5,347 research outputs found

    Interferometric data for a shock-wave/boundary-layer interaction

    Get PDF
    An experimental study of the axisymmetric shock-wave / boundary-layer strong interaction flow generated in the vicinity of a cylinder-cone intersection was conducted. The study data are useful in the documentation and understanding of compressible turbulent strong interaction flows, and are part of a more general effort to improve turbulence modeling for compressible two- and three-dimensional strong viscous/inviscid interactions. The nominal free stream Mach number was 2.85. Tunnel total pressures of 1.7 and 3.4 atm provided Reynolds number values of 18 x 10(6) and 36 x 10(6) based on model length. Three cone angles were studied giving negligible, incipient, and large scale flow separation. The initial cylinder boundary layer upstream of the interaction had a thickness of 1.0 cm. The subsonic layer of the cylinder boundary layer was quite thin, and in all cases, the shock wave penetrated a significant portion of the boundary layer. Owing to the thickness of the cylinder boundary layer, considerable structural detail was resolved for the three shock-wave / boundary-layer interaction cases considered. The primary emphasis was on the application of the holographic interferometry technique. The density field was deduced from an interferometric analysis based on the Able transform. Supporting data were obtained using a 2-D laser velocimeter, as well as mean wall pressure and oil flow measurements. The attached flow case was observed to be steady, while the separated cases exhibited shock unsteadiness. Comparisons with Navier-Stokes computations using a two-equation turbulence model are presented

    Amorphous slicing of extended finite state machines

    Get PDF
    Slicing is useful for many Software Engineering applications and has been widely studied for three decades, but there has been comparatively little work on slicing Extended Finite State Machines (EFSMs). This paper introduces a set of dependency based EFSM slicing algorithms and an accompanying tool. We demonstrate that our algorithms are suitable for dependence based slicing. We use our tool to conduct experiments on ten EFSMs, including benchmarks and industrial EFSMs. Ours is the first empirical study of dependence based program slicing for EFSMs. Compared to the only previously published dependence based algorithm, our average slice is smaller 40% of the time and larger only 10% of the time, with an average slice size of 35% for termination insensitive slicing

    Checkout system tradeoff study

    Get PDF
    Selection considerations for prelaunch test equipment system for Apollo telescope moun

    Streamwise vortex structure in plane mixing layers

    Get PDF
    The development of three-dimensional motions in a plane mixing layer was investigated experimentally. It is shown that superimposed on the primary, spanwise vortex structure there is a secondary, steamwise vortex structure. Three aspects of this secondary structure were studied. First, the spanwise vortex instability that generates the secondary structure was characterized by measurements of the critical Reynolds number and the spanwise wavelength at several flow conditions. While the critical Reynolds number was found to depend on the velocity ratio, density ratio and initial shear-layer-profile shape, the mean normalized wavelength is independent of these parameters. Secondly, flow visualization in water was used to obtain cross-sectional views of the secondary structure associated with the streamwise counter-rotating vortices. A model is proposed in which those vortices are part of a single vortex line winding back and forth between the high-speed side of a primary vortex and the low-speed side of the following one. Finally, the effect of the secondary structure on the spanwise concentration field was measured in a helium-nitrogen mixing layer. The spatial organization of the secondary structure produces a well-defined spanwise entrainment pattern in which fluid from each stream is preferentially entrained at different spanwise locations. These measurements show that the spanwise scale of the secondary structure increases with downstream distance

    Apollo telescope mount. A partial listing of scientific publications and presentations, supplement 1

    Get PDF
    Compilations of bibliographies from the principal investigator groups of the Apollo Telescope Mount (Skylab solar observatory facility) are presented. The publications listed are divided into the following categories: (1) journal publications, (2) journal publications submitted, (3) other publications, (4) presentations - national and international meetings; and (5) other presentations

    IP forwarding alternatives in cell switched optical networks

    Get PDF
    Optical switching will enable core Internet packet switching to scale with future transmission rate increases. Currently proposed optical ATM switches do not allow packet reassembly, which is necessary for packet level forwarding. This results in the requirement to create end to end ATM virtual connections for flows even if they contain only one packet. In electronically switched networks MPOA and MPLS allow both cell and packet level forwarding to overcome this problem. This paper examines the feasibility of implementing such protocols over an optically switched network. Two different architectures are examined: use of an adjunct electrical router; and native optical packet reassembly. An examination of the optical reassembly buffer requirements show that the use of MPLS will require significantly more buffering than MPOA

    Coalescence of two pressure waves associated with stream interactions

    Get PDF
    An MHD unsteady 1-D model is used to simulate the interaction and coalescence of two pressure waves in the outer heliosphere. Each of the two pressure waves was a compression region bounded by a shock pair. Computer simulation using Voyager data as input demonstrates the interaction and coalescence process involving one pressure wave associated with a fast stream and the other pressure wave without a fast stream. The process produced a significant change in the magnetic field and plasma signatures. The propagation of the forward and reverse shocks first widened the radial dimension of the shock compression region with increasing heliocentric distances. The shocks belonging to two neighboring compression regions eventually collided and two compression regions began to overlap with each other. This type of interaction is a dominant dynamical process in the outer heliosphere, and significantly and irreversible alters the structure of the medium
    • ā€¦
    corecore