with precision attitude control.

I
¶
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II I -

HU0Trecklnl 4.0 rU/ee¢ 0.S IS 4q/NO gO 4_1

TracklnI 2.5 0.5 40-50 I!0

ACM Frle mqlqem_t - - 40 70

ilmtW AS 0.S 35 60

_ii_ _ dL5 0.4 40 50

Sleiom 2.0 0.6 30 50

VIIull Ulrn I.S 0.45 410 40

IFRturn - - I0 25

_Onmlvlnlu ml uttllnl Idlntlftel forittltude chlngn ¢ I0°.

Table 5-1. Catalog Of TIIk, PIZ'|OrlellCl
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The same maximum level of aggressiveness :Ln precision attitude

control has been observed for • dLtverse spectre of tasks such as the

HUD track_ng, _CM tracking, sidestep end )inking maneuvers. These tasks

represent both hover and fo_ard flight regimes in NO£ and ACM

scenarios. TherefoL'e it could be suggested that the precision attitude

centre), requirements amy be independent of the specific outer-loop

involved. Thin hypothesis viii not be supported by data from the

current program. It can be expected that the d_aturbence environment

v£1l be the key determJ_ant to the precision attitude control

requirements.

A variety of present it£on forms exist for aggressiveness. The

effective bendvidth based upon the identified natural frequency and

damping ratio for an equivalent second order system, or the roll rate

rise-tiM during a discrete bank angle change could be used. However,

in the analysis of test data the ratio of the peak roll rate to net bank

angle change has been found to be the most convm_ant form. One

compelling advantage of this presentation is its close connection with

control characteristics of the human operator. The pilot's primary

control ob3e_tive is to make discrete changes in attitude to achieve

desired outer-loop tadk performance. He controls and stabilizes

attitude through roll-x_te feedback from visual cues and h£8 kinesthetic

sensory system , i.e., the semi-circular canals.

2. Anl_LtLtude Charact_lstJ.cs

All tasks evaluated under the simulation program exhibit saturation

of roll-rate demal;d for large 4mpl£tude maneuvers. This £s clearly

evidenced in the sir combat tracking data of Figure 5-2.

3. Nmneuvar SettLtag

This parameter is not as easily quantifiable as aggressiveness or

215

00000003-TSD07



log

Q

TllSk Amplitude
80 Chorlictsrtsttcs

PEAKROLLRATE. Pi_ Pmext 40 Oogs/soc

(dog/sac) 60 AOCme"x tOODogs
;

_ox--_ 40 • .0_
• ee •

20 see •
o_O • •

5e', *

- . ' i s i ee ^--il_ml i t , , ,
- IO0 60 -60 -40 -20 20 40 60 60 ! O0

• 011D0.20-1 _4iNK ANGLEIoeoICHANG[.AiI¢ cTose
°dD • • _e

• • • x
• Do

.40

I ACrl Tricking

-60 PllOt KIller
CoflfI_UrOtlOflo
Rune364. 441 end 442

-OO PilOt Rotmg 4 end5

- IO0

PJLguzo 5-2. Cluurlcto_:lLallLtLc Ro21 Rate lr_lkLtJJtg for XAurge AnpUtu_ll

na_uv_ag

216

00000003-TSD08



amplitude. This parameter Is important because of its significance to

response overshoot to • discrete bank angle command, and Its

implications for pilot compensation which Is necessary to counter

vehicle lag and delay. This parameter is therefore associated with

pilot workload.

4. i_'ectakon

This is • secondawy performance metric in large-amplitude

maneuvers. This matric Is paramount in such tasks as disturbance

rejection or target tracking with compensatory pilot control. Howevert

it is only important in large-amplitude maneuvering in the target

tracking or weapon delivery phase for exanple.

n. Vehicle Capability

In section II • clear analytical relationship was developed between

key vehicle design parameters and an upper-bound on closed-loop task

performance. The fundemantal vehicle-centered components which dictate

task perfo:aance are:

(1) Short-tern response

(2) Control power

(3) Control sensitivity

(4) Stability and control cz_a8 coupling

The m•xAnua bandwidth capability for ta:k execution was associated

with a pursuit fsedfocvard strategy on the part of the pilot. In section

IX • square-wave Input model of this strategy was used to define the

upper-bound on vehicle capability. This li:_t corresponds to the

theoretical m•x_um capability without augmentation of the roll response

with sideslip dynenAcs. This approach clearly defined the relationship

between key vehicle response characteristics and closed-loop task
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execution. Large amplitude control is effectively do_dnated by control

power (i.e. _ximum roll rate) characteristics, while small amplitude

(precision) _ontrol is do_Lnated by the the vehicle short-term dynamics.

In the case of the lateral response characteristics of the helicopter

short-tez_n response characteristics are dictated by the flapping
m

stiffness, whale control Power is defined by :mxAmu: swashplate

authority.

C. P_LLot_onterod Co_xmNmt_s

Pilot-centered components are more d4fficult to quantify than task

or vehicle components. In general this rec[uires a precise knowledge of

task command, the vehicle response, and the vehicle controller movement.

The main value in quantifying the pilot-centered components is to

obtain a _escription of the pilot control strategy used includkn9 the

specific amounts of compensation and use of cueing information. For

example, it has Been established that the generation of sign_ficant lead

compensation can be costly in terms of pilot workload and rating.

Some parameter identtfica_.lon was performed An the analysis of thesimulator data with the ob3ective of quantifying amounts of pilot

_* compensation used. This effort was generally unsuccessful because of

_q a:biguities in the command time histories (these needed to be identified

, -_ alSO) •

One approach to quantification of workload-related aspects of pilot

'' centered performance is described in Reference 53 and involves

_... maaau:eaent of controller deflection and :ate. The approach As based on

a theory of pilot rating origtnalAy presented in Reference 54 and has

_'. been used to generate pilot rating predictions relative to system

_.- bandwidth, control, sensitivity, response type, and tracking pr©cision.

__: This technique was considered briefly in this study but could not be

1 _
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purm_od because of lack of resources. Additional work should b, done in

this area.

D. Contzol Effectiveness Criteria Development

I. Def_m.l.t:l.on of Task 14arg:l.n

Task margin i8 defined as the excess vehicle capability over task

demand. It i8 hypothesized to be a parameter appropriate for handling

qualities criteria specification.

The specific means of viewing the vehicle capability versus demand

in task performance is governed by the primary parameter of interest;
i

whether At is control power or short-term response. Short-term response

characteristics dominate in emall-_plitude or precision attitude

control tasks, while the control power ,_ffects are associated with large

_= amplitude maneuvering. In order to address both of the above

f! characteristics adequately the task margin forms shown in Figure 5-3 are

_ suggested. The presentation has the attributes of defining the

!_ relationship of short-term and control power characteristics to the

,'i closed-loop performance, and it is consistent in its form of

i presentation of both characteristics. These characteristics are in

contrast to the current control power ( t30 , _(1)) and short term

_._" response criteria (Lp specification). These are based on open-loop

response characteristics, ere heterogenous in form, and do not permit
m

,_ . quantification of their impact on closed-loop performance.

Using the discrete maneuver analysis approach has allowed

_ definition of task performance on a task-by-task basis. Good handling

_ qualities are essociated with cases where acceptable closed-loop

performance can be achieved without excessive compensation. Vehicle

characteristics supporting such a condition can therefore be

defined. Theoretically, the vehicle design or criteria specification
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can be presented in terms of task margin for either the short-term or

control power issue. This approach will be exercised on the data

-_ obtained from the simulation.-_

%

2. Roll Axis Control Power

Task performance under degraded control power ( maximum roll rate)

+-. con_Ltlons was evaluated for a diverse set of different tasks in the

i simulation program. These tasks include HUD tracking, ACM tracking and

£_ the sidestep task and sp&n the nap-of-the-earth and air combat
_ maneuvering environments. The complete set of back-up data from theJ

_ simulation is shown in Figure 5-4, and summarized in Figure 5-5. As can

_ be seen the deterioration of pilot rating due to the task dependent

__ deficiency of control power followed a consistent trend in each case.
", For a control power capability of 15 degs/sec under the maximum task

+._,,," demand, the pilot rating was subject to an abrupt worsening. Additional

_, saturation then produced a more gradual degradation. These data are

plotted in Figure 5-6 in terms of the the control power task margin

_ factor:

_,.:_" Pmaxveh l_iximurn Vehlcle Roll Rele CepNi:)llltQ

q = Pm =ax - 15.0 degs/sec Task _rnslKI Roll Rate - 15 deOstsec
man

_ Thus a control power criterion based upon the parameter I] is
_u._W

maneuver independent. Note a_Iso that there is no graceful degradation

from Level I to Level 2. Rather, the jump is essentlally from Level I

_' to Level 3.
• _e+

-_i" I
• _q'o

_. C, Roll Ax_L8 SheEt-TeEm Rompoqme

,,. Three vehicle configurations corresponding to a teetering rotor

_ with a Bell-bar, an articulated rotor and a rigid rotor were evaluated

i._:! An a number of different tasks. Figure 5-7 presents the pilot rating
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data with bandwidth variation in the HUD track_Lng task. Maneuver

performance data for these three configurations is shown in Figure 5°-8.

The data points shown represent amx£mua bandwidth data collected for the

three vehicles. It is observed that the pilot exploits the increased

, blndwidth cap4bility of the system in affecting the task. Furthermore,

there appears to be two regions of dLtst.tnctly different task execution.

For small amplitude (precision attitude control) the pilot may be using

a puEsuit strategy, using close to the maximum bandwidth capability of

the system. This region co_emponds to a pulsiva type control strategy.

For l_rger attitude changes there is significant reduction in the

closed-loop bandwidth sought.

Due to the task design and relatively long throughput time delay

(about 200 meet) adequate pilot opinion ratings and commentary are not

available to provide a criteria specification for short-term response as

presented for control power. The above data however suggest that the

task margin approach is appropriate to the specification of short-tez:

response characterist_Lcs as well as control power. The definition of

specific numbers for the criteria will be pursued in the future.

3. Roll Rate Senl£tJLvity

The control sen_itkvity was not a variable in the s4mulaCor study.

Based upon the trends in_Lcated in other stu_Les (e.g. References 55 and

56) and the consistency of peak roll rates observed in the analysis of

flight data, there was believed to be a sound basis for maintaining a

constant roll rate sensitivity. The nominal value was set in the range

17-20 degs/sec/stick inch.

Due to the nature of the experiments run, control sensitivity could

not be varied over a wade range without restricting the large amplitude

maneuvers or requiring excessively large manipulator movement for

!_ smell-amplitude corrections. This observation itself describes natural
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design li_Lts whirl: _ke the variation in sensitivity beyond fine tuning

_! a somewhat academic exerc£ae.

i.i 4. ugbar auentaton syatu lpeS

'| .
.. Due to simulator fidelity problems no useful data in tom of

control power or short-term response variations was obt£ined for the

• h4gher augmentation system types. The task margin can however be

i applied to the rate command system in exactly the same manner as the
a
:. basic helicopter analysis was dealt with. The attitude command system

,_ needs fu:ther analysis to p.-tdlct an upper-b_und on vehicle performance

due to the pilot's capability to enhance performance by overdriving the

i_ system. This approach to vehicle capability definition may also have an
rJ
- application in determining the control power/short-term response

_* necessary for augmentation.

ii e. C_q_rlsoa with P--_eed Control Paver C:£terJ_t forNZL-H-8501A Dilate

p '

-. With regard to the the forward flight control power for Level I
r-,

>,' handling qualities unde= aggressive maneuvering conc_Lt£ons, section

_. 3.6.8.1 of the p_oposed MIL-H-8501A update (Reference 3) states that:

r_

• "The response to _%Ltl lateral cont_roller input shall result in 30

degrees of bank angle change within 1.1 seconds for aggressive

maneuvering under Level 1"

:-_ It is instructive to compare response capability, Lp - -10 and Lp -

-0.75 based upon the above criteria. The response is shown in phase-
!,_ plane form in Figure 5-9 for tP _ two vehicles and further compares this

,, with the response demonstrated in a number of maneuvering tabks. The

_ following observations can be made:
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_ -10 For large values of Lp , the t criterion serves to define the30

steady-state roll rats capability (pss-30.O/t dege/sec). The actual

roll rate capability prescribed by this criterion is 27 degs/sec. From

Figure 5-9 the bandwidth of the vehicle is high enough to encompass all

maneuvers however the roll rate capability is ¢lea_ly deficient with

regard to the HUD and ACM tracking tasks. Based t,pon the analys.s of

the control power requirements (Sectxon V-D), the vehicle would _e Level

3 in these two maneuvers based upon the reeultR of this current

simulation.

_p _ -0.75 The steady-state roll rate capability of this vehicle is 114

degs/sec, almost 4 times that of the vehicle above. The t30 criterion

no longer defines steady-state roll rate capability but rather the

short-term response. The required four fold increase in control power

is required to make up for the short-term response deficiencies of this

vehicle. Only the HUD tracking task cannot be accomodated with tltis

vehicle. However the low value of Lp would result in probable Level 3

handling qualities due the pilot lead compensation requirements.

i The physical significance of the parameter t30 is thus dependentupon the particular dynamics involved. The closed-loop task
"qqb

performance capability therefore varies significantly within the class

of vehicles satisfying t30. A _aneuverlng criteria should have the

property that all vehicles satisfying it are uniformly capable o:_

i performing the same maneuver. Time to 30 degrees, a& demonstrated

above, does not satisfy this requirement.

i

A steady-stats roll rate requirement is implicit in the t30

U specification. It is believed that the data base used to define the
4

current requirement was based upon tasks demanding only 30 degs/sec

_," maximum roll rates. In addition, t30 allows for a trade-off of excess

_ control power to make up for short-term response deficiencies. However,

the short-term response area is already addressed by a specification of

"_ 233
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roll-rate rise tame (Reference 3)• Thus the t30 specification

encompasses vehicles with excessive bandwidth capability but adequate

control power, and those with excessive control power but deficient

bandwioth This problem ham arisen because the two fundamental,

independent parameters defining closed-loop task perfo_nce, i.e., t

g aggressiveness and maximum roll rate, have not been addressed on an

_ independent basis.

!_ The appropriate criteria 8paoification parameters are:
o Naximumsteady-atate roll rate

o An open-loop bandwidth criteria based upon roll-rate rise time

for example

Based upon the simulation results the roll control power tenement

calls for at least 50 deus/sec steady-state roll rate capability. Thir

is based upon the ACM tracking task results, neglecting the higher

_i requirements of the slngle-loop HUD tracking task. The present study
_." has not however provided an adequate basis for short-term response

--_ requirements, and this will be the focus of additional work•

"" F. Areas of Fm_he_ Analysi_

_ 1_ Theoretical

_' Significant advances are posslble in the area of generic task
q,

performance modeling and prediction of aggresslveness requirements.

_ The work due to Hess provides the capabAllty for performance prediction

based upon manual control theory math models. A short analysis from the

-e Reference 57 "triple bend" maneuvers and the Reference 27 "slalom

_ maneuvers" is given to illustrate the potential of this methodology.

_" 234
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!!
Triple Bend Maneuvers This analysis Is based upon the pursuit-preview

k tracking hypothesis using the flow-field information as discussed in

:i,i Reference 58. Figure 5-10 shows the pilot loop closure for a general

lateral tracking task and a diagram of the triple bend geomegry from• Reference 57. Note that the temporal frequencies of the bends are a
: 5

:'. simple function of the the flight speed and the curvature of the bend.

_,,_, Based u,wn the measured values from a similar lateral task reported in

'_ , Reference 59j values for the outer-loop gain and lead time constant are

computed _'or each triple bond condition. (This assumes a crossoverfrequency c_ual to twice the temporal frequency to ensure adequate

,.- outer-loop performance). The sets of pilot model values for each case
ru e

:._ are summarized in Table 5-2.

"_ Reference 60 shows that for pursult-prevlew tracP&ng, the pilot may

.-. use p(t) in the inner loGp and P(t ��xpreview. Based upon this the

,,% following equation can be used _o express p(t+T) where _ is the preview

time:

p(t+7) =U Ky[(1 - TL/T) JB(S,)+ (TL/T) JB(S2)]

:_ The value of I_ will be 3st to the effective inner-loop pilot delay and

_" is assumed to be about 0.3 sacs.

The visual field involves geometry describing the commanded
;_ groundtracl" and visual streamer information. Using the above triple

_ bend geometries, the angles _(SI ) and _($2 ) can be computed. The

_ values shown correspond to points in the £1ight path where the roll

reversals _nd maximum roll rates occur t i.e. going from one

'., se_i-clrcular arc to the other.

"_ The resulting peak roll rate estimates are tabulated in Table 5-2.

:i_ minally, in Figure 5-11 these estimates are compared to the simulator

:_% 235
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Tibla 5-2. T_Iple Bend Maneuver l_k_,_1 Parameters

RT U _ _ TL Ky _(sl)_(s2) Bk _.
(ft) (kt) (roa/t)(r_0/s) (sac) (ro01ft) (rnd) (rod) (aeg/s) (0eg)

' i ! ! i i ] , J

Q

200 60 051 1.02 10 00025 030 0.59 144 115

500 40 013 026 tO 0.00095 00_I 0161 I0 32

500 50 020 040 i0 00010 012 024 24 65

500 80 027 054 10 00010 015 0.32 42 97

500 100 034 0.06 10 00016 0.20 0.40 IIg 121

I140F
Large Triple Bend Stmulator Result

120 I Smell Triple Bend Stmulator Result

,_ _ O HISS Prad_ction

... lO0

'_" BO

6O

2O

0 ,I | I I I I
0 20 40 60 O0 IO0 t 20

.,_ §ANK ANGLECHANGE,L_8cO

, -, (de_

• Figure 5-11. Comparison of Pro_Lcted and Simula_Lon Data for the
4

'_ Triple Bend Maneuver
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i i

-i) results reported in Reference 57. The agreement is good and suggest

--I that at least for maneuvers where the geomet_7 is well defined, the

4

i inner-loop maneuver performance in terms of aggressiveness and amplitude
....}

iS, in turn, well defined.

_! Slalom Maneuvers As shown in Figure 3-18 the slalom maneuvers reported "_; in Reference 27 are ._irticularly representative of the roll rate

limiting phenomenon. For this uon£ig_ratlon, at least, the roll damping

is high thus the attitude dynamics are rate like in t/_e region of

crossover. Based upon similar condltlons Reference 59 Indicated a bank

angle crossover of about 2.6 reds/sac and a groundtrack (y) crossover at

about 0.35 reds/see. Referring back to the method applied to the triple

bend, the peak roll r_te estimate for the slalom case is about 20

degs/sec, a value close to those noted in Figure 3-18.

The above analysis shows the potential for prsdlct/ng closed-loop

i task performance requirements based upon task definition. This approach

needs to be applied to the other tasks investigated in the simulatio_Ao
_I This method when combined with the task margin approach to handling
--hi qualities prediction has the potential to offer a closed-form analytical

approach for vehicle design to handling qualities specifications.

2. Experimental

Further analysis and investigation needs to be conducted in the

area of short-term response requirements. This will require further
i

! simulation D and supportive data from flight test is highly desirable.

! In order for simulation to provide adequate short-term response fidelity

i significant advances need to be made in determining the effects of

computational ddlay and limited visual and motion cueing on task

performance. .,,
st4

The control system type issue also needs to be addressed. No clear

238 '_
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indication was found in the present program for detezmining the

appropriateness of ,,control response type,' as a function of task. In

particular the attitude-command/attitude-hold system was useU for the

air combat maneuvering on several occasions and was not found to be

limiting. For future workj a methodology needs to be established for

• prescribing control response type as a function of mission. The

specific topic of higher response types in unattended, high workload

scenarios and in the degraded c4e environment described in Reference 3

needs to be addressed.
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. Caa_l_£oms

Closed-loop task performL_ce can be defined in terms of the peak

roll rate/ attitude change signature. Quantitative values for the

• maneuver amp_ituda and aggressiveness can be used to define the maneuver

demand lim4ts. A quantitativa catalog of task performance has been

compiled for a diverse set of flight tasks from nap-of-the-earth to air

combat maneuvering bessd upon a moving base s_ulation program.

The fundamental dynamics governing helicopter roll response have

been defined. The general response can be considered to be second

order, not first order as implied by quasi-statlc models. A square wave

input method has been used to define maximum task performance capability

and clearly define the audit trail between key vehicle design parameters

and closed-loop task Performance. The input is suited to the

demonst_atlon of vehicle capabilit7 in the flight test environment.

The definition of task margin (the excess vehicle capability over

task demand) has proven viable for integrating the concepts of

short-term response and control power into a common framework. The

contribution of each to closed-loop task execution has provided a

unified structure for the specification of control power and short-term

response handling qualities cr_terla. This structure 18 based upon

closed-loop performance and is independent of the sF_ciflc task involved

in stxlct contrast to the structure proposed in the MIL-H-8501A update

(Reference 3),

. The simulation program allowed definition of specific numbers for

the control power criteria based upon the task margin approach. For

multi-loop control tasks a steady-state roll rate capability of at least

50 degs/sec is required based upon the slmulation results. Simulator

limitations did not provide an adequate definition of s short-term

response criteria.
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._ Xt has been shown that time to 30 degrees bank following full

,_ lateral control input is not a suitable maneuvering criteria. The
L/4

_- physical significance of this parameter As dependent upon the particular

dynamics involved, and the performance capability varies significantly

i •
within the class of vehicles sal_Lsfying the t30 requirement. The

'-_ independent parameters appropriate for lateral control effec';ivenees-

criteria specification are:

o Maximum steady-state roll rate

_4

o An open-loop bandwidth criteria based upon roll-rate rise rime

for example

The theoretical work of Hess involving manual control math models,

and specifically the flow-field modeling techniques for the visual

_-. scene, have potential for 9eaeric task performance modeling and

aggressiveness prediction. Combination of this with the task margin

approach to handling qualities prediction may offer a closed-form

analytical approach for vehicle design tc handling qualities

specifications.

|r_

A future simulator or In-flight program is required to define the

• short-term response criteria. An In-flight program may b_ required if

_ significant Improvements cannot be made in the simulator delay effects.

Additional work is also needed to address the appropriateness of control

system type to task performance. The operation of higher augmentation

systems in unattended, high workload scenarios and under degraded

_ visibility conditions needs investigation

I
__

q

Q
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