1,567 research outputs found

    Deep Functional Mapping For Predicting Cancer Outcome

    Get PDF
    The effective understanding of the biological behavior and prognosis of cancer subtypes is becoming very important in-patient administration. Cancer is a diverse disorder in which a significant medical progression and diagnosis for each subtype can be observed and characterized. Computer-aided diagnosis for early detection and diagnosis of many kinds of diseases has evolved in the last decade. In this research, we address challenges associated with multi-organ disease diagnosis and recommend numerous models for enhanced analysis. We concentrate on evaluating the Magnetic Resonance Imaging (MRI), Computed Tomography (CT), and Positron Emission Tomography (PET) for brain, lung, and breast scans to detect, segment, and classify types of cancer from biomedical images. Moreover, histopathological, and genomic classification of cancer prognosis has been considered for multi-organ disease diagnosis and biomarker recommendation. We considered multi-modal, multi-class classification during this study. We are proposing implementing deep learning techniques based on Convolutional Neural Network and Generative Adversarial Network. In our proposed research we plan to demonstrate ways to increase the performance of the disease diagnosis by focusing on a combined diagnosis of histology, image processing, and genomics. It has been observed that the combination of medical imaging and gene expression can effectively handle the cancer detection situation with a higher diagnostic rate rather than considering the individual disease diagnosis. This research puts forward a blockchain-based system that facilitates interpretations and enhancements pertaining to automated biomedical systems. In this scheme, a secured sharing of the biomedical images and gene expression has been established. To maintain the secured sharing of the biomedical contents in a distributed system or among the hospitals, a blockchain-based algorithm is considered that generates a secure sequence to identity a hash key. This adaptive feature enables the algorithm to use multiple data types and combines various biomedical images and text records. All data related to patients, including identity, pathological records are encrypted using private key cryptography based on blockchain architecture to maintain data privacy and secure sharing of the biomedical contents

    Cancer: Investigating the impact of the implementation platform on machine learning models

    Get PDF
    In the context of global cancer prevalence and the imperative need to improve diagnostic efficiency, scientists have turned to machine learning (ML) techniques to expedite diagnosis processes. Although previous research has shown promising results in developing predictive models for faster cancer diagnosis, discrepancies in outcomes have emerged, even when employing the same dataset. This study addresses a critical question: does the choice of development platform for ML models impact their performance in cancer diagnosis? Utilizing the publicly available Wisconsin Diagnostic Breast Cancer (WDBC) dataset from the University of California, Irvine (UCI) to train four ML algorithms on two distinct platforms: Python SciKit-Learn and Knime Analytics. The algorithms’ performance was rigorously assessed and compared, with both platforms operating under their default configurations. The findings of this study underscore an impact of platform selection on ML model performance, emphasizing the need for thoughtful consideration when choosing a platform for predictive models’ development. Such a decision bears significant implications for model efficacy and, ultimately, patient outcomes in the healthcare industry. The source code (Python and Knime) and data for this study are made fully available through a public GitHub repository

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Machine learning methods for histopathological image analysis

    Full text link
    Abundant accumulation of digital histopathological images has led to the increased demand for their analysis, such as computer-aided diagnosis using machine learning techniques. However, digital pathological images and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital pathological image analysis using machine learning algorithms, address some problems specific to such analysis, and propose possible solutions.Comment: 23 pages, 4 figure

    Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions

    Full text link
    Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in the deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. In this paper, we provide an extensive survey of deep learning-based breast cancer imaging research, covering studies on mammogram, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods, publicly available datasets, and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are described in detail. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.Comment: Survey, 41 page

    A Classification System for Diabetic Patients with Machine Learning Techniques

    Get PDF
    International audienceDiabetes mellitus (DM) is a group of metallic disorder characterized by steep levels of blood glucose prolonged over a time. It results the defection in insulin production or improper action of the cells to the insulin produced. It is one of the significant public health care challenge worldwide. Diabetes exists in a body when pancreas does not construct enough hormone insulin or the human body is not being able to use the insulin properly. The diagnosis of diabetes (diagnosis, etiopathophysiology, therapy etc.) need to generate and process the vast amount of data. Data mining techniques have proven its usefulness and effectiveness in order to evaluate the unknown relationships or patterns if exists with such vast data. In the present work, five techniques based on machine learning namely, AdaBoost, LogicBoost, RobustBoost, NaĂŻve Bayes and Bagging have been proposed for the analysis and prediction of DM patients. The proposed techniques are employed on the data set of Pima Indians Diabetes patients. The results computed are found to be very accurate with classification accuracy of 81.77% and 79.69% by bagging and AdaBoost techniques, respectively. Hence, the proposed techniques employed here are highly adorable, effective and efficient in order to predict the DM
    • …
    corecore