345 research outputs found

    Advanced Algorithms for 3D Medical Image Data Fusion in Specific Medical Problems

    Get PDF
    Fúze obrazu je dnes jednou z nejběžnějších avšak stále velmi diskutovanou oblastí v lékařském zobrazování a hraje důležitou roli ve všech oblastech lékařské péče jako je diagnóza, léčba a chirurgie. V této dizertační práci jsou představeny tři projekty, které jsou velmi úzce spojeny s oblastí fúze medicínských dat. První projekt pojednává o 3D CT subtrakční angiografii dolních končetin. V práci je využito kombinace kontrastních a nekontrastních dat pro získání kompletního cévního stromu. Druhý projekt se zabývá fúzí DTI a T1 váhovaných MRI dat mozku. Cílem tohoto projektu je zkombinovat stukturální a funkční informace, které umožňují zlepšit znalosti konektivity v mozkové tkáni. Třetí projekt se zabývá metastázemi v CT časových datech páteře. Tento projekt je zaměřen na studium vývoje metastáz uvnitř obratlů ve fúzované časové řadě snímků. Tato dizertační práce představuje novou metodologii pro klasifikaci těchto metastáz. Všechny projekty zmíněné v této dizertační práci byly řešeny v rámci pracovní skupiny zabývající se analýzou lékařských dat, kterou vedl pan Prof. Jiří Jan. Tato dizertační práce obsahuje registrační část prvního a klasifikační část třetího projektu. Druhý projekt je představen kompletně. Další část prvního a třetího projektu, obsahující specifické předzpracování dat, jsou obsaženy v disertační práci mého kolegy Ing. Romana Petera.Image fusion is one of today´s most common and still challenging tasks in medical imaging and it plays crucial role in all areas of medical care such as diagnosis, treatment and surgery. Three projects crucially dependent on image fusion are introduced in this thesis. The first project deals with the 3D CT subtraction angiography of lower limbs. It combines pre-contrast and contrast enhanced data to extract the blood vessel tree. The second project fuses the DTI and T1-weighted MRI brain data. The aim of this project is to combine the brain structural and functional information that purvey improved knowledge about intrinsic brain connectivity. The third project deals with the time series of CT spine data where the metastases occur. In this project the progression of metastases within the vertebrae is studied based on fusion of the successive elements of the image series. This thesis introduces new methodology of classifying metastatic tissue. All the projects mentioned in this thesis have been solved by the medical image analysis group led by Prof. Jiří Jan. This dissertation concerns primarily the registration part of the first project and the classification part of the third project. The second project is described completely. The other parts of the first and third project, including the specific preprocessing of the data, are introduced in detail in the dissertation thesis of my colleague Roman Peter, M.Sc.

    Anisotropy Across Fields and Scales

    Get PDF
    This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28–November 2, 2018

    THE PRESSURE FIELD, NUCLEI DYNAMICS AND THEIR RELATION TO CAVITATION INCEPTION IN A TURBULENT SHEAR LAYER

    Get PDF
    Cavitation inception involves the stochastic interactions of nuclei with the unsteady low-pressure regions in turbulent flow for sufficient durations to cause their explosive growth. This thesis investigates both the unsteady pressure field and the evolution of nuclei in and around quasi-streamwise vortices (QSVs), which are the preferred sites for inception in a turbulent shear layer. The present study focuses on the shear layer developing behind a backward facing step. Early cavitation occurs at multiple points along the QSVs, with the frequency of events increasing with Reynolds number for the same cavitation index. To explain these observations, tomographic particle tracking is used for calculating the instantaneous velocity and pressure fields for non-cavitating flow. Interpolation of the time-resolved volumetric data to a uniform grid is performed using a constrained cost minimization process that makes the velocity divergence-free and material acceleration curl-free, leading to improvements in data quality. Integration of the material acceleration provides the pressure distribution. Regions of QSVs are detected using k-means clustering of variables involving the velocity gradients. The pressure is indeed lower, and its minima last longer within the QSVs compared to the surrounding flow. The diameters of low pressure regions and those of the cavity show very good agreement. In a Lagrangian framework, the pressure minima are likely to be preceded by axial vorticity stretching and followed by contraction, both associated with propagation of perturbations along the QSV axis. Consequently, the regions of low pressure are localized and intermittent, consistent with the appearance of cavitation. However, the likelihood of low-pressure events does not increase with Reynolds numbers, in contrast to the trends of cavitation inception events. Therefore, the effects of nuclei availability are studied under controlled seeding of microbubbles using holography for detecting them. Their concentration in the shear layer is higher compared to that in the freestream, presumably owing to entrainment, with the discrepancy becoming more pronounced with increasing speed. Once cavitation inception occurs, the concentration of large bubbles increases drastically, leading to further increase in the frequency of events

    Probabilistic modeling of tensorial data for enhancing spatial resolution in magnetic resonance imaging.

    Get PDF
    Las imágenes médicas usan los principios de la Resonancia Magnética (IRM) para medir de forma no invasiva las propiedades de este movimiento. Cuando se aplica al cerebro humano, proporciona información única sobre la conectividad del tejido, lo que hace que la resonancia magnética sea una de las tecnologías clave en un esfuerzo científico continuo a gran escala para mapear el conector del cerebro humano. En consecuencia, es un tema de investigación oportuno e importante para crear modelos matemáticos que infieren parámetros biológicamente significativos a partir de dichos datos. La MRI y la difusión-MRI (dMRI) se han utilizado en aplicaciones que abarcan desde el procesamiento de señales, la visión por computadora y las neurociencias. Aunque los protocolos clínicos actuales permiten adquisiciones rápidas en un número diferente de cortes en varios planos, la resolución espacial no es lo suficientemente alta en muchos casos para el diagnóstico clínico. El principal problema ocurre debido a las limitaciones de hardware en los escáneres de adquisición. Por lo tanto, MRI y dMRI tienen un compromiso difícil entre una buena resolución espacial y una relación de ruido de señal (SNR). Esto conduce a adquisiciones de datos con baja resolución espacial. Se convierte en un problema serio para el análisis clínico por dos razones principales. Primero, una baja resolución espacial en datos visuales reduce la calidad en procesos médicos importantes tales como: diagnóstico de enfermedades, segmentación (tejido, nervios y hueso), construcción anatómica de atlas, reconstrucción detallada de fibras (tractografía), modelos de conductividad cerebral, etc. Segundo, para obtener imágenes de alta resolución se requiere una adquisición a largo plazo. Sin embargo, los protocolos clínicos actuales no permiten una exposición prolongada de la radiación (MRI y dMRI) en sujetos humanos

    Probabilistic modeling of tensorial data for enhancing spatial resolution in magnetic resonance imaging.

    Get PDF
    Las imágenes médicas usan los principios de la Resonancia Magnética (IRM) para medir de forma no invasiva las propiedades de este movimiento. Cuando se aplica al cerebro humano, proporciona información única sobre la conectividad del tejido, lo que hace que la resonancia magnética sea una de las tecnologías clave en un esfuerzo científico continuo a gran escala para mapear el conector del cerebro humano. En consecuencia, es un tema de investigación oportuno e importante para crear modelos matemáticos que infieren parámetros biológicamente significativos a partir de dichos datos. La MRI y la difusión-MRI (dMRI) se han utilizado en aplicaciones que abarcan desde el procesamiento de señales, la visión por computadora y las neurociencias. Aunque los protocolos clínicos actuales permiten adquisiciones rápidas en un número diferente de cortes en varios planos, la resolución espacial no es lo suficientemente alta en muchos casos para el diagnóstico clínico. El principal problema ocurre debido a las limitaciones de hardware en los escáneres de adquisición. Por lo tanto, MRI y dMRI tienen un compromiso difícil entre una buena resolución espacial y una relación de ruido de señal (SNR). Esto conduce a adquisiciones de datos con baja resolución espacial. Se convierte en un problema serio para el análisis clínico por dos razones principales. Primero, una baja resolución espacial en datos visuales reduce la calidad en procesos médicos importantes tales como: diagnóstico de enfermedades, segmentación (tejido, nervios y hueso), construcción anatómica de atlas, reconstrucción detallada de fibras (tractografía), modelos de conductividad cerebral, etc. Segundo, para obtener imágenes de alta resolución se requiere una adquisición a largo plazo. Sin embargo, los protocolos clínicos actuales no permiten una exposición prolongada de la radiación (MRI y dMRI) en sujetos humanos

    Anisotropy Across Fields and Scales

    Get PDF
    This open access book focuses on processing, modeling, and visualization of anisotropy information, which are often addressed by employing sophisticated mathematical constructs such as tensors and other higher-order descriptors. It also discusses adaptations of such constructs to problems encountered in seemingly dissimilar areas of medical imaging, physical sciences, and engineering. Featuring original research contributions as well as insightful reviews for scientists interested in handling anisotropy information, it covers topics such as pertinent geometric and algebraic properties of tensors and tensor fields, challenges faced in processing and visualizing different types of data, statistical techniques for data processing, and specific applications like mapping white-matter fiber tracts in the brain. The book helps readers grasp the current challenges in the field and provides information on the techniques devised to address them. Further, it facilitates the transfer of knowledge between different disciplines in order to advance the research frontiers in these areas. This multidisciplinary book presents, in part, the outcomes of the seventh in a series of Dagstuhl seminars devoted to visualization and processing of tensor fields and higher-order descriptors, which was held in Dagstuhl, Germany, on October 28–November 2, 2018

    On motion in dynamic magnetic resonance imaging: Applications in cardiac function and abdominal diffusion

    Get PDF
    La imagen por resonancia magnética (MRI), hoy en día, representa una potente herramienta para el diagnóstico clínico debido a su flexibilidad y sensibilidad a un amplio rango de propiedades del tejido. Sus principales ventajas son su sobresaliente versatilidad y su capacidad para proporcionar alto contraste entre tejidos blandos. Gracias a esa versatilidad, la MRI se puede emplear para observar diferentes fenómenos físicos dentro del cuerpo humano combinando distintos tipos de pulsos dentro de la secuencia. Esto ha permitido crear distintas modalidades con múltiples aplicaciones tanto biológicas como clínicas. La adquisición de MR es, sin embargo, un proceso lento, lo que conlleva una solución de compromiso entre resolución y tiempo de adquisición (Lima da Cruz, 2016; Royuela-del Val, 2017). Debido a esto, la presencia de movimiento fisiológico durante la adquisición puede conllevar una grave degradación de la calidad de imagen, así como un incremento del tiempo de adquisición, aumentando así tambien la incomodidad del paciente. Esta limitación práctica representa un gran obstáculo para la viabilidad clínica de la MRI. En esta Tesis Doctoral se abordan dos problemas de interés en el campo de la MRI en los que el movimiento fisiológico tiene un papel protagonista. Éstos son, por un lado, la estimación robusta de parámetros de rotación y esfuerzo miocárdico a partir de imágenes de MR-Tagging dinámica para el diagnóstico y clasificación de cardiomiopatías y, por otro, la reconstrucción de mapas del coeficiente de difusión aparente (ADC) a alta resolución y con alta relación señal a ruido (SNR) a partir de adquisiciones de imagen ponderada en difusión (DWI) multiparamétrica en el hígado.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione
    corecore