9,821 research outputs found

    Automated Functional Testing based on the Navigation of Web Applications

    Full text link
    Web applications are becoming more and more complex. Testing such applications is an intricate hard and time-consuming activity. Therefore, testing is often poorly performed or skipped by practitioners. Test automation can help to avoid this situation. Hence, this paper presents a novel approach to perform automated software testing for web applications based on its navigation. On the one hand, web navigation is the process of traversing a web application using a browser. On the other hand, functional requirements are actions that an application must do. Therefore, the evaluation of the correct navigation of web applications results in the assessment of the specified functional requirements. The proposed method to perform the automation is done in four levels: test case generation, test data derivation, test case execution, and test case reporting. This method is driven by three kinds of inputs: i) UML models; ii) Selenium scripts; iii) XML files. We have implemented our approach in an open-source testing framework named Automatic Testing Platform. The validation of this work has been carried out by means of a case study, in which the target is a real invoice management system developed using a model-driven approach.Comment: In Proceedings WWV 2011, arXiv:1108.208

    JWalk: a tool for lazy, systematic testing of java classes by design introspection and user interaction

    Get PDF
    Popular software testing tools, such as JUnit, allow frequent retesting of modified code; yet the manually created test scripts are often seriously incomplete. A unit-testing tool called JWalk has therefore been developed to address the need for systematic unit testing within the context of agile methods. The tool operates directly on the compiled code for Java classes and uses a new lazy method for inducing the changing design of a class on the fly. This is achieved partly through introspection, using Java’s reflection capability, and partly through interaction with the user, constructing and saving test oracles on the fly. Predictive rules reduce the number of oracle values that must be confirmed by the tester. Without human intervention, JWalk performs bounded exhaustive exploration of the class’s method protocols and may be directed to explore the space of algebraic constructions, or the intended design state-space of the tested class. With some human interaction, JWalk performs up to the equivalent of fully automated state-based testing, from a specification that was acquired incrementally

    An Automated Approach to Auditing Disclosure of Third-Party Data Collection in Website Privacy Policies

    Full text link
    A dominant regulatory model for web privacy is "notice and choice". In this model, users are notified of data collection and provided with options to control it. To examine the efficacy of this approach, this study presents the first large-scale audit of disclosure of third-party data collection in website privacy policies. Data flows on one million websites are analyzed and over 200,000 websites' privacy policies are audited to determine if users are notified of the names of the companies which collect their data. Policies from 25 prominent third-party data collectors are also examined to provide deeper insights into the totality of the policy environment. Policies are additionally audited to determine if the choice expressed by the "Do Not Track" browser setting is respected. Third-party data collection is wide-spread, but fewer than 15% of attributed data flows are disclosed. The third-parties most likely to be disclosed are those with consumer services users may be aware of, those without consumer services are less likely to be mentioned. Policies are difficult to understand and the average time requirement to read both a given site{\guillemotright}s policy and the associated third-party policies exceeds 84 minutes. Only 7% of first-party site policies mention the Do Not Track signal, and the majority of such mentions are to specify that the signal is ignored. Among third-party policies examined, none offer unqualified support for the Do Not Track signal. Findings indicate that current implementations of "notice and choice" fail to provide notice or respect choice

    Expert system decision support for low-cost launch vehicle operations

    Get PDF
    Progress in assessing the feasibility, benefits, and risks associated with AI expert systems applied to low cost expendable launch vehicle systems is described. Part one identified potential application areas in vehicle operations and on-board functions, assessed measures of cost benefit, and identified key technologies to aid in the implementation of decision support systems in this environment. Part two of the program began the development of prototypes to demonstrate real-time vehicle checkout with controller and diagnostic/analysis intelligent systems and to gather true measures of cost savings vs. conventional software, verification and validation requirements, and maintainability improvement. The main objective of the expert advanced development projects was to provide a robust intelligent system for control/analysis that must be performed within a specified real-time window in order to meet the demands of the given application. The efforts to develop the two prototypes are described. Prime emphasis was on a controller expert system to show real-time performance in a cryogenic propellant loading application and safety validation implementation of this system experimentally, using commercial-off-the-shelf software tools and object oriented programming techniques. This smart ground support equipment prototype is based in C with imbedded expert system rules written in the CLIPS protocol. The relational database, ORACLE, provides non-real-time data support. The second demonstration develops the vehicle/ground intelligent automation concept, from phase one, to show cooperation between multiple expert systems. This automated test conductor (ATC) prototype utilizes a knowledge-bus approach for intelligent information processing by use of virtual sensors and blackboards to solve complex problems. It incorporates distributed processing of real-time data and object-oriented techniques for command, configuration control, and auto-code generation

    FixMiner: Mining Relevant Fix Patterns for Automated Program Repair

    Get PDF
    Patching is a common activity in software development. It is generally performed on a source code base to address bugs or add new functionalities. In this context, given the recurrence of bugs across projects, the associated similar patches can be leveraged to extract generic fix actions. While the literature includes various approaches leveraging similarity among patches to guide program repair, these approaches often do not yield fix patterns that are tractable and reusable as actionable input to APR systems. In this paper, we propose a systematic and automated approach to mining relevant and actionable fix patterns based on an iterative clustering strategy applied to atomic changes within patches. The goal of FixMiner is thus to infer separate and reusable fix patterns that can be leveraged in other patch generation systems. Our technique, FixMiner, leverages Rich Edit Script which is a specialized tree structure of the edit scripts that captures the AST-level context of the code changes. FixMiner uses different tree representations of Rich Edit Scripts for each round of clustering to identify similar changes. These are abstract syntax trees, edit actions trees, and code context trees. We have evaluated FixMiner on thousands of software patches collected from open source projects. Preliminary results show that we are able to mine accurate patterns, efficiently exploiting change information in Rich Edit Scripts. We further integrated the mined patterns to an automated program repair prototype, PARFixMiner, with which we are able to correctly fix 26 bugs of the Defects4J benchmark. Beyond this quantitative performance, we show that the mined fix patterns are sufficiently relevant to produce patches with a high probability of correctness: 81% of PARFixMiner's generated plausible patches are correct.Comment: 31 pages, 11 figure

    What Causes My Test Alarm? Automatic Cause Analysis for Test Alarms in System and Integration Testing

    Full text link
    Driven by new software development processes and testing in clouds, system and integration testing nowadays tends to produce enormous number of alarms. Such test alarms lay an almost unbearable burden on software testing engineers who have to manually analyze the causes of these alarms. The causes are critical because they decide which stakeholders are responsible to fix the bugs detected during the testing. In this paper, we present a novel approach that aims to relieve the burden by automating the procedure. Our approach, called Cause Analysis Model, exploits information retrieval techniques to efficiently infer test alarm causes based on test logs. We have developed a prototype and evaluated our tool on two industrial datasets with more than 14,000 test alarms. Experiments on the two datasets show that our tool achieves an accuracy of 58.3% and 65.8%, respectively, which outperforms the baseline algorithms by up to 13.3%. Our algorithm is also extremely efficient, spending about 0.1s per cause analysis. Due to the attractive experimental results, our industrial partner, a leading information and communication technology company in the world, has deployed the tool and it achieves an average accuracy of 72% after two months of running, nearly three times more accurate than a previous strategy based on regular expressions.Comment: 12 page
    • …
    corecore