1,447 research outputs found

    Efficient diagnosis of multiprocessor systems under probabilistic models

    Get PDF
    The problem of fault diagnosis in multiprocessor systems is considered under a probabilistic fault model. The focus is on minimizing the number of tests that must be conducted in order to correctly diagnose the state of every processor in the system with high probability. A diagnosis algorithm that can correctly diagnose the state of every processor with probability approaching one in a class of systems performing slightly greater than a linear number of tests is presented. A nearly matching lower bound on the number of tests required to achieve correct diagnosis in arbitrary systems is also proven. Lower and upper bounds on the number of tests required for regular systems are also presented. A class of regular systems which includes hypercubes is shown to be correctly diagnosable with high probability. In all cases, the number of tests required under this probabilistic model is shown to be significantly less than under a bounded-size fault set model. Because the number of tests that must be conducted is a measure of the diagnosis overhead, these results represent a dramatic improvement in the performance of system-level diagnosis techniques

    Quantifying fault recovery in multiprocessor systems

    Get PDF
    Various aspects of reliable computing are formalized and quantified with emphasis on efficient fault recovery. The mathematical model which proves to be most appropriate is provided by the theory of graphs. New measures for fault recovery are developed and the value of elements of the fault recovery vector are observed to depend not only on the computation graph H and the architecture graph G, but also on the specific location of a fault. In the examples, a hypercube is chosen as a representative of parallel computer architecture, and a pipeline as a typical configuration for program execution. Dependability qualities of such a system is defined with or without a fault. These qualities are determined by the resiliency triple defined by three parameters: multiplicity, robustness, and configurability. Parameters for measuring the recovery effectiveness are also introduced in terms of distance, time, and the number of new, used, and moved nodes and edges
    corecore