5 research outputs found

    Short-Term Electricity Demand Forecasting with Machine Learning

    Get PDF
    Project Work presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business AnalyticsAn accurate short-term load forecasting (STLF) is one of the most critical inputs for power plant units’ planning commitment. STLF reduces the overall planning uncertainty added by the intermittent production of renewable sources; thus, it helps to minimize the hydro-thermal electricity production costs in a power grid. Although there is some research in the field and even several research applications, there is a continual need to improve forecasts. This project proposes a set of machine learning (ML) models to improve the accuracy of 168 hours forecasts. The developed models employ features from multiple sources, such as historical load, weather, and holidays. Of the five ML models developed and tested in various load profile contexts, the Extreme Gradient Boosting Regressor (XGBoost) algorithm showed the best results, surpassing previous historical weekly predictions based on neural networks. Additionally, because XGBoost models are based on an ensemble of decision trees, it facilitated the model’s interpretation, which provided a relevant additional result, the features’ importance in the forecasting

    A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings

    Get PDF
    Buildings are one of the main consumers of energy in cities, which is why a lot of research has been generated around this problem. Especially, the buildings energy management systems must improve in the next years. Artificial intelligence techniques are playing and will play a fundamental role in these improvements. This work presents a systematic review of the literature on researches that have been done in recent years to improve energy management systems for smart building using artificial intelligence techniques. An originality of the work is that they are grouped according to the concept of "Autonomous Cycles of Data Analysis Tasks", which defines that an autonomous management system requires specialized tasks, such as monitoring, analysis, and decision-making tasks for reaching objectives in the environment, like improve the energy efficiency. This organization of the work allows us to establish not only the positioning of the researches, but also, the visualization of the current challenges and opportunities in each domain. We have identified that many types of researches are in the domain of decision-making (a large majority on optimization and control tasks), and defined potential projects related to the development of autonomous cycles of data analysis tasks, feature engineering, or multi-agent systems, among others.European Commissio

    Non-Intrusive Disaggregation of Advanced Metering Infrastructure Signals for Demand-Side Management

    Get PDF
    As intermittent renewable energy generation resources become more prevalent, innovative ways to manage the electric grid are sought. In the past, much of the grid balancing effort has been focused on the supply side or on demand-side management of large commercial or industrial electricity customers. Today, with the increase in enabling technologies such as Internet-connected appliances, home energy management systems, and advanced metering infrastructure (AMI) smart meters, residential demand-side management is also a possibility. For a utility to assess the potential capacity of residential demand-side flexibility, power data from controllable appliances from a large sample of houses is required. These data may be collected by installing time- and cost-intensive monitoring equipment at every site, or, alternatively, by disaggregating the signals communicated to the utility by AMI meters. In this study, non-intrusive load monitoring algorithms are used to disaggregate low-resolution real power signals from AMI smart meters. Disaggregation results using both supervised and unsupervised versions of a graph signal processing (GSP) -based algorithm are presented. The effects of varying key parameters in each GSP algorithm, including scaling factor, sequence, and classifier threshold are also presented, and limitations of the algorithm based on energy use patterns are discussed. FM values greater than 0.8 were achieved for the electric resistance water heater and electric vehicle charger using the unsupervised GSP algorithm. The disaggregated signals are then used to develop energy forecasting models for predicting the load of controllable appliances over a given demand response period. ARIMA, SVR, and LSTM forecasting methods were evaluated and compared to a baseline model developed using the mean hourly power draw values. The minimum MAAPE was achieved for the water heater, with an approximate range of 10 < MAAPE < 20. The total energy flexibility of each appliance and the associated uncertainty of the combined disaggregation and forecast are characterized to assess the feasibility of this approach for demand-side management applications. The framework presented in this study may be used to characterize the ability of signals to be disaggregated from a larger dataset of AMI data, based on the whole-house signal characteristics. This analysis can aid grid managers in assessing the viability of selected devices, such as the water heater, for demand response activities.Ph.D

    A Multi-Stakeholder Information Model to Drive Process Connectivity In Smart Buildings

    Get PDF
    Smart buildings utilise IoT technology to provide stakeholders with efficient, comfortable, and secure experiences. However, previous studies have primarily focused on the technical aspects of it and how it can address specific stakeholder requirements. This study adopts socio-technical theory principles to propose a model that addresses stakeholders' needs by considering the interrelationship between social and technical subsystems. A systematic literature review and thematic analysis of 43 IoT conceptual frameworks for smart building studies informed the design of a comprehensive conceptual model and IoT framework for smart buildings. The study's findings suggest that addressing stakeholder requirements is essential for developing an information model in smart buildings. A multi-stakeholder information model integrating multiple stakeholders' perspectives enhances information sharing and improves process connectivity between various systems and subsystems. The socio-technical systems framework emphasises the importance of considering technical and social aspects while integrating smart building systems for seamless operation and effectiveness. The study's findings have significant implications for enhancing stakeholders' experience and improving operational efficiency in commercial buildings. The insights from the study can inform smart building systems design to consider all stakeholder requirements holistically, promoting process connectivity in smart buildings. The literature analysis contributed to developing a comprehensive IoT framework, addressing the need for holistic thinking when proposing IoT frameworks for smart buildings by considering different stakeholders in the building
    corecore