11,740 research outputs found

    Robust Model Predictive Control for Signal Temporal Logic Synthesis

    Get PDF
    Most automated systems operate in uncertain or adversarial conditions, and have to be capable of reliably reacting to changes in the environment. The focus of this paper is on automatically synthesizing reactive controllers for cyber-physical systems subject to signal temporal logic (STL) specifications. We build on recent work that encodes STL specifications as mixed integer linear constraints on the variables of a discrete-time model of the system and environment dynamics. To obtain a reactive controller, we present solutions to the worst-case model predictive control (MPC) problem using a suite of mixed integer linear programming techniques. We demonstrate the comparative effectiveness of several existing worst-case MPC techniques, when applied to the problem of control subject to temporal logic specifications; our empirical results emphasize the need to develop specialized solutions for this domain

    A Comparative Study on the L-1 Optimal Event-Based Method for Biped Walking on Rough Terrains

    Get PDF
    This paper is concerned with a comparative study of biped walking on rough terrains. Given a bipedal robot capable of walking on a flat ground with periodic behavior, whose motion can be described by a limit cycle with the Poincare map, we consider whether the robot remains stable on rough terrain, in which geometrical uncertainties of the terrain are assumed to be persistent and bounded. More precisely, the l(infinity)-induced norm is defined on the Poincare map and taken as a performance measure evaluating a robot walking with the bounded persistent uncertainties. To minimize the performance measure and achieve an optimal walking performance, we further provide a systematic controller design scheme consisting of a inner-loop continuous-time controller and a outer-loop event-based controller, in which the latter is described as a sort of the l(1) optimal controller. Finally, the validity as well as the effectiveness of our proposed methods in biped walking on a rough terrain are demonstrated through simulation studies.11Yscopu

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Two Cases of Study for Control Reconfiguration of Discrete Event Systems (DES)

    Get PDF
    International audienceIn this paper, we propose two cases of study for control reconfiguration of Discrete Event Systems. The main contributions are based on a safe centralized and distributed control synthesis founded on timed properties. In fact, if a sensor fault is detected, the controller of the normal behavior is reconfigured to a timed controller where the timed information replaces the information lost on the faulty sensor. Finally, we apply our contribution to a manufacturing system to illustrate our results and compare between the two frameworks

    Relay ladder logic and petri nets for discrete event control design : a comparative study

    Get PDF
    In the 1960\u27s and earlier discrete event systems (DES) were controlled by hardwired electromechanical relay systems. In 1969 an electronic programmable logic controller (PLC) was introduced. PLC\u27s have been programmed utilizing relay ladder logic (RLL). RLL is a graphical programming language with software devices used to emulate electromechanical devices. RLL programs, however, often become large and difficult to understand because its graphical representation of physical switching devices obscures the discrete event dynamics inherent in the process to be controlled. Petri nets are a methodology for modeling discrete event systems (DES). Using a Petri net based controller, a control strategy could be developed that captures the discrete event dynamics of the process. This should result in a control strategy that is much easier to understand, troubleshoot, modify and evaluate
    corecore