1,782 research outputs found

    A Comparative Fuel Analysis of a Novel HEV with Conventional Vehicle

    Full text link
    © 2017 IEEE. Improvements in fuel economy have always been a dominating driver of vehicle engineering. With some exceptions, benefits attained from hybrid powertrains to transient power delivery has not been the emphasis of research and development efforts. Developing cities around the world would realise significant benefits from improvements to fuel economy, which is outlined in this research by assessing the benefits of a novel HEV architecture. These benefits are compared to a conventional ICE-powered vehicle equivalent, which has an advantage in terms lower upfront costs. The commercial success of HEV implementation, therefore, is determined by its price comparison to conventional vehicles and payback over a number of years of use. This becomes especially important in regions of low-middle income, where the market is much more price-sensitive. The fuel economy of a conventional vehicle and mild hybrid electric vehicle are compared in this paper. This analysis includes vehicle modelling and simulation. Fuel economy is assessed and referenced with standard drive cycles provided by the U.S Environmental Protection Agency. Results demonstrate the benefits of a lower ongoing cost for the HEV architecture

    Exclusive Operation Strategy for the Supervisory Control of Series Hybrid Electric Vehicles

    Get PDF
    Supervisory control systems (SCSs) are used to manage the powertrain of hybrid electric vehicles (HEV). This paper presents a novel SCS called Exclusive operation strategy (XOS) that applies simple rules based on the idea that batteries are efficient at lower loads while engines and generators are efficient at higher loads. The XOS is developed based on insights gained from three conventional SCSs for series HEVs: Thermostat control strategy (TCS), Power follower control strategy (PFCS) and Global equivalent consumption minimization strategy (GECMS). Also, recent technological developments have been considered to make the XOS more suited to modern HEVs than conventional SCSs. The resulting control decisions are shown to emulate the operation of approximate global optimal solutions and thus achieve significant improvement in fuel economy as compared to TCS and PFCS. In addition, the generally linear relationship between required power and engine power for the XOS provides auditory cues to the driver that are comparable to conventional vehicles, thus reducing barriers to adopting HEVs. The simplicity and effectiveness of the XOS makes it a practical SCS

    Comparative cost-based analysis of a novel plug-in hybrid electric vehicle with conventional and hybrid electric vehicles

    Full text link
    © 2015 Universiti Malaysia Pahang. Hybrid electric vehicles provide higher fuel efficiency and lower emissions through the combination of the conventional internal combustion engine with electric machines. This paper analyzes and compares two types of hybrid electric powertrain with a conventional vehicle powertrain to study the lifetime costs of these vehicles. The novelty of the University of Technology Sydney plug-in hybrid electric vehicle (UTS PHEV) arises through a special power-splitting device and energy management strategy. The UTS PHEV and comparative powertrains are studied through numerical simulations to determine fuel consumption for the proposed low and high congestion drive cycles. Satisfactory results are achieved in terms of fuel economy, the all-electric range and electrical energy consumption for the UTS PHEV powertrain, providing significant improvement over the alternative powertrains. The analysis of these vehicles is extended to include a cost-based analysis of each powertrain in order to estimate the total lifetime costs at different fuel prices. The results obtained from this analysis demonstrate that whilst the conventional powertrain is cheaper in terms of purchase and maintenance costs, both alternative configurations are more cost-effective overall as the average price of fuel increases

    Comparative fuel economy, cost and emissions analysis of a novel mild hybrid and conventional vehicles

    Full text link
    © IMechE 2017. Mild hybrid vehicles have been explored as a potential pathway to reduce vehicle emissions cost-effectively. The use of manual transmissions to develop novel hybrid vehicles provides an alternate route to producing low cost electrified powertrains. In this paper, a comparative analysis examining a conventional vehicle and a mild hybrid electric vehicle is presented. The analysis considers fuel economy, capital and ongoing costs and environmental emissions, and includes developmental analysis and simulation using mathematical models. Vehicle emissions (nitrogen oxides, carbon monoxide and hydrocarbons) and fuel economy are computed, analysed and compared using a number of alternative driving cycles and their weighted combination. Different driver styles are also evaluated. Studying the relationship between the fuel economy and driveability, where driveability is addressed using fuel-economical gear shift strategies. Our simulation suggests the hybrid concept presented can deliver fuel economy gains of between 5 and 10%, as compared to the conventional powertrain

    Effect of Battery Charging Rates for Electric Hybrid Vehicle on Fuel consumption and emissions behaviors in different road conditions: a comparative Study with Conventional Car

    Get PDF
    The transportation sector is a major source of worldwide carbon emissions and represents a significant contributor to air quality issues, particularly in metropolitan areas. To address the enormous carburization issues, the transportation sector must embrace low-emission vehicle technology. The team is presently developing a passenger electric hybrid car with the goal of reducing the environmental pollution. Hybrid electric vehicles (HEVs), which have a record of success in lowering hydrocarbon usage, stand as an intermediary technique between fully electric cars and internal combustion engines. In the present work, the conventional gasoline car has been tested on road at different trips condition. The gasoline fuel consumption as well as the SI engine emissions have been tested. A complete Hybrid electric system has been impeded instead of conventional driving gasoline engines and tested at a different charging rate of the battery. A comparison between the tested systems shows increased fuel efficiency as a key advantage of using HEVs technology. However, there are still unresolved issues about the system\u27s energy reliability. HEVs emit up to 21.0, 5.8, 9.0-, and 23.3-times lower NOx, UHC, CO, and particle number emissions than comparable gasoline vehicles. The development of after-treatment systems, enhanced engine management methods and the use of renewable fuels are emerging as research strategic prioritie

    Impact of Low and High Congestion Traffic Patterns on a Mild-HEV Performance

    Full text link
    Copyright © 2017 SAE International. Driven by stricter mandatory regulations on fuel economy improvement and emissions reduction, market penetration of electrified vehicles will increase in the next ten years. Within this growth, mild hybrid vehicles will become a leading sector. The high cost of hybrid electric vehicles (HEV) has somewhat limited their widespread adoption, especially in developing countries. Conversely, it is these countries that would benefit most from the environmental benefits of HEV technology. Compared to a full hybrid, plug-in hybrid, or electric vehicle, a mild hybrid system stands out due to its maximum benefit/cost ratio. As part of our ongoing project to develop a mild hybrid system for developing markets, we have previously investigated improvements in drive performance and efficiency using optimal gearshift strategies, as well as the incorporation of high power density supercapacitors. In this paper, the fuel and emissions of a baseline conventional vehicle and mild hybrid electric vehicle (MHEV) are compared. The objective of this analysis is to compare the fuel economy and Greenhouse Gas (GHG) emissions of the baseline and MHEV models, using low and high-density traffic patterns chosen for their similarity to traffic density profiles of our target markets. Results demonstrate the benefits of a lower ongoing cost for the HEV architecture. These advantages include torque-hole filling between gear changes, increased fuel efficiency and performance

    Integracija električnih vozila u energetske i transportne sustave

    Get PDF
    There is a strong tendency of development and application of different types of electric vehicles (EV). This can clearly be beneficial for transport systems in terms of making it more efficient, cleaner, and quieter, as well as for energy systems due to the grid load leveling and renewable energy sources exploitation opportunities. The latter can be achieved only through application of smart EV charging technologies that strongly rely on application of optimization methods. For the development of both EV architectures and controls and charging optimization methods, it is important to gain the knowledge about driving cycle features of a particular EV fleet. To this end, the paper presents an overview of (i) electric vehicle architectures, modeling, and control system optimization and design; (ii) experimental characterization of vehicle fleet behaviors and synthesis of representative driving cycles; and (iii) aggregate-level modeling and charging optimization for EV fleets, with emphasis on freight transport.U novije vrijeme postoji izražena težnja za razvojem i korištenjem različitih tipova električnih vozila. Ovo može biti korisno sa stanovišta transportnih sustava u smislu omogućavanja efikasnijeg, čišćeg, i tišeg transporta, kao i iz perspektive energetskih sustava zbog dodatnih potencijala za poravnanje opterećenja mreže i iskorištenje obnovljivih izvora energije. Potonje može biti ostvareno samo kroz korištenje tehnologija naprednog punjenja električnih vozila, koje se često temelje na primjeni optimizacijskih postupaka. Za razvoj prikladnih konfiguracija, upravljačkih sustava te metoda pametnog punjenja električnih vozila, potrebno je steći uvid u značajke voznih ciklusa razmatrane flote električnih vozila. Imajući u vidu navedeno, članak predstavlja pregled (i) konfiguracija i modeliranja električnih vozila, te optimiranja i sinteze njihova upravljačkog sustava; (ii) eksperimentalne karakterizacije ponašanja flote vozila i sinteze reprezentativnih voznih ciklusa; te (iii) modeliranja i optimiranja punjenja flote električnih vozila na agregatnom nivou, s naglaskom na teretni transport

    A Techno-Economic Investigation of Advanced Vehicle Technologies and Their Impacts on Fuel Economy, Emissions, and the Future Fleet

    Get PDF
    A more sustainable transportation energy future for society is the principal motivation of this dissertation. The central purpose of this work is to investigate vehicle technologies that contribute to fuel and emissions reductions while preserving consumer choice, and to evaluate their technological performance and economic practicability as essential aspects of meeting aspirational targets and regulatory requirements associated with the future vehicle fleet
    corecore