202,366 research outputs found

    Local Edge Betweenness based Label Propagation for Community Detection in Complex Networks

    Full text link
    Nowadays, identification and detection community structures in complex networks is an important factor in extracting useful information from networks. Label propagation algorithm with near linear-time complexity is one of the most popular methods for detecting community structures, yet its uncertainty and randomness is a defective factor. Merging LPA with other community detection metrics would improve its accuracy and reduce instability of LPA. Considering this point, in this paper we tried to use edge betweenness centrality to improve LPA performance. On the other hand, calculating edge betweenness centrality is expensive, so as an alternative metric, we try to use local edge betweenness and present LPA-LEB (Label Propagation Algorithm Local Edge Betweenness). Experimental results on both real-world and benchmark networks show that LPA-LEB possesses higher accuracy and stability than LPA when detecting community structures in networks.Comment: 6 page

    Circle-based Eye Center Localization (CECL)

    Full text link
    We propose an improved eye center localization method based on the Hough transform, called Circle-based Eye Center Localization (CECL) that is simple, robust, and achieves accuracy on a par with typically more complex state-of-the-art methods. The CECL method relies on color and shape cues that distinguish the iris from other facial structures. The accuracy of the CECL method is demonstrated through a comparison with 15 state-of-the-art eye center localization methods against five error thresholds, as reported in the literature. The CECL method achieved an accuracy of 80.8% to 99.4% and ranked first for 2 of the 5 thresholds. It is concluded that the CECL method offers an attractive alternative to existing methods for automatic eye center localization.Comment: Published and presented at The 14th IAPR International Conference on Machine Vision Applications, 2015. http://www.mva-org.jp/mva2015

    Evaluating Overfit and Underfit in Models of Network Community Structure

    Full text link
    A common data mining task on networks is community detection, which seeks an unsupervised decomposition of a network into structural groups based on statistical regularities in the network's connectivity. Although many methods exist, the No Free Lunch theorem for community detection implies that each makes some kind of tradeoff, and no algorithm can be optimal on all inputs. Thus, different algorithms will over or underfit on different inputs, finding more, fewer, or just different communities than is optimal, and evaluation methods that use a metadata partition as a ground truth will produce misleading conclusions about general accuracy. Here, we present a broad evaluation of over and underfitting in community detection, comparing the behavior of 16 state-of-the-art community detection algorithms on a novel and structurally diverse corpus of 406 real-world networks. We find that (i) algorithms vary widely both in the number of communities they find and in their corresponding composition, given the same input, (ii) algorithms can be clustered into distinct high-level groups based on similarities of their outputs on real-world networks, and (iii) these differences induce wide variation in accuracy on link prediction and link description tasks. We introduce a new diagnostic for evaluating overfitting and underfitting in practice, and use it to roughly divide community detection methods into general and specialized learning algorithms. Across methods and inputs, Bayesian techniques based on the stochastic block model and a minimum description length approach to regularization represent the best general learning approach, but can be outperformed under specific circumstances. These results introduce both a theoretically principled approach to evaluate over and underfitting in models of network community structure and a realistic benchmark by which new methods may be evaluated and compared.Comment: 22 pages, 13 figures, 3 table
    • …
    corecore