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ABSTRACT 

Simmons, Richard A. Ph.D., Purdue University, December 2015. A Techno-Economic 

Investigation of Advanced Vehicle Technologies and Their Impacts on Fuel Economy, 

Emissions, and the Future Fleet. Major Professors: Suresh V. Garimella, School of 

Mechanical Engineering, and Wallace E. Tyner, School of Agricultural Economics. 

 

 

A more sustainable transportation energy future for society is the principal 

motivation of this dissertation.  The central purpose of this work is to investigate vehicle 

technologies that contribute to fuel and emissions reductions while preserving consumer 

choice, and to evaluate their technological performance and economic practicability as 

essential aspects of meeting aspirational targets and regulatory requirements associated 

with the future vehicle fleet. 

Innovation in automobiles has been realized at stable and affordable prices for 

decades, yet efforts to intensify future value creation in the domain of energy efficient 

technologies are critical.  Using analysis of variance and hedonic price modeling 

techniques, disaggregated contributions of passenger car attributes to vehicle price reveal 

that consumer valuations of fuel economy move inversely with acceleration performance, 

and that both are highly correlated to the regulatory context.  Novel economic trade-offs 

among vehicle attributes are introduced, in particular with respect to two foundational 

premises emphasized by current policies: vehicle classification and weighted sales volume. 

The implicit value of acceleration is presently greater than that of fuel reduction, with 
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buyers in the significant mid-size vehicle segment willing to pay more than twice as much 

for the former than the latter.     

Building on these findings, the research explores a suite of fuel- and emission-

reducing technologies that have underpinned fuel economy gains and compliance at costs 

that are at or below levels anticipated by the regulations. However, benefit-cost analyses 

on 2014 model year compact and mid-size cars reveal that consumers are not yet 

substantially incentivized to purchase fuel economy under baseline scenarios. A sensitivity 

analysis reveals that a majority of new technologies become financially attractive to 

consumers when average fuel prices exceed $5.60/gallon, or when annual miles traveled 

exceed 16,400. Turbocharged-downsized engines and hybrid powertrains are found to 

deliver high incremental benefits compared to their costs.  The research suggests that the 

additional cost consumers incur in exchange for a given level of fuel economy 

improvement in the coming years will need to be steadily reduced compared to current 

levels, particularly in the context of low fuel prices.  

Hybrid and electric vehicles are viewed as enabling technologies, yet their real-

world energy consumption is more highly sensitive to driving cycles, ambient temperature, 

and upstream energy sources than conventional vehicles. Vehicle tractive power, and cabin 

and battery thermal loads are interactively modeled and simulated for a range of operating 

conditions among vehicles that employ different energy sources and disparate power and 

thermal management strategies.  Locality-specific system-level energy consumption values 

are then computed based on characteristics of large U.S. cities such as electricity generation, 

petroleum refining, and typical weather. The findings quantify the extent to which 

advanced architectures, though favorable in certain modes, are more energy sensitive to 
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driving cycles and extreme temperatures.  Annualized integration of this temperature-

dependence reveals that system-equivalent energy consumption varies by locality least for 

internal combustion and hybrid vehicles, and between 45-70% for electric vehicles. As 

compared to conventional vehicles, electric vehicle system-equivalent CO2 emissions 

range from a 70% improvement to no improvement based on locality. This study suggests 

that policies and deployment efforts should scientifically account for the strong sensitivity 

to locality on energy and emissions for advanced vehicles.  

Regarding fuel reduction objectives, internal combustion engine vehicle baselines 

show sustained improvement on both technological and economic fronts without 

compromising consumer choice. Hybrids perform exceptionally well overall, reducing 

energy and emissions by levels that appear to justify their incremental cost increases. In 

terms of fuel switching, vehicles operating on grid-electricity are shown to displace 

petroleum and yield net energy reductions in certain localities; yet future research must 

navigate technological and cost challenges to ensure energy and emissions benefits are 

bankable and that policies are well-aligned. This body of work is intended to promote ways 

of affordably reducing the impact of transportation on the environment, to stimulate further 

research toward system-level optimizations, and to help inform subsequent policymaking 

processes regarding the future vehicle fleet. 
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CHAPTER 1. INTRODUCTION 

Transportation has been responsible for driving modern society to unparalleled 

limits of mobility and prosperity, with amazing efficiency in a relatively brief period of 

time.  Physical and figurative boundaries once thought insurmountable are now navigated 

on a daily basis thanks in part to major innovations in nearly every form of transportation.  

Transportation has propelled untold innovation in other sectors, as modern life has come 

to depend on the ubiquity, convenience, and potential of today’s transportation options.  

Gasoline and diesel fuel have proven extremely well-suited in providing ample energy, in 

a dense, portable and low-cost manner.  Yet along with the myriad positive impacts fueled 

by these sources of energy, their virtual dominance has also given rise to significant 

geopolitical, economic, and environmental consequences. Concerns that technological 

improvements have not adequately emphasized reductions in fuel consumption or 

emissions may have merit and warrant deeper investigation. 

In the United States, the transportation sector accounts for 28% of domestic energy 

consumption and 27% of greenhouse gas emissions [1-3].  The United States remains 

reliant on petroleum for about ninety percent of its transportation needs [2].  This is in stark 

contrast to domestic stationary electricity supplies, where power generation is derived from 

no less than ten established sources, including several that are not fossil fuels. No single 

electricity source accounts for more than 40%, and the total share of renewables has 
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surpassed 13% [4].  The cumulative share of renewables (13%) and nuclear (19%) suggest 

that nearly one third of U.S. electricity generation is derived from low carbon or zero-

carbon sources [4].  So, while the generation of electricity may have certain challenges of 

its own, diverse, lower carbon and more secure supplies are generally available; whereas 

the disproportionate reliance of transportation on petroleum represents a more acute 

concern.  In particular, constraints stemming from finite fossil fuel supplies, increasing 

global demand, price volatility, and adverse environmental impacts are in dire need of long-

term solutions.  Prolonged efforts aimed at reducing or replacing petroleum and developing 

more sustainable forms of energy for the transit of people and goods will therefore be 

critical if the benefits and opportunities brought by transportation are to continue to 

outweigh their costs and risks.   

Reducing oil consumption and emissions in meaningful quantities demands that 

research, development, and deployment be implemented on a substantially 

interdisciplinary scale.  In particular, focused attention must simultaneously be paid to 

technological feasibility, economic practicability, and environmental and societal impact.  

Progress toward optimizing system level outcomes for such multi-faceted challenges calls 

for more advanced and coordinated methodologies for assessing technological 

performance in view of economic, environmental and regulatory constraints. Thus it is the 

central purpose of this work to investigate vehicle technologies that contribute to fuel and 

emissions reductions while preserving consumer choice, and to evaluate their performance 

and economic practicability as essential aspects of achieving aspirational targets and 

regulatory requirements of the future vehicle fleet. This chapter provides an overview of 
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the motivation, scope, definitions, methodologies, key contributions and major objectives 

relevant to the techno-economic research undertaken in this dissertation. 

1.1 The Merits of a Multi-Discipline Approach 

In aggregate, this research aims to more completely investigate the strengths, 

weaknesses, and fuel savings potential of new vehicle technologies by considering multiple 

perspectives. Consumer preferences for vehicle utility and major attributes, economic 

benefits and costs, and physics-based simulations of vehicle performance under varying 

conditions are all employed to more fully characterize vehicle energy efficiency.   

Technology deployment will certainly be a driving force behind strategies to reduce 

petroleum and mitigate emission, but disruptive innovation will likely be technologically 

complex, take time and impose significant costs. Continued improvements to vehicle 

efficiency, advancements to conventional engine technologies, light-weighting, friction-

reduction, and realistic scale-up of hybrid, electric, and advanced vehicles constitute key 

contributions. This dissertation devotes substantial scope and attention to these primary 

categories of vehicle technologies because of their strategic intermediate-term impact and 

potential in bridging toward longer-term solutions. While more aggressive transitions to 

advanced and alternative fuels may also become technically and economically viable over 

time, many significant challenges loom. Comprehensive and sector-wide energy and 

emission solutions are thus reliant upon new vehicle technology as one major element in a 

suite of strategies. Consumer behavior, intelligent and real-time routing, fuel switching, 

mass-transit, and modal shifts that may obviate traditional commutes complement the 

arguably more visible contribution of vehicle innovation, and demonstrate how a campaign 

towards more sustainable transportation must be cross-cutting.  Although several of these 
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are beyond the scope of this research, key aspects of consumer decision-making are 

considered, such as revealed market preferences, and driving behavior including what, 

where, when and how people drive.     

The automotive marketplace represents a dynamic environment where researchers, 

automakers, and consumers mutually reinforce or reject change based upon key constraints 

and a variety of objective and subjective factors.  This is the reality of a mature, free yet 

regulated, market industry where economic practicability is often decided by 

uncontrollable or uncertain factors.  Such dynamic market conditions pose challenges to 

analytical comparisons of advanced technologies.  Neither learning effects, the pace and 

extent of consumer acceptance of fuel-saving technologies, future fuel costs, nor costs 

associated with technology development and deployment can be predicted with extreme 

accuracy.  This creates a need for contemporary techno-economic assessment tools that can 

reduce systemic uncertainty by comparing the effectiveness of competing technologies. To 

help address this need, this dissertation includes an in-depth assessment of key attributes 

that contribute to vehicle utility, and their relative weights and valuations for both historical 

and contemporary time periods. This research further explores uncertainty by studying the 

sensitivity of energy efficiency and the economic viability of new technologies to 

variations in key inputs such as the price of fuel, vehicle miles traveled, driving schedules 

and even locality. In this way, uncertainty is studied from multiple perspectives, facilitating 

a more accurate overall assessment of practical implications.  

Ensuring that viable solutions result in measurable positive impacts on society is 

non-trivial, but critically important in meeting either the technological or economic 

objectives defined by the consumer or the manufacturer.  Appropriate regulatory measures 
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have been enacted to establish technology-neutral criteria and objectives that provide 

signals, assurances, and constraints to help encourage suitable societal outcomes.  As such, 

this research accounts for the complex challenge of developing a common basis for 

defining and valuing vehicle energy consumption as well as associated environmental 

impacts.          

Useful and rigorous as they are, single-discipline approaches may tend to be sub-

optimal in either deploying solutions or assuring maximum impact toward urgent societal 

challenges in a prioritized fashion.  A technology-centric view may leverage tremendous 

research and innovation, but may not appropriately address reasonableness of costs or 

manufacturability.  A corporate-oriented, product-centric view may further suffer from 

commercial bias or lose sight of long-term social consequences.  Economically-centered 

approaches may tend to disproportionately weight financial returns at the possible expense 

of social well-being.  Likewise, social-welfare and regulation-based approaches can fail to 

appropriately capture the full extent of the technological challenge, or the economic 

viability of a product, when imposing rules and policies.  Obviously then, subjectivity, 

differing perspectives and conflicted views of ideal outcomes pose threats to ensuring 

satisfactory or optimal system-wide results.  How then, can commonality in purpose be 

realized for such a diverse set of goals from a myriad of stakeholders?       

Strong coordination of technological, economic and regulatory approaches is 

clearly imperative for a well-functioning strategy to achieve the greatest benefit for the 

greatest number.  The present research facilitates such coordination.  Consider that 

technological progress in the transportation sector can be measured through historical 

trends, for example in vehicle efficiency.  And further consider that the regulated consumer 
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marketplace is a useful macro level tool by which to judge how effectively the three aspects 

of technology, economic viability, and social consequence interact to affect the modern 

vehicle fleet.  The fleet has evolved dramatically along multiple axes, and this research 

helps quantify the extent to which consumers today enjoy more functionality and choice at 

a better value than at any time in history.  

Thus, by integrating research approaches across multiple disciplines, a range of 

improved tools are made available to decision makers from the comparative value 

proposition of modern fuel saving technologies to the specific energy and emissions 

profiles of given vehicle types and localities.  Though debates ensue over how long fossil 

fuel supplies may last, it is without doubt that liquid petroleum fuels will fail to provide a 

permanent, sustainable or environmentally benign supply of energy for transportation 

needs in the long term.  Technology will be a key driver in lasting solutions, but its ultimate 

success will hinge upon socially conscious and economically reasonable implementation 

at scale.   

A multi-discipline approach is not undertaken without its own set of challenges, 

however, given the vast array of literature and complicated interactions implied.  In brief, 

it is the intent of this research to model both fundamental components and systems using a 

necessary and sufficient level of fidelity and mathematical detail. Successful integration of 

multiple perspectives can lead to timely, unbiased, and academically rigorous insights.  

These outcomes can simultaneously improve the relevance and accuracy of high-level 

modeling, a contribution that is greatly needed to add credibility and motivate prioritized 

and responsive action by all stakeholders.   
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Given the prevailing sense of urgency, gravity and complexity to address energy 

and emissions challenges, timely and effective actions are warranted.  This research aspires 

to narrow the gap between often disparate dialogues on transportation technology, 

economics and policy. The principal motivation of this dissertation is to provide novel 

interdisciplinary methodologies for investigating vehicle energy consumption toward the 

broader goal of a more technologically advanced and sustainable energy future.  

1.2 Historical Trends and Vehicle Utility 

Due to the urgency and multi-faceted nature of efforts to reduce fuel consumption in 

ground transportation, it is critical to establish a robust framework from which to 

objectively assess technological innovation with regard to economic practicability and 

consumer preference.  A primary means of achieving this in the present work is to draw 

from both historical and contemporary data to develop measures of consumer utility in 

passenger vehicles from representative parameters and to quantify the relationship between 

technological progress and vehicle prices over time.     

By most all measures, new vehicles available today are dramatically superior to those 

available even 20 years ago.  This includes major strides in safety, performance, 

environmental impact, and even fuel efficiency on a power- and weight-specific basis.  

Stemming from the reality that consumers buy cars, not features, is the caveat that standard 

features are bundled by the original equipment manufacturers (OEMs), which can lead to 

complications in disaggregating feature contribution from overall utility.  Power, 

acceleration time, torque, engine displacement, weight, fuel economy, passenger and cargo 

space, safety, and price constitute primary factors that contribute to utility and value.  While 

prior studies have done an excellent job characterizing innovation trends and technological 
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trade-offs among vehicle attributes [5-11], the research record is deficient when it comes 

to analytically connecting such trends and trade-offs with vehicle prices. It is further 

lacking in utilizing econometrically-determined trade-offs, which may differ substantially 

from technological trade-off rates, to compare historical and contemporary trends under 

varying degrees of regulatory constraint.   

While it is not surprising that current consumer utility levels are at historical highs, 

a more comprehensive characterization of the linkage between historical trends in vehicle 

technology and vehicle price is much needed, particularly at the system attribute level. This 

has obvious implications on the realistic limitations of pending efforts to reduce oil 

consumption and emissions in the automotive sector.  Advances in data accuracy and 

availability for both technological and economic metrics underpin the merit and statistical 

reliability of the approach.  Historical perspectives and objective measures of utility are 

foundational to broader research efforts because they leverage revealed trends and develop 

a useful interdisciplinary methodology by which to assess future technological 

advancement.   

1.3 Relative Weighting and Willingness to Pay for Vehicle Attributes 

Similarly, a temporal sense of the relative weightings of specific vehicle attributes, 

as determined by implicit pricing methods, has not been adequately investigated in view of 

fuel economy compliance with future regulatory standards, or with regard to trade-offs 

between other measures of utility.  The techno-economic approach of this study considers 

the time response of relative weightings among attributes with significant energy 

implications, such as fuel consumption, acceleration, and weight.  One can infer that 

consumers have become accustomed to both the current attribute levels and conditioned to 
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the upward trends associated with vehicle technologies, in particular by classification.  It 

may be hypothesized that rational consumers will not willingly trade off a given level of 

utility in a given attribute, unless it is either justified by a related improvement in another; 

or unless otherwise compelled to do so, for example due to financial or regulatory 

constraints.      

In view of this, hedonic modeling approaches are applied to market-based datasets 

to determine the partial derivatives of individual attributes with respect to vehicle prices.  

These partial derivatives, or price elasticities, represent consumers’ willingness to pay for 

individual attributes ceteris paribus, or holding all others constant. The response of these 

price elasticities over time are substantially influenced by many factors, including notably, 

fuel economy regulations.  Owing to the emphasis of current regulations on sales-weighting 

and vehicle classification, this study introduces novel statistical means of discretizing price 

elasticities into bins by vehicle footprint (defined as the projected area of the wheelbase 

times the average track width).  Investigations into correlations between innovation and 

price, relative weightings among key attributes, and footprint-specific price elasticity 

trends have considerable technological, economic and policy value. Taken along with 

established correlations for technological substitution, the results fill a critical gap in 

quantifying consumer response to regulations and the associated value and uptake of fuel 

saving technologies in view of other vehicle attributes. 

1.4 Advanced Vehicle Technologies 

The literature, areas of active research, and commercial market suggest a 

manageable subset of popular and effective vehicle technologies which demonstrate the 

greatest potential to reduce oil consumption and emissions in the automotive sector.  Many 



10 

 

1
0
 

technologies follow an evolutionary path and can be readily incorporated into annual or 

biannual product “refresh” cycles.  This subset includes advanced transmissions, 

reductions in weight, friction or aerodynamic drag, and certain modifications to the internal 

combustion engine.  Discrete and continuous valve actuation and timing strategies, and 

cylinder deactivation are examples of relatively minor engine modifications.  These 

technologies deliver modest fuel savings and carry generally lower costs, factors which 

have spurred their commercial growth.  For example, the family of variable valve 

technologies (VVT) and 6-speed transmissions (AT6) are largely standard equipment from 

model year 2013 onward, reaching market penetration rates of 96% and 64% respectively 

[12].    

For other technologies, longer redesign cycles (on the order of 2-8 years) often 

typical of major engine components and other transformational technologies, prevail.  This 

subset includes gasoline direct injection, turbocharging with engine downsizing, as well as 

hybrid and electric powertrains.  It also includes switching from spark-ignited (gasoline) 

to compression-ignited (diesel) engines.  In terms of growth rate, continuously variable 

transmissions (CVT) and hybrids (HEV) nearly doubled their market penetration between 

2008 and 2013, while turbos with downsizing (TRBDS) and gasoline-direct injections 

(GDI) increased six-fold and ten-fold, respectively during the same period.  Though not 

exhaustive, these technology categories comprise the principal set with the greatest 

potential to favorably influence fuel economy and emission trends over the next decade.  

While these technologies represent impressive innovations, comprehensive and integrated 

efforts to prioritize their impacts, optimize economic practicability, or ensure alignment 

with the goals of regulatory policy are often insufficient.  Furthermore, hybrid and electric 
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vehicles incur additional energy demands imposed by resistive losses, cabin and battery 

heating and cooling, as well as the need to transport increasingly heavy battery and 

electronic systems.  In view of prevailing regulations, objective techno-economic studies 

that directly compare the energy, emissions and cost impacts of conventional internal 

combustion engine vehicles with advanced vehicles are therefore critical.   

1.5 Measuring the Energy Efficiency and Emissions Attributable to Vehicles 

Fuel economy (FE) and fuel consumption (FC) have been the primary metrics for 

assessing energy efficiency in passenger cars due to the historical prevalence of petroleum 

fuels and internal combustion engines.  In North America, fuel economy is a familiar 

vehicle characteristic and is expressed in miles per U.S. gallon (mpg) of gasoline or diesel 

fuel.  The Environmental Protection Agency (EPA) utilizes three different definitions for 

fuel economy depending on the context and use. These include: the estimate determined 

by standardized laboratory dynamometer evaluation, the adjusted value to correct for real-

world driving, and the value used to calculate regulatory compliance by automaker, 

respectively [13-15]. In many other regions of the world, including continental Europe, a 

fuel consumption value, or fuel consumed to travel a given distance, is more commonly 

reported, often in units of liters per 100 kilometers (L/100km). 

Fuel consumption is preferred over fuel economy in technological studies due to the 

direct objective of reducing fuel.  It is also preferable in economic assessments as a measure 

of consumer utility since it scales linearly with consumer-incurred costs per distance driven 

(notwithstanding fuel price variability). In this dissertation, fuel consumption is used in 

actual calculations and derived from or converted to the appropriate EPA fuel economy 

value as necessary.  Since economic and policy aspects of this study are predominantly 
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focused on relative fuel economy improvements over base technologies, since FE is used 

in current regulations and is familiar among consumers in the United States, and to 

facilitate comparisons with other studies, fuel economy is often reported.  In such cases it 

will be specified which fuel economy definition is applicable. 

For vehicles that operate in “all-electric” or “charge depleting” (CD) modes, 

substantial unknowns are introduced related to the native energy source employed for 

electric charging. In order to provide a baseline reference from the standpoint of the vehicle 

boundary itself, the concept of equivalent fuel economy has been introduced, expressed as 

miles per gallon equivalent or, “MPGe,” yet can be a source of potential confusion [16-17] 

because it excludes consideration of energy sources upstream of the vehicle itself.  From a 

thermodynamic perspective, it is essential to evaluate energy consumption (EC) and energy 

efficiency using consistent system boundaries, methodologies and bases regardless of the 

upstream energy resource.  In respective portions of the comparative analysis, this 

dissertation considers energy consumed on a vehicle-basis (i.e., considering the fully-

fueled or fully-charged vehicle as the boundary), as well as energy consumed on a system-

equivalent basis (i.e., in consideration of the upstream energy sources).  

Similarly, the measurement of emissions attributable to vehicles should include both 

tailpipe and upstream sources. For conventional vehicles that consume liquid fuel, DOE 

and EPA, among others, provide fuel specifications and useful conversion guidelines to 

estimate equivalent CO2 emissions per mile from fuel economy based upon average 

gasoline, diesel and ethanol properties [18-21]. With the increasing use of grid-derived 

electricity in vehicles and interest in comparative studies, the need for accurate system-

equivalent emission accounting approaches becomes essential.  Source emissions have 
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signatures tied to the relevant energy conversion technologies and can be approximated 

from sub-region data for domestic utility networks, for example as described in the EPA 

eGrid 2010 assessment [22]. Given that direct correlations between fuel economy and 

emissions are no longer categorically applicable, this research undertakes a comparative 

approach to provide a more complete characterization of the primary emissions associated 

with advanced vehicle architectures.  

Additional definitions and information on fuel economy, equivalent fuel economy, 

energy consumption and emissions can be found in Appendix A and C.     

1.6 Benefit-Cost Assessments 

A discounted cash flow rate of return (DCFROR) evaluation is an important 

financial approach for assessing project worth, and frequently preferred when the time 

horizon suggests a meaningful sensitivity to the time value of money.  Further, benefit-cost 

analysis is a particular DCFROR which facilitates direct comparisons between multiple 

options.  Benefit-cost analysis can be applied to private, single-party projects such as an 

individual purchasing an automobile, or an OEM selling millions of them.  Similarly, they 

are often employed to assess the economic viability of a large scale regulatory change, or 

civil infrastructure project.  While it is important to clearly define the scope, relevant 

perspectives, baseline assumptions, discount rates, valuation methodology, and overall 

objectives, benefit-cost analyses represent a powerful tool for evaluating transformations 

that involve energy and emissions reductions.  With regard to vehicle technologies, there 

is good precedent for utilizing incremental retail price equivalents (in $) and fuel economy 

improvements (in percent change) to both assess historical trends and predict future ones.  

Some studies develop technology-specific analyses to predict technical readiness and 
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future costs using computer simulations or tear-down approaches [23-24].  A tear-down 

approach estimates costs and feasibilities associated with the design and manufacture of 

new products by aggregating constituent components of a larger system in a bottom-up 

manner.  Other studies evaluate pay-back periods or costs and benefits associated with 

conserving energy using a range of new vehicle technologies [25].  Both methods generally 

rely upon market-based cost information and reveal timely insight regarding the 

equilibrium of supply and demand for fuel saving technologies.  Given the aggressive rate 

of statutory improvements that are called for over a more extended period of time, 

technologies and their costs are changing more quickly than in previous periods of 

regulatory constraint.  The present marketplace is forced to adapt to such fluid conditions, 

while the governing regulations, by nature, are less flexible, fixing targets that will 

sometimes be in effect a decade or more into the future.  The present work explores benefit-

cost analyses toward quantifying the extent to which novel fuel saving technologies are 

financially attractive to consumers, how their value proposition may evolve in the future, 

and how technology, consumer choice and regulation work together to affect positive 

reductions in energy and emissions. 

1.7 Current Policy and Compliance 

The Renewable Fuel Standard (RFS) and the Corporate Average Fuel Economy 

(CAFE) standards comprise seminal U.S. policies that regulate the consumption of 

renewable fuels and fuel economy and emissions standards for new light duty vehicles, 

respectively [26].  Alternative fuels are a significant aspect of reducing oil consumption 

and transportation related emissions, and can interact synergistically with new vehicle 

technologies to ensure more optimal outcomes.  Despite this, the primary focus of this 
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research is on the various vehicle technologies themselves, their associated costs and 

efficiencies, and how they are integrated into a regulated market.  The RFS and alternative 

fuels fall outside this scope.  CAFE standards were introduced following the oil crisis of 

the mid-1970s and were an effective regulatory tool for ensuring that passenger-vehicle 

(CAFE compliance value basis) fuel economy would double from about 14 to 27.5 miles 

per gallon by 1990.  A revitalized CAFE standard was formally signaled in 2007, under 

the Energy Independence and Security Act [26], which originally called for CAFE 

standards to reach a combined car/truck performance of 35 mpg by 2020.  This target was 

effectively pulled ahead to about 2016 with the final 2012-2016 model year (MY) 

rulemaking [15], followed by annual increases to an equivalent fuel economy of 54.5 mpg 

by 2025 [27].  Due to CAFE’s parallel objectives of improving vehicle efficiency and 

reducing emissions, U.S. regulatory authority is charged to the Department of 

Transportation’s National Highway Traffic and Safety Administration (NHTSA) and the 

Environmental Protection Agency (EPA) respectively. To comply with existing regulations, 

automakers are increasingly bundling fuel-saving innovations into a variety of existing and 

new vehicle models which have successfully met both consumer and regulatory demands 

to date.  From the 2011 through the 2014 model years, the passenger car fleet has improved 

from 33.1 to 36.5 miles per gallon (CAFE) on a sales weighted basis, outperforming the 

Federal standard by 8.0% in 2012, 7.8% in 2013, and 7.0% in 2014 [28].  In a similar 

fashion, sales-weighted CAFE performance for the entire light duty fleet, which includes 

all cars and light trucks, increased at a rate of 4.3% in 2011, 3.1% in 2012 and 3.0% in 

2013 [29].  The goal of CAFE is to establish robust regulations that carefully balance 

consumer utility and choice with aggressive goals to reduce the national consumption of 
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petroleum fuels and related emissions.  The regulation cites “economic practicability” as 

an underlying premise noting attention must be given to “the uncertainty surrounding 

market conditions and consumer demand for fuel economy in addition to other vehicle 

attributes” [27].  In this fashion, the merit of an interdisciplinary techno-economic 

investigation so motivated is reinforced by the policy itself. 

Through model year 2015, automakers also known as Original Equipment 

Manufacturers (OEMs), have been able to meet and even exceed the more stringent 

requirements by pulling ahead existing fuel-saving technologies and by adjusting business 

strategies and sales portfolios.  A great deal of investigation, public-private consultation, 

and modeling based upon then current information provided the framework for the rules 

regulating 2012-2016 and subsequently 2017-2025 model year vehicles.  That 

notwithstanding, such processes are admittedly uncertain, particularly with respect to 

implementation aspects of the final rulemaking over the mid- and long-term.  Commodity 

price volatility and the dynamic nature of the energy and vehicle marketplaces represent 

additional sources of uncertainty that can affect the modeling predictions and expected 

outcomes of the policy including the potential to realize targeted levels of fuel and 

emissions reductions.  While continuous feedback for decades-long regulations would be 

impractical, gaps exist in the research that, if addressed, could ameliorate the overall impact 

of the policy, and provide the principal stakeholder groups salient, timely and actionable 

information.  A critical mid-term assessment of CAFE 2017-2025 is specified by rule to 

occur in 2018 [15] supported by federal agencies, OEMs and relevant stakeholders; and 

promises to assess compliance trends and highlight the actual impacts of the policy.  It may 

also provide a retrospective opportunity to quantify the real-world value that consumers 
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will have obtained from new technologies relative to the more conventional ones they are 

replacing.  Before that, however, timely questions are raised concerning how closely costs, 

fuel economy improvements and the recently promulgated regulatory standards align.  It is 

the intent of the CAFE policy to promote holistic outcomes as evidenced by specific 

references of the rulemaking.  “In addition to saving consumers money at the pump, the 

agencies designed their final standards to preserve consumer choice—that is, the standards 

should not affect consumers’ opportunity to purchase the size of vehicle, with the 

performance, utility and safety features that meets their needs” [27].   To the extent costs, 

consumer choice and regulatory standards align well, OEMs can be expected to increase 

the number of models that comply and be able to attract consumers to purchase the ones 

that do.  Such an assessment of this alignment may prove valuable to a wide range of 

stakeholders, including researchers in transportation and energy, economics and policy, as 

well as consumers and OEMs.  

1.8 Objectives 

The overall objective of this thesis is to study new light duty vehicle technologies 

that can lead to reduced energy consumption and reduced emissions in the transportation 

sector, and to investigate cross-cutting implications of their deployment including 

economic practicability, environmental and social impacts, as well as compliance with 

regulatory policies.  The constituent objectives and approach are as follows: 

1. Develop objective measures of consumer utility in passenger vehicles from 

representative parameters in order to quantify technological progress over time.  

Compare historical and contemporary trends describing innovation progression as 



18 

 

1
8
 

revealed by correlations between major vehicle parameters such as fuel economy, 

acceleration time, and weight. 

2. Characterize the relationship between passenger car utility as defined by constituent 

technological attributes and real price response via statistical analysis.    

3. Investigate the disaggregated contribution of vehicle attributes to total vehicle price 

via analysis of variance methods. On a fleet-wide basis, quantify passenger car 

consumers’ willingness to pay for specific vehicle attributes over time via hedonic 

price modeling. 

4. Examine consumers’ willingness to pay for reductions in fuel consumption and 

acceleration time as functions of vehicle classification.  Investigate the implications 

of these findings in view of the sales-weighting and footprint-based aspects of 

current regulations. 

5. Identify and analyze primary vehicle technologies that contribute to improved fuel 

economy and reduced emissions.  Populate a database with vehicle sales by model, 

engine type, specifications, standard options, other options influencing fuel 

economy, and all associated costs drawing from research literature, published 

vehicle specifications and official test results reported by government agencies. 

6. Develop a benefit cost model to assess the estimated fuel savings versus costs of 

new vehicle technologies from a consumer perspective.  Estimate differential fuel 

economy improvements by comparing new technologies to baseline technologies 

that share identical vehicle platforms.  Disaggregate fuel-saving technology costs 

from total costs by applying an incremental retail price equivalent approach. 
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7. Characterize the relationship between fuel economy improvement and incremental 

cost for best-selling passenger car vehicles.  Observe the relative value proposition 

of major fuel saving vehicle technologies as compared to each other and to a 

breakeven baseline scenario.  Perform a sensitivity analysis on the results to 

determine the significance of both controllable and uncontrollable factors.       

8. Develop hierarchical vehicle propulsion and thermal management models for 

investigating primary and auxiliary energy demands imposed on vehicle energy 

systems. Simulate the energy consumption response and sensitivity to the combined 

effects of varying driving cycles and ambient temperatures for a range of 

representative vehicle architectures.  

9. Develop a basis for comparing vehicles that employ different energy sources. 

Perform a first law thermodynamic investigation of energy consumption per 

distance traveled first at the level of the vehicle boundary, and subsequently in 

consideration of upstream factors.  Quantify the sensitivities of vehicle energy 

consumption and emissions to locality in consideration of electricity generation, 

refining efficiency, temperature characteristics and other geographically-dependent 

attributes.  

10. Introduce tools capable of provisionally estimating anticipated future costs of fuel 

economy improvements and consumers’ future willingness to pay for defined levels 

of fuel economy gains. Discuss the propensity of the foregoing to align with 

predictions of future fuel economy costs given by U.S. regulations.   
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1.9 Organization of the Dissertation 

The work presented in this dissertation is organized into six chapters.  Chapter 1 

introduces the context and the motivation for the research.  Primary objectives, approach 

methodologies, definitions and organization of the work are described. Chapter 2 reviews 

representative literature for focused efforts to deploy vehicle technologies that reduce fuels 

and emissions in the transportation sector.  Owing to the interdisciplinary approach of this 

research, a wide variety of literature is relevant to the topic, including technological, 

economic, environmental, social, and policy perspectives. Such perspectives are naturally 

drawn from principal stakeholder groups that include the academic research community, 

automakers and government agencies.   

Chapter 3 presents quantitative trends in major passenger car attributes and selling 

prices over a 37 year period from 1978-2014.  It defines a specific objective function for 

utility, develops a correlation between consumer utility and price, and introduces a 

methodology whereby the relative weighting of and consumer valuation of vehicle 

attributes can be determined.  Chapter 4 presents a detailed assessment of the benefits and 

costs associated with new vehicle technologies and fuel economy in the U.S. market.  It 

quantifies the extent to which modern passenger cars comply with stringent regulatory 

policies.  This chapter also provides a review of primary fuel saving technologies, 

comparing them to one another as well as to a break-even baseline scenario.  The 

uncertainty of the estimates is addressed by virtue of a sensitivity analysis on key economic 

and vehicle specific factors.  Chapter 5 presents a thermodynamic modeling approach to 

studying vehicle primary energy and auxiliary thermal loads, particularly with regard to 

new vehicle architectures.  Drive cycle and ambient temperature impacts on energy 
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consumption are quantified.  The results are leveraged to investigate the locality-

dependence of upstream energy and emissions for each vehicle architecture.  

Finally, Chapter 6 discusses major conclusions, key perspectives, and implications of 

the work. It includes a summary of various techno-economic methodologies for 

characterizing the correlation between consumer costs and future levels of increased fuel 

economy.  These correlations are viewed against regulatory estimates for the purpose of 

addressing opportunities and challenges associated with future compliance scenarios. The 

chapter closes with several suggestions for future work including investigations into light 

duty trucks and enhancing key comparative simulations via parametric modeling of vehicle 

technologies and their associated costs.   
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CHAPTER 2.  LITERATURE REVIEW 

Owing to the interdisciplinary nature of research into vehicle technologies that 

contribute to fuel and emissions reductions, a substantial set of relevant literature exists. 

This provides opportunities in the form of numerous independent perspectives and timely 

research findings, as well as certain challenges associated with the need to establish a 

manageable and focused scope, to maintain continuity in definitions and to be objective in 

purpose.  This chapter presents a high level overview of the context and major perspectives 

of the general field followed by a detailed narrative summarizing prior research in three 

well-defined and thematic areas, related knowledge gaps and the contribution of this 

dissertation in addressing them.  Selected material from Section 2.1 was published in 

Understanding the Global Energy Crisis, Purdue University Press (2014) 215-239 [30].  

Material from Section 2.2 has been submitted for publication in Transportation Research 

Part D: Transport and Environment [31]. Material from Section 2.3 was published in 

Applied Energy (157 (2015) 940-952) [32].  Material from Section 2.4 has been submitted 

for publication in Applied Energy [33].    

2.1 Background and Motivation for Reducing Energy Consumption in Transportation 

While the oil dependency of major consuming countries varies, the United States is 

not unique with a transportation sector that accounts for about 28% of total domestic energy 

consumption and a similar percentage of greenhouse gas (GHG) emissions [2-3].  Increased 
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commercial deployment of advanced vehicle architectures is regarded by major economies 

as a significant means of reducing fuel use and emissions in the coming decades. A myriad 

of studies have performed scenario projections based upon energy and climate policies and 

targets, including works by the International Council on Clean Transportation (ICCT) and 

the International Energy Agency (IEA).  ICCT has projected that vehicle technologies, 

biofuels and reductions in vehicle miles traveled would need to contribute equally to meet 

a nearly 30% reduction in fleet petroleum use by 2020 [34].  The analysis also projects the 

share of petroleum reduction attributable to vehicle technologies should grow to beyond 

50% by 2030 to maintain aspirational targets.  In its so-called “blue-map” scenario which 

calls for aggressive deployment of new vehicle technologies [35], IEA projects that while 

light duty vehicle demand will climb, the market share of conventional gasoline and diesel 

vehicles will plateau by 2020, and be replaced by increasing shares of hybrid, electric and 

alternative powertrains as shown in Figure 2.1. 
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Figure 2.1. IEA “Blue Map” projection of light duty vehicle (LDV) sales through year 

2040. 

Figure 2.1 Legend: EV=Electric Vehicle; FCV=Fuel Cell Vehicle; PHEV=Plug-in Hybrid 

Electric Vehicle; CNG=Compressed Natural Gas Vehicle; LNG=Liquid Natural Gas 

Vehicle. Data source [35].  

 

The U.S. government projects that greenhouse gas emissions from the transportation 

sector will actually experience slight progressive declines from 2010 baselines in 2020, 

2025 and 2030 [36].  Interestingly, this makes transportation unique as the only major U.S. 

GHG inventory reporting sector expected to experience such reductions.  These projections 

are largely underpinned by substantive technology and policy-making initiatives by major 

U.S. government agencies, highlighted by RFS and CAFE regulations.  In 2011, DOE 

rolled out its first ever Quadrennial Technology Review (QTR), in which innovation 

roadmaps toward improved vehicle engines, weight aerodynamics, electrification, fuels 

and infrastructure were presented [37].  The Energy Information Administration (EIA) 

reported in its 2013 Annual Energy Outlook that motor gasoline consumption will reflect 

more stringent fuel economy standards, that renewable fuel use will grow at a much faster 
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rate than fossil fuel use, and that U.S. energy-related carbon dioxide emissions will remain 

below their 2005 levels through 2040 [38].  For more than a decade, fuel consumption and 

emissions reductions in transport have been addressed largely by regulatory processes 

initiated by the executive branch, as opposed to taxes, fiscal legislation, or other market-

based approaches.  Emphasis on the energy efficiency of homes, buildings and vehicles, as 

well as on stimulating research and development toward low carbon technologies are in 

fact two of three major goals of the 2011 White House “Blueprint for a Secure Energy 

Future.” [39]  

The focus on transportation energy addresses the twin goals of mitigating petroleum 

dependence and domestic emissions.  Such policies are more palatable domestically, in 

part because citizens are tax averse, and perhaps also because fuel and emissions reductions 

have historically been highly correlated and result in mutual benefits.  Many researchers 

correctly point out that climate change is, in general, a “global commons problem” in which 

“most benefits of mitigation are global and distant, while costs are local and immediate.” 

[40] In some sense, energy used for transportation may be an exception.  While the 

geographic and temporal dimensions may account for inaction in a broad global sense vis-

à-vis energy and climate, the 50 United States, both collectively and individually, have 

tapped and untapped opportunities to benefit from a lower carbon transportation sector and 

should continue to leverage both national and local policies toward mitigation efforts.           

         Because of the magnitude and uncertainty associated with national and global efforts 

to reduce or replace fossil energy, a large literature exists regarding benefits and costs of 

energy and emissions reductions across a wide spectrum of sectors and research areas. 

Efficiency improvements are widely viewed as available technologies, capable of being 
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deployed rapidly, and can therefore result in the greatest economic and environmental 

benefits in the near term. This focus on the economic potential of efficiency was the subject 

of two seminal reports by McKinsey, in which benefit/cost analyses and CO2 abatement 

values were generated for a broad range of efficiency applications in both the electric power 

and transportation sectors [41-42].  By focusing on specific technologies, paybacks and the 

effective net present value of comparative options, studies such as these set an excellent 

precedent for objective techno-economic energy analyses.   

Many key technologies currently in development may facilitate progress toward 

passenger car fuel economies in the 40 mpg range, however wide uncertainty accompanies 

economic payback estimations. Near term efficiency gains across all vehicle classes will 

result in the greatest energy and emissions savings, as the incremental improvement over 

a fixed base value will diminish with each successive year. This aspect of the current policy 

is potentially problematic since the largest fuel consumption reductions occur in the earlier 

years, whereas costs may escalate beyond reasonable levels in the latter years [43].  To 

comply with official CAFE targets within this decade, recent estimates predict that 

technology upgrades will result in cost premiums in the range of $1600–$4750 (in 2014$) 

per vehicle at production scales [43-45]. Many believe that these investments are justified, 

given that they will be offset or exceeded by fuel savings. However, the volatility of 

gasoline and diesel prices introduces complexities to predicting benefit/cost ratios with 

certainty [30,46].  As such, a comprehensive investigation of primary technological, 

economic, consumer and regulatory factors associated with energy reducing vehicle 

technologies is of considerable value and has broad applicability to a wide range of 

stakeholders.   
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2.2 Fuel Economy and Vehicle Attribute Valuation Trends 

The availability, utility and value of new automobiles and their constituent features 

vary widely, have increased steadily over time, and strongly reflect a diverse range of 

consumer preferences and value propositions.  Studies performed by the academic research 

community, specific OEMs, regulatory agencies, as well as consumer reporting groups 

may be written with differing objectives for a variety of audiences, but are generally in 

agreement that considerable technological progress, in quantifiable and objective terms, 

has been achieved over the past four decades.    

2.2.1 Vehicle attributes that contribute to consumer utility 

Vehicle buyers generally value an extensive set of both objective and subjective 

factors. From the more objective traits to the more subjective ones, these include [47-52]: 

 Purchase price,  

 Resale value, 

 Cost to operate,  

 Capacity (passenger or cargo space, physical size),  

 Performance (power, torque, acceleration, ride),  

 Fuel economy,  

 Safety (crash worthiness, safety ratings, installed safety equipment),  

 Aesthetic value (luxury, comfort, styling),  

 Standard or optional equipment,  

 Brand reputation,  

 Quality,  
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 Warranty and reliability,  

 Environmental impacts,  

 Comparative consumer ratings, and  

 Personal experience.   

Several consumer-review databases provide objective comparisons for many of 

these parameters, by way of providing overall ratings between vehicles within common 

classifications [49-50]. Stemming from the reality that consumers buy cars, not features, is 

the caveat that standard features are packaged together by the OEMs, which can lead to 

complications in disaggregating feature contribution from overall utility. However, via 

sophisticated and evolutionary product development processes, OEMs arrive at groupings 

of characteristics by integrating regulatory, consumer preference, macroeconomic, and 

competitor benchmark data into new vehicle specifications and design [53].  Thus, 

consumers and OEMs mutually reinforce product attributes subject to regulatory 

constraints, including bundles of attributes and relative weightings among attributes that 

deliver increasing utility [53]. 

In view of the complexity and potential uncertainty introduced by surveys that 

reflect stated consumer preferences, revealed behavior has been demonstrated to provide a 

more accurate reflection of consumer preference [54].  In short, what a consumer actually 

chooses may be more useful data than what a consumer may say in a survey.  Similar 

research speaks to the nature and applicability of automobile attributes, showing that 

tangible attributes, such as price and performance, are more consistently revealed and 

valued in actual consumer choices than intangible attributes, such as prestige or comfort 

[54].  We therefore track historical and tangible measures of consumer utility through the 
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lens of observed consumer acceptance.  One challenge is to select an appropriate subset of 

objective and appropriately weighted product attributes for which long term data exists, 

and to subsequently leverage consumer responses and pricing signals in the interest of 

informing future projections. Since the 1970’s, research in this family of topics has been 

somewhat bifurcated- it has either been studied in a top-down fashion by economists 

interested in high-level market and fleet-wide policy implications, or from the bottom-up 

by engineers and product developers focused on the constituent vehicle technologies 

themselves.  One of the aims of this study is to lay a foundation for stronger linkages 

between the detailed economic and technological considerations of modern vehicles.  

2.2.2 Disaggregating bundled vehicle attributes 

From an economic and regulatory perspective, several seminal research studies 

have attempted to disaggregate the specific factors driving consumer preference and 

product utility since the introduction of the first U.S. fuel economy regulations in the late 

1970’s.  Researchers Lave and Train (1979), observed that then-current models included 

only price and fuel economy, and therefore proposed a Multinomial Logit (MNL) approach 

in which characteristics such as weight, external dimensions, passenger space, horsepower, 

and so on, could be included in the models [47].   Manski and Sherman (1980) utilized 

Hedonic Demand Modeling (HDM) methods that included five primary attribute categories 

with the following characteristics: passenger carrying ability, cargo carrying ability, 

performance, cost and style [55].  A unique emphasis of this study was to consider the 

combined effects of household and socioeconomic influences along with vehicle attributes 

on utility.  Greene and Liu (1988) used consumer surplus as a primary means of 

disaggregating the particular contribution of fuel economy in the overall vehicle utility [56].  



30 

 

3
0
 

Ohta and Griliches (1986) used hedonic approaches to investigate the impact of gasoline 

prices on the tastes of new vehicle buyers [57].  Alcott and Wozny (2014) sought to better 

quantify this relationship, positing in one scenario that consumers appear to value 

discounted future gasoline costs only 76% as much as they value purchase prices [58].  

Under a variety of scenarios and assumptions, Busse et al (2013) find little evidence of 

consumer myopia about future fuel costs, suggesting most implicit discount rates range 

from near zero to less than 20% [59].  However, opinions on this issue are mixed as several 

researchers have suggested that the market for fuel economy does not function efficiently 

[58,60-62], with consumers often undervaluing its benefits.  Recent studies have further 

improved upon prior models by considering that certain factors can indeed be endogenous, 

whereas earlier models assumed all factors were exogenous and therefore did not 

contribute to internal correlations [63-64].         

Since the relatively recent implementation of more stringent U.S. Corporate 

Average Fuel Economy (CAFE) standards begun in model year 2012 [15,27], few studies 

have detailed the impacts of new regulations on the rates of consumer acceptance, 

technology adoption, or corresponding prices [65]. What remains under-researched are 

analyses that quantify the extent to which the prescribed tighter fuel economy standards 

affect other vehicle characteristics, and importantly, the market price impact of such 

technological trade-offs into the coming decade.  Given the emphasis of the new 

regulations on vehicle footprint and sales weighting [15], characterizations of consumer 

preferences and attribute valuations as functions of vehicle class are extremely limited, yet 

are critical to future compliance strategies. 
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Early studies motivated by system level economic analysis eventually gave rise to 

the use of aggregated vehicle utility modeling as a means of studying the weighting and 

impact of a particular attribute or set of attributes.  Regardless of the method used or the 

underlying motivations, “utility” as defined in either economic or technological terms is an 

admittedly complicated “function” to parse into individual components. Precise prediction 

of attribute contribution to the aggregate is difficult, in part because numerous factors are 

involved and in part because some attributes are strongly correlated with others, or are 

jointly determined [7]. For this reason, rigorous technological perspectives are invaluable 

and complementary to economic and policy modeling.  

Several examples from the literature have introduced simplified objective functions 

and models that predict binary technological trade-offs among attributes with remarkable 

accuracy. Variations on these approaches have been used, for example, to assess the impact 

of Federal Motor Vehicles Safety Standards over time, or to quantify the relationship 

between safety, cost and weight as performed by the National Highway Traffic Safety 

Administration (2004) [66].  One recent application of related research was a 2012 study 

of the German automobile sector where vehicle technologies and attributes were tracked 

against major OEMs to better explain key drivers of trends in market share [48].      

Coinciding with revitalized legislation regarding U.S. energy policy [26], An and 

DeCicco (2007) introduced the so-called “performance-size-fuel economy index” (PSFI) 

[5], suggesting a sustained and linearly increasing trend of long-run technological 

innovation by the auto industry.  PSFI is the product of three equally weighted objective 

measures of utility: 
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 Performance (engine power in horsepower divided by vehicle inertia weight in lbs, 

where vehicle inertia weight is defined by EPA to be vehicle curb weight plus 136 

kgs.)  

 Size (interior volume of the passenger compartment in cubic feet), and  

 Fuel Economy (U.S. EPA laboratory rated combined city/highway fuel economy 

in miles per U.S. gallon, mpg).  

By using sales-weighted vehicle attribute data from the EPA [13] as plotted in 

Figure 2.2, PSFI is an effective first-order indicator of utility in the U.S. market. For 

example, computing PSFI for the period of 1978-2014 for U.S. passenger cars suggests a 

2.7% linear increase with an R2 of 0.979 as illustrated in Figure 2.3 [5,13]. Please note that 

when introduced in 2007, PSFI used then-current definitions for EPA combined 

city/highway Fuel Economy (FE).  In 2008, EPA introduced revised rules and definitions 

to better reflect real-world fuel economy as per [14]. As such, the 2.7% average compound 

annual rate of increase applies the original PSFI formula but uses new EPA FE definitions 

for adjusted fuel economy accordingly. 
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Figure 2.2. Trends in individual attributes of performance, size and fuel economy as per 

[5,13], 1978-2014.  

 

 

Figure 2.3. Performance-Size-Fuel Economy-Index (PSFI) Trends, 1978-2014. 

 

2.2.3 Characterizing trade-offs among vehicle attributes 

One of the potential shortcomings in PSFI is its allocation of equal weighting to the 

performance, size and fuel economy parameters.  Knittel (2011) [7] and MacKenzie and 
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Heywood (2015) [8] have applied empirical models to historical records to estimate the 

elasticity of fuel consumption with respect to engine power, acceleration and weight 

confirming the trade-offs are not 1:1, suggesting that the parameters are “not of equal 

weight.”  Kasseris and Heywood (2007) conducted system-level analyses to explore fuel 

saving powertrain modifications and suggest comparative advantages of future engine, 

aspiration, transmission and vehicle architecture technologies [9].  Cheah et al (2008) 

explored technological trade-offs among attributes with a focused view toward quantifying 

the extent to which fuel consumption reduction could be emphasized [10]. In follow up, 

Cheah and Heywood (2011) point out that prior CAFE compliance feasibility assessments 

do not detail or do not constrain deployment rates of new vehicle technologies; and do not 

appropriately account for technology improvement rates over time [6]. Prior studies also 

assume the performance and utility of vehicles will remain unchanged in the future, 

contrary to established history [6]. Both [5] and [6] helped inform an improved 

understanding of the constraints on future technological frontiers and implicitly or 

explicitly acknowledged that future consideration of economic impacts (not undertaken in 

their works) would have merit. Indeed, technological trade-offs not appropriately informed 

by the associated economic consequences have marginal applicability in realistic 

projections of future market trends. Given that CAFE standards are based on sales-

weighted averages, both technological and economic aspects of attribute trade-offs add 

value to informing compliance feasibility.  

In addition to sustained technological progress overall, it is obvious that innovation 

has manifested itself through specific attributes during specific periods of time, as Figures 

2.2 and 2.3 illustrate.  A more concrete and detailed view of temporal trade-offs, however, 
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is warranted.  As noted in Chapter 1, concerns that past technological innovation did not 

directly result in fuel or emissions reductions are profound and are a major driver behind 

renewed federal regulations.  In a 2012 report on the evolution of specific vehicle attributes 

in view of historical trends, EPA observed: 

From model year 1987 through model year 2004, on a fleet-wide basis, automotive 

technology innovation was generally utilized to support market-driven attributes 

other than CO2 emissions and fuel economy, such as vehicle weight, performance, 

and utility. Beginning in MY 2005, technology has been used to increase both fuel 

economy (which has reduced CO2 emissions) and performance, while keeping 

vehicle weight relatively constant [67].    

The present study aims to definitively capture the interplay between economic, 

technological and regulatory considerations by evaluating vehicle characteristics in context 

with trends in vehicle prices and regulatory constraints.  It expands the prior work in 

significant ways by considering recent data up to and including 2014, a period of 

substantial flux with regard to fuel prices, the global economy, the health of the U.S. 

automotive sector, and regulations affecting new vehicle fuel economy and emissions.  It 

captures innovation in critical technologies heretofore under-represented in previous 

studies, such as hybrids.  By comparing historical vehicle fleet aggregate price elasticities 

with contemporary trim-level elasticities, it provides timely insight into the economic 

practicability of fuel economy across a spectrum of vehicle footprints.  The characterization 

of linkages between technological progress and economic analyses leads to an improved 

understanding of the relative weighting and price elasticities for key vehicle attributes for 

which both long-run historical and near-term contemporary trends have timely implications.  
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2.3 Benefit-Cost Approaches to New Vehicle Technologies and Fuel Economy 

As noted in Chapter 1, federal fuel economy policies are designed to simultaneously 

address key challenges and deliver tangible benefits to consumers, the economy, and the 

country as a whole.  Fuel economy and emissions regulations along with other efforts to 

reduce oil dependence have indeed accelerated the global deployment of advanced vehicle 

technologies.  Recent U.S. trends indicate that OEM compliance with CAFE standards is 

largely being attained, the policy has thus far been successful, and progress is on track 

[13,68].  A great deal of investigation, consultation, and modeling based upon then current 

information provided the framework for the rule regulating 2012-2016 model year vehicles.  

The Department of Transportation’s National Highway and Traffic Safety Administration 

(NHTSA) and the Environmental Protection Agency (EPA) issued the Draft Joint 

Technical Support Document (TSD) specifically to document relevant technology 

performance and cost data available prior to rule issuance [69].  Such processes are 

admittedly uncertain, in part because subject estimates of technology, costs and fleet 

evolution are based upon projections drawn from 2008 and 2010 model year information 

[15], yet implementation of the regulations extends more than a decade into the future.  

Technologies are assumed to penetrate the market based upon a cost-effectiveness 

algorithm that compares the technology cost to the discounted stream of fuel savings and 

the value of performance to the consumer [70].  Though the source data detailed technology 

specificity [71] and delineated assumptions about fuel prices and discount rates, projections 

of fleet-wide impacts and vehicle sales by technology type were aggregated, making it 

difficult to explicitly determine the relative performance and cost-effectiveness of fuel 

savings technologies.  In view of the need to validate economic practicability of 
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compliance efforts in advance of the 2018 mid-term review, benefit-cost analysis can be 

viewed as an invaluable tool for making public or private assessments.  This approach can 

be employed to assess the economic viability of specific technologies against absolute 

criteria as well as to compare them against other competing technologies.  

2.3.1 Status and outlook for progressive fuel economy standards 

Sustainably achieving compliance over a period of a decade or more, whether in 

the United States or elsewhere, requires that regulations be based upon the most current 

scientific and market-based data available, and appropriately address sources of uncertainty 

over time.  While numerous studies quantify the benefits of fuel economy standards and 

project the composition of future vehicle fleets in 2035 or 2050 [72-76], researchers have 

suggested that the market for fuel economy does not function efficiently [58,60-62,77], 

with consumers often undervaluing its benefits.  Given the sales-weighted emphasis of 

most policies, Greene suggested that “policy analysis must be based upon how real world 

markets actually function,” noting that costs and benefits may vary accordingly [77]. 

Due to the long lead-times typical of automotive design and the lengthy rulemaking 

process signaled under the Energy Policy Act of 2005 [78], OEMs began to increase 

internal CAFE metrics beyond the required level, even before the issuance of the 2012-

2016 rule. This is illustrated in Figure 2.4 by the superior performance of the “Actual fleet” 

as compared to the “Avg Fed Std” fuel economy levels in the year 2010.  One reason 

automakers have continued to exceed the minimum requirements in recent years is that 

they can generate credits for over-compliance within the current policy, and have the option 

of carrying them forward or backward, or trading them with other OEMs [27].  From the 

2011 through the 2014 model years, the passenger car fleet fuel economy has improved 
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about 10% to 36.5 miles per gallon (NHTSA/CAFE) on a sales-weighted basis, 

outperforming the Federal standard by 8.0% in 2012, 7.8% in 2013, and 7.0% in 2014 [28].  

In a similar fashion, sales-weighted CAFE performance for the entire light duty fleet, which 

includes all cars and light trucks, increased at a rate of 4.3% in 2011, 3.1% in 2012 and 

3.0% in 2013 [29].   

 

Figure 2.4. Passenger Car Corporate Average Fuel Economy (CAFE) actual fleet 

performance vs. Federal standards (left Y-axis); and approximate share of 2013 MY 

vehicles that are compliant with the Federal standard in future years (right Y-axis). 

Figure 2.4 Legend: ICE denotes internal combustion engine; HEV denotes hybrid electric 

vehicles; PHEV denotes plug-in hybrid electric vehicles; “Other” includes electric vehicles 

(EV) and compressed natural gas (CNG) vehicles. Data sources: [28,68]. 

 

 As mentioned, EPA and NHTSA regulations differ slightly.  In Figure 2.4, an 

equivalent CAFE fuel economy standard that estimated an average of the two is shown, 

labeled “Avg Fed Std.”   
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A December 2013 EPA report indicates that 28% of MY2013 vehicles meet the 

2016 standard [68], which varies slightly among the two regulatory agencies due to the 

regulation of CAFE vs. CO2 emissions (34.1 mpg is NHTSA’s CAFE goal for passenger 

cars, whereas 35.5 mpg is EPA’s “CO2 equivalent” goal) [15].  It should be noted that the 

exact regulatory standard is variable within annual limits due to the unknown sales mix 

and the footprint-specific approach, and also because the authority of NHTSA and EPA 

requires them to regulate fuel economy and GHG emissions respectively [15,27].  However, 

the standards on passenger cars roughly follow a 4.3% increase through 2016, and then a 

4 to 5% annual increase beginning in 2017 and extending until 2025.   

With this steady increase in requirements through 2025, the share of 2014 models 

that will be able to comply in that terminal year without further modification falls 

precipitously toward the end of the decade.   Only 5% of all light duty MY 2013 vehicles 

appear to be compliant with the 2025 standards (which include CO2 equivalent emission 

targets as well as fuel economy targets) [68].  Aside from today’s hybrids, a portion of 

those that do are currently low volume, partially or fully-electrified platforms such as plug-

in hybrid or electric vehicles which rely on a multiplier of the miles-per-gallon equivalent 

(mpge) to comply.  CAFE regulations consider the vehicle itself, fully fueled or fully 

charged (using an energy conversion equal to the full calorific value of 33.7 kWh/gallon 

gasoline equivalent), as the system boundary. In other words, tailpipe emissions and on-

board equivalent energy are the only variables considered in fuel economy estimates used 

in computing CAFE under the policy.  For the purposes of fuel economy accounting under 

the rule, no consideration is therefore given to upstream electricity production, net system 

efficiency, or lifecycle energy-emissions.  When running on all-electric mode, EV and 
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PHEV vehicles get CAFE credit for fuel economy values that are elevated even beyond the 

mpge basis, which is important to note as results are compared.  The Department of Energy 

(DOE) studied U.S. average fossil-fuel electricity generation efficiency in 2000, 

determining it to be approximately ≈ 0.328 [79] and suggesting a method for calculating a 

petroleum-equivalency factor (PEF) that would provide an incentive to vehicles that 

employ electricity.  The PEF is equal to 1/0.15, or about 6.7, as is intended to incentivize 

OEMs to produce and sell electric vehicles, and provide opportunities for significantly 

boosting CAFE compliance.  The factor, however, does not accurately reflect the energy 

intensities of electric vehicles vs. internal combustion engine vehicles, nor does the mpge 

rating.  Additional credits are assigned within CAFE regulations for alternative vehicles 

such as PHEV and EV to incentivize OEMs to sell them. Though the details of this 

accounting are beyond the scope of the present work, it is an important consideration in 

view of the impacts and implications of the various vehicle technologies addressed within 

the policy. Additional detail on fuel economy can be found in Appendix A.       

Thus, two critical, but distinct, near-term challenges facing the industry today are 

approaches to increase the number of models that comply, and to attract consumers to 

purchase the ones that do.  Regarding the first, the commercial introduction and 

deployment of an increasingly wide range of advanced technologies will be needed (see 

Chapter 4).  Regarding the second, if the consumer is to benefit financially from stricter 

standards, costs must be offset by an equal or greater level of benefits to the consumer, and 

not just to society as a whole (see Chapter 4).  As mentioned, in addition to striving to 

ensure technological feasibility, conserve energy and reduce emissions, the policy has a 

requirement to ensure “economic practicability.” This has implications on the financial 
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capability of the industry, jobs, and consumer demand for fuel economy in addition to other 

vehicle attributes [27]. 

The present assessment analyzes critical technologies in today’s marketplace, 

discusses revealed consumer preference, and explores associated benefits and costs under 

a range of potential conditions.  By taking a consumer perspective and analyzing specific 

vehicle models and technologies, the study provides insight into current-day economic 

practicality that has been lacking in previous studies focused on fleet-wide averages [72-

76], or based upon past model years [15,45,74].  Uncertainty is addressed by means of a 

straightforward sensitivity analysis on economic and application-dependent parameters.  

The primary scope of this study is the U.S. passenger car market in 2014, with an emphasis 

on compact and midsize vehicles.  This detailed study is confined to these segments 

because they are a representative subset of new car sales and, owing to their nature, basic 

design, and market demands, tend to incorporate a comparatively large number of fuel-

saving technologies.  This analysis includes 14 of the highest-selling passenger cars in the 

U.S. market for the period 2012-2014, or about 55% of the entire passenger car market. 

The data supporting this study are aggregated, and to the greatest practical extent, 

references to specific makes, models or proprietary technologies are limited so as to avoid 

any unintended bias toward or against a particular vehicle technology or brand.   

2.3.2 Key fuel economy technologies and their estimated costs 

An exhaustive review of all fuel-saving technologies introduced in U.S. cars is well 

beyond the scope of this paper.  However, the literature and market suggest a manageable 

subset of the most popular and effective solutions that have now become commercially 

available.  The process for revitalizing CAFE standards was formally initiated in 2007, 
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under the Energy Independence and Security Act [26], which originally called for CAFE 

standards to reach a combined car/truck performance of 35 mpg by 2020.  This target was 

effectively pulled ahead to about 2016 with the final 2012-2016 MY rulemaking [15], as 

illustrated in Figure 2.4.  For some technologies, long redesign cycles (on the order of 4-8 

years) often typical of engines and other transformational technologies, such as hybrid and 

electric powertrains, are the reality.  Other technologies follow a more evolutionary path, 

can be more readily incorporated into annual or biannual design cycles, and include 

advanced transmissions, reductions in weight, friction or drag,  and valve actuation 

strategies, for example [28,45,71].  These carry generally lower costs, but proportionally 

lower fuel savings as well.   

Table 2.1 provides an overview of several major vehicle technologies that 

contribute to increased fuel economy.  The methods and underlying detail for estimating 

2014 MY costs emerging from the author’s study are discussed in Chapter 4.  The table 

includes data drawn from a comprehensive report on the subject prepared by the National 

Research Council [45].  In that study, which constituted one of many inputs to the Federal 

policy, ranges and average values for estimated fuel economy improvements and their 

associated incremental costs were presented by technology type and vehicle class based 

upon then-current technology and baseline fleet characteristics.  Here, the NRC cost 

estimates are expressed in 2014 dollars, having been converted from a 2008$ basis via the 

consumer price index, or CPI [80].  Depending on the context, source and application, 

“incremental cost” can have multiple meanings.  In order to reduce confusion, it is defined 

here to mean the value which equates to the consumers’ retail equivalent price difference 
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between a base technology and an upgraded one.  In other words, it is the price difference 

due solely to the fuel economy technology.  

One can get a sense for the recent commercial growth of these selected technologies 

by comparing their respective market shares among all new light duty vehicles (LDV) in 

the 2008 model year with the 2013 model year [68].  It is not surprising that the lowest-

cost, most “evolutionary” technologies, such as variable valve technologies (VVT) and 6-

speed transmissions (AT6), reflect the highest market shares overall (96% and 64%, 

respectively).  However, in terms of growth rate, one notes that continuously variable 

transmissions (CVT) and hybrids (HEV) have nearly doubled, while turbos with 

downsizing (TRBDS) and gasoline-direct injections (GDI) have increased six-fold and ten-

fold, respectively.  Quantifying future market penetration, while estimated by previous 

studies [6,69,71,81], is inevitably uncertain, but can be in part be illuminated by revealed 

preferences in current model-year sales, adding to the relevance and timeliness of this 

study’s approach. 
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Table 2.1. Overview of selected vehicle technologies that contribute to improved fuel 

economy, their approximate market share growth, their benefits and costs [45,68]. 

  

Market Share Fuel Econ Benefits Incremental Costs 

(%LDV
1
, est.) (average % diff) (est., in $2014) 

 Source: [68] [45] Authors [45] Authors 

Technology 

Description 
2
 Abbr. MY2008 MY2013 

NRC
3
 

2011 MY2014 

NRC 

2011 MY2014 

Wt reduction (2 - 5%) WT - - 2.5 

9.7 

280 

1,233 Aero. & frict. reduct. AERO - - 2.6 133 

Variable Valve Tech. VVT 58.0 96.0 3.7 279 

Auto Trans. (6 sp) AT6  19.0 64.0 2.6 
5.6 

510 
817 

Cont. Variable Trans. CVT 7.0 13.0 4.3 266 

Gasoline Direct Inj. GDI 3.1 30.0 3.1 
10.2 

324 
1,301 

Turbo & Downsizing TRBDS 2.5 15.0 5.3 814 

Conversion to Diesel Diesel < 1.0 1.0 35.7 21.8 3,974 4,005 

Hybrid HEV 1.9 3.5 58.1 58.1 4,982 4,098 

Plug In Hybrid
4
 PHEV < 1.0 < 1.0 N/A 91.1 14,723 8,849 

 

The notional data reflected in Table 2.1 for both fuel economy improvement and 

cost represent average values from both the NRC study and a preview of some of the results 

of the author’s analysis in Chapter 4.  Regarding technology definitions, in most cases the 

                                                 
1
 %LDV means % of the light duty vehicle fleet that includes some aspect of the given technology.  These 

numbers are estimates from [68]. 
    
2
 Baseline technologies from the NRC study [45] are drawn from 2007 to 2010 era production vehicle data.  

For the purposes of comparing advanced fuel economy options, baseline technologies are not significantly 

different in 2014, though it is imperative to be cognizant of the base level of technology against which 

improvements are compared. 
 
3
 The NRC study reported fuel savings in terms of % reductions in fuel consumption.  These have been 

converted to % improvements in fuel economy, though the relationship is inversely proportional.  Costs 

have been converted from 2008$ to 2014$ [45,80]. 
 
4
 NRC study considered a single PHEV with a 40 mile range, although this study includes PHEVs with all 

electric ranges from 10 to 40 miles.  All-electric range is linearly proportional to battery cost and therefore 

incremental price.  Also, NRC did not report on the % fuel economy improvement typical of a PHEV, 

possibly because it is largely application-dependent and the two modes of energy (electricity and gasoline) 

make this non-trivial to report on the same basis. For this study, a Federal subsidy applies to certain PHEV 

vehicles (>5kWh battery) and has therefore been included [82], whereas the policy had not taken effect 

when NRC performed its study.  CAFE regulations consider mpg and mpge (for certain PHEV) 

equivalently, and are therefore included accordingly in this study. [15,27] 
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technology descriptions are self-explanatory.  In some cases, a preceding technology is 

often required in a later evolution, such as is common with gasoline direct injection, 

downsizing and turbocharging.  A second example of bundling is the availability of “fuel 

economy” packages whereby OEMs may include reductions in weight, friction, rolling 

resistance and/or aerodynamic drag for some premium charge.  Thirdly, in most all new 

models with advanced fuel economy technologies, such as hybrids, advanced transmissions 

are being used. Therefore, it may be assumed that the benefits of an automatic transmission 

with an increased number of speed ratios or a continuously variable transmission (CVT) 

are normally embodied in such vehicles (even if not so stated). This study combines 

relevant pairings accordingly as indicated.  The relationship between incremental cost and 

corresponding fuel economy improvement is a complicated, though critical, one with 

important implications on consumers and regulatory compliance.  While each technology 

is unique, studying them collectively and drawing upon timely market-based data offers 

unique insights into current fuel economy trends and the comparative value of technology 

improvements to consumers.      

The literature is remarkably consistent in its inclusion of these primary technologies 

over an extended period of time.  For example, a 1994 study  names nearly all of the above 

families of technology options as most impactful, though understandably from a different 

starting point and cost basis [83].  These are not the only technologies, but are the most 

prevalent in the selected vehicle classes.  Among those excluded are two that are 

commercially available: stop-start (also known as idle-off) and cylinder-deactivation.  

Stop-start technology has evolved considerably but has not taken off as quickly in the U.S. 

due to a perception of limited benefits owing to the simplified 2-cycle EPA fuel economy 
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test, in which the vehicle spends little time idling.  In real-world driving, stop-start has 

proven to reduce fuel consumption substantively, with studies reporting improvements on 

the order of 4 to 5% under various conditions [45,84].  Cylinder deactivation is more 

commonly applied in engines having six or more cylinders, whereas many of the vehicles 

in the compact and midsize classes feature inline 4-cylinder engines.  

2.3.3 Predicted benefits and costs of compliance from other studies 

Incremental retail price equivalents (in $) and fuel economy improvements (in 

percent change) are commonly used metrics to assess historical trends and predict future 

ones [61].  Since 2002, the National Research Council (NRC) has compiled technological 

performance and costs data as a means of tracking their correlation, informing automotive 

research and design decision-making, and providing input to the policymaking process 

[45,52,85,86].  Some studies evaluate pay-back periods or costs and benefits associated 

with conserving energy using a range of new vehicle technologies [25].  Others develop 

sophisticated technology-specific analyses to predict technical readiness and future costs 

using computer simulations or tear-down approaches [23-24].  A tear-down approach 

estimates costs and feasibilities associated with the design and manufacture of new 

products by aggregating constituent components of a larger system in a bottom-up manner.  

Both the market-based and technology-specific studies help inform future trends.  However, 

given the aggressive rate of required improvements over a more extended period of time, 

technologies and their costs are changing more quickly than in previous periods of 

regulatory constraint.  One comparative assessment performed by the National Renewable 

Energy Laboratory (NREL) evaluated technological and market assumptions utilized by 

EPA in 2009 [69], suggesting that more specific analyses of technology characterization, 
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current usage and expected 2016 usage of selected technologies would be useful [87].  

While highlighting technology variances compared to initial EPA assumptions, the NREL 

study did not include a financial assessment of economic viability.  As noted, many high-

level policy analyses aggregate vehicle trends on a fleet-wide basis for future extrapolation 

[72-76].  For many of these, costs and benefits, if investigated, are typically assessed from 

a social, economy-wide perspective [15,27,88].  While obviously important in the 

formulation of public policy, two important factors reinforce the merit of analyzing benefits 

and costs from a consumer perspective.  First, determination of economic practicability is 

ultimately a consumer choice that is revealed in the disaggregated sales data.  Second, the 

first-order cost is incremental technology cost, and the first-order benefit is incremental 

fuel savings.  Secord-order social benefits (such as social cost of carbon, increased 

consumer surplus, and petroleum market externalities) and second-order costs (such as the 

rebound effect from additional vehicle miles driven, congestion, and accidents) are 

generally an order of magnitude lower than first-order effects [15,27].   

To address the loss of resolution due to aggregating, other studies have investigated 

specific categories of technologies, such as an investigation into hybrid and diesels by 

Lutsey [89] which suggested that due to uncertainty and rapid evolution in costs and 

performance, future market shares are pivotal to compliance but complicated to assess.  

Lutsey acknowledged that cost reductions for hybrids and diesels are critical for 

mainstream deployment, but did not elaborate on the relative value of these technologies 

as compared with other fuel-saving technologies or as compared against a break-even 

condition.  A study by Cheah and Heywood integrated a broader range of technologies, but 

focused more on compliance scenarios and technological readiness, than relative benefits 
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and costs [6].  The Cheah and Heywood study suggests that the 2016 standards are 

aggressive and may be difficult to attain, even with full emphasis on seeking reduction in 

fuel consumption.  Uncertainty affects 2016 targets differently than longer-term targets.  

Near-term redesign inflexibility, depreciation of existing capital, and historical reliance on 

performance over fuel savings could adversely affect consumer compliance by 2016.  

Conversely, while longer lead times will help facilitate transitions to fuel saving 

technologies over the course of the coming decade, the uncertainty of exogenous factors 

will play an increasingly vital role.  The present study therefore includes a market-based, 

real time assessment of revealed response to CAFE 2012-2016 and can serve to highlight 

the comparative value that consumers are actually obtaining from new technologies relative 

to more conventional ones.  This may prove valuable in view of the scheduled 2018 mid-

term CAFE policy review to involve major stakeholders. Finally, it bears repeating that 

consumers do not buy fuel economy, or even horsepower; they buy cars.  As in every year 

prior, their preferences are largely revealed in the sales record of the current model year, a 

year which arguably includes more fuel saving technologies than ever. 

2.4 Energy Consumption and Emissions Sensitivity of Advanced Vehicle Architectures 

Hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and 

electric vehicles (EV) have been introduced to commercial automotive markets due to their 

potential for favorable energy efficiencies and low tailpipe emissions compared to 

traditional gasoline- or diesel-powered vehicles.  Though advanced vehicle architectures 

incur greater upfront investment costs, energy operating costs are reduced as a result of 

fuel conservation enabled by HEV and PHEV technologies, and from the substitution of 

electricity for liquid fuel made possible by PHEV and EV.  Key factors that affect vehicle 
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fuel and energy consumption include driving conditions, ambient temperatures, and the 

need for auxiliary power such as that imposed by heating or cooling demands [90-91].  

Numerous studies have demonstrated that HEV, PHEV and EV have greater sensitivity to 

these factors than similarly equipped internal combustion engine (ICE) propelled vehicles 

[92-96]. While a number of studies have addressed these factors at the component level, 

complete systems investigations that include comparisons and implications are rare. The 

partial or complete use of grid-generated electricity by PHEV and EV architectures further 

complicates direct comparisons of energy consumption with liquid-fueled ICE or HEV 

vehicles.  As a result, system-level energy sensitivity to driving cycle and ambient 

temperature is not completely understood for emerging vehicle architectures.  Furthermore, 

while the literature includes a growing body of work to estimate the lifecycle emissions of 

alternative vehicles in consideration of upstream factors [97-99], “bottom-up” emission 

estimates that include iterative simulations of vehicle dynamics, propulsion and thermal 

energy demands through variations in driving cycle, ambient temperature and locality are 

novel and valuable.  

2.4.1 Estimating battery and vehicle performance 

It is significant that HEV and EV house battery modules that generate waste heat 

in proportion to their capacity. Battery thermal management is an active area of research, 

as typical energy storage capacities of commercially available compact cars increase from 

about 1.4 kWh to 16.5 kWh to 24.0 kWh, for HEV, PHEV and EV, respectively [100].  

The roundtrip efficiency of a battery module reflects cumulative energy losses during 

charging and discharging cycles, and is therefore heavily dependent upon driving cycle.  In 

addition, battery performance and life have been shown to be functions of operating 
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temperature, which can be directly impacted by ambient conditions [101].  Heating, 

ventilating and air-conditioning (HVAC) requirements of both the cabin and battery 

module for a vehicle operating in an all-electric mode must naturally derive entirely from 

on-board batteries, further compounding thermal/electric system loads.  

Due to the expense and specialized equipment needed to perform experiments in 

either a real-world or climate-controlled laboratory dynamometer setting, computational 

vehicle simulation is a viable low-cost means of comparing a variety of performance 

indices in major vehicle technologies.  Numerous computational tools are available to 

simulate the performance of alternative vehicle architectures, such as ADVISOR, PSAT, 

and AUTONOMIE, which are part of collaborative U.S. Department of Energy (DOE) 

projects [102-104].  Some models employ a forward-facing approach yielding highly 

accurate but computationally-intensive simulation results [102].  Others adopt a high level 

backward-facing approach, where the velocity command trace is assumed to be met exactly 

in order to simplify powertrain control strategies employed by the vehicle simulations and 

to reduce computational time.  Due to the comparative nature of the present study, the latter 

approach is appropriate and therefore used. 

2.4.2 Assessing the impacts of driving cycle and ambient temperature in advanced 

vehicles 

Standardized driving cycles are typically used as inputs to vehicle performance 

simulations because they are pre-defined by official regulations and facilitate equitable 

comparisons. Since 2008, the United States Environmental Protection Agency (EPA) has 

promulgated new regulations for fuel economy testing and labelling to better reflect real-

world driving [14], including the addition of driving cycles performed at 35°C and -7°C to 
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generalize performance under hot and cold weather conditions, respectively. Cabin heating 

and cooling loads have been shown to be generally linear with ambient temperature for 

conventional vehicles [93,105]. Thus, by increasing the number of driving cycles from two 

to five and introducing more empirically rigorous calculations, current fuel economy labels 

are a better indicator of real-world fuel economy for conventional vehicles [14]. Owing to 

rapid development as well as operational and design differences in HEV, PHEV, and EV, 

revisions to recommended test protocols J1711 and J1634 were issued in 2010 and 2012, 

respectively, by the Society of Automotive Engineers [106-107]. These protocols provide 

critical guidance on multiple drive cycle repetitions and  means of ensuring accurate energy 

accounting between electrical energy and liquid fuel consumed during hybrid modes 

(known as “net energy change tolerances”), and are applied in the present work.  

While the updated EPA and SAE protocols have dramatically improved testing, 

repeatability and consumer understanding, significant gaps and research opportunities 

remain.  EPA labelling methodologies prescribe laboratory conditions modelled around 

aggregated U.S. domestic data, despite obvious regional variations.  In 2002, the National 

Renewable Energy Lab (NREL) performed a state-level assessment of fuel consumption 

attributable to vehicle air-conditioning in the 50 states [95]. As a result of such assessments, 

several studies have compared selected vehicles of a given architecture and considered 

multiple driving cycles in temperature categories such as hot, temperate and cold. For 

example, Loiselle, et al. compared two HEV at 20°C and -18°C [93] and Hayes, et al. 

compared two EV at 35°C, 20°C and -11°C [108].  Argonne National Lab performed 

experiments in 2013 on several vehicle architectures at the prescribed -7°C, 23°C and 35°C 

temperatures using a chassis dynamometer in a full-vehicle environmental chamber [96].  
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While generalized hot/cold trends were revealed, the results fail to characterize potential 

non-linear responses in electrical requirements since only two representative temperatures 

were investigated. Along with internal resistances that vary with temperature, battery 

thermal management heating and cooling loads have a compounding effect on system 

energy consumption, suggesting that non-linear and adverse departures from traditional 

energy impacts are likely in PHEV and EV.  For example, Kambly and Bradley [91] 

presented a comparison between conventional and electric vehicles which noted that EPA 

5-cycle test methods overestimated the energy savings due to EV by 28% and resulted in 

inaccurate estimations of range, energy consumption and lifecycle emissions.  This point 

was further demonstrated in a study by Yuksel and Michalek [97] in which range data from 

U.S. owners of a popular electric vehicle model were converted to electrical consumption 

values and plotted against outdoor temperature. The results implied that EV energy demand 

is non-linear and highly sensitive to outdoor temperature. The geographical location and 

behavior of users was aggregated, unfortunately limiting broad applicability of the study 

and suggesting the need for standardized and more comprehensive analytical approaches.  

 In order for hybrid and electric architectures to meet operational needs, batteries 

with high specific power, high specific energy density, larger capacities and higher current 

discharge rates are required [109-111]. The enabling electro-chemical mechanisms of 

modern batteries generate considerable heat under high load and transient conditions [112], 

including rapid acceleration (discharging), deceleration (charging), and start-stop operation 

(cyclic or alternating battery reactions) [113]. A first-order resistor-capacitor (RC) circuit 

offers a reasonable trade-off between fidelity and computational intensity for modeling 

interactions between drive cycle and battery response [114-116]. Increasingly large vehicle 
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battery modules (i.e., > 3 kWh) operating in varying driving cycle and ambient temperature 

conditions call for a model that integrates thermal management, battery equivalent circuit, 

and vehicle propulsion sub-routines to evaluate energy consumption across a continuous 

temperature spectrum.  Such a model would facilitate a comparison of the energy 

intensities of various vehicle architectures in different localities.  

2.4.3 Methodologies for comparing vehicle energy consumption and emissions 

When PHEVs operate in gasoline-only or “charge sustaining” (CS) mode, direct 

comparisons to conventional internal combustion engine propelled vehicles are 

straightforward, and are reported as fuel or energy consumption per distance travelled.  

However, vehicle operation in “all-electric” or “charge depleting” (CD) mode introduces 

substantial unknowns related to the native energy source employed for electric charging.  

In order to provide a baseline reference from the standpoint of the vehicle boundary itself, 

the concept of equivalent fuel economy has been introduced, expressed as “MPGe” and 

can be readily converted to energy consumption per unit distance travelled (20.9/MPGe ≈ 

kWh/km). However, MPGe can be a source of potential confusion [16-17] because it 

excludes consideration of energy sources upstream of the vehicle itself. MPGe is thus an 

unusable metric for making reasonable system-level, lifecycle energy, or emissions 

comparisons.  In order to compare PHEV and EV energy consumption on a ‘wells-to-

wheels’ or W2W basis, any losses from thermal generation of electricity, transmission and 

distribution, and charging must be considered.  The U.S. Department of Energy (DOE) 

issued a petroleum-equivalent fuel economy calculation in 2002 as a basis for computing 

a simplified lifecycle energy consumption to facilitate comparison between ICE, HEV, 

PHEV and EV [79].  A primary contribution of the present study is to build on such 
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lifecycle methodologies and extend them to the city level in the interest of investigating 

vehicle energy consumption as a function of locality.  Relevant location-specific attributes 

include: typical diurnal and annualized weather history, sources and efficiencies of 

electrical power generation, efficiencies of grid transmission and distribution of electricity, 

and efficiencies of transporting and refining liquid fuels.  Other parameters such as daily 

vehicle miles traveled, driving times and behavior, and vehicle charging are considered to 

be independent of location. It is assumed that all sources of energy have equal value in 

proportion to their intrinsic energy potential (i.e., a net energy basis).  While this neglects 

potentially significant geopolitical and energy security considerations of energy demand 

and consumption, it is an appropriate scientific assumption for comparing thermodynamic 

efficiency and energy-derived emissions. 

 

 

 

 

 



55 

 

5
5
 

CHAPTER 3.  FUEL ECONOMY AND VEHICLE ATTRIBUTE VALUATION 

TRENDS VIA HISTORICAL AND CONTEMPORARY HEDONIC PRICING 

ANALYSIS  

This chapter investigates multi-decade trends in major passenger car attributes and 

selling prices using an objective function for utility comprised of three key characteristics: 

fuel consumption, zero to 60 mph acceleration time, and curb weight.  Inflation-adjusted 

prices are demonstrated to have a relatively flat response in view of ever-increasing levels 

of consumer utility. Disaggregated contributions of individual vehicle attributes to vehicle 

price and estimates of the price elasticity of fuel consumption and acceleration performance 

with respect to vehicle price are presented. Both historical and contemporary data help 

quantify the impact of regulations upon these metrics fleet-wide. The chapter also explores 

the vehicle classification aspect of new regulations, suggesting that consumers of certain 

classifications are willing to pay more for improved acceleration than reduced fuel 

consumption.  The results are compared to other selected research methods by way 

assessing the sensitivity of willingness to pay over time. The chapter concludes with a 

discussion of potential implications of the findings, noting that consumer choice and 

preferences may present challenges to footprint-based regulations. The material presented 

in this chapter has been submitted for publication in Transportation Research Part D: 

Transport and Environment [31].    
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3.1 Methodology 

This section presents the selection criteria and definitions for the vehicle attributes 

considered in the study and introduces the primary data.  Graphical trends are depicted that 

track technological progress in attributes between 1978 and 2014.  As a means of more 

completely characterizing the disaggregated contribution and trade-offs among key 

attributes, vehicle price trends are introduced and investigated in view of technological 

time trends.  Specific periods of interest and high-level insights are identified from the 

simultaneous comparison of trends in attributes and prices. The section concludes with a 

detailed overview of the modeling approach and formulae used to estimate two parameters 

of interest for each vehicle attribute in the selected periods.   The first is the disaggregated 

contribution to vehicle price by each key attribute; and the second is the price elasticity of 

each key attribute with respect to overall vehicle price. This section establishes a protocol 

for quantifying and comparing these parameters among periods and among attributes, key 

findings and implications of which are reported in Section 3.2. 

3.1.1 Vehicle attributes considered in the study 

Since it is not the primary goal to characterize all measures of consumer utility or 

service, this study seeks to include a minimum number of objective, historically traceable 

and largely independent vehicle attributes that can sufficiently characterize consumer 

utility in view of market prices. A balance between simplicity and fidelity is achieved with 

the inclusion of three attributes plus total vehicle price.  We include one measure of system 

efficiency (fuel consumption), one measure of vehicle performance (acceleration), and one 

measure of vehicle size and capacity (curb weight).  Following are brief definitions and 

explanations of certain nuances related to the selected attributes.  
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Fuel consumption (FC) is selected because it provides an accurate representation 

of overall system efficiency. FC is preferred over fuel economy (FE) as a measure of 

consumer utility since it scales linearly with consumer-incurred costs per distance driven 

(notwithstanding fuel price variability).  Because FE is familiar among consumers in the 

U.S., used in current regulations, and cited in prior studies, we derive FC from current EPA 

definitions for adjusted combined city/highway FE [14]. The units for FC are liters per 100 

kilometers [L/100km] and it can be derived from FE [in mpg] according to the formula: 

FC = 235.21/FE. It should be noted here that FC scales inversely with utility, since 

reductions in fuel consumption result in utility benefits (such as reduced costs) for 

consumers.  

Though several parameters could reasonably represent the performance aspect of 

utility (including power, torque, and ride), zero to sixty miles per hour acceleration time 

(ACCEL) is selected since it represents a composite performance metric, qualitatively 

similar to FC.  Acceleration time incorporates the aspects of vehicle power, weight, 

aerodynamics as well as systems response, providing a more complete indication of 

performance than a single powertrain dynamometer rating performed at a given engine 

RPM (as is the case of rated power and torque).  One caveat is that acceleration time, while 

objective, is a more difficult parameter to quantify and conventional correlations [117] 

have become outdated or inappropriate for characterizing today’s vehicle technologies [13].  

To remedy this, we employ recent regression-based models for ACCEL developed by 

MacKenzie and Heywood (2012) that reduce error and variability by drawing from a set of 

statistically significant and standardized independent test times [118].  We find the tool has 

usefulness for projections because it facilitates extrapolation of ACCEL into future periods 
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(provided additional detail on up to eight vehicle characteristics is available).  Like FC, 

ACCEL is an attribute that is inversely related to utility, since reductions in acceleration 

time afford consumers an increasing measure of performance. 

Vehicle curb weight (CWT) appears to be, on the surface, one of the more 

rudimentary vehicle attributes.  However, studies have shown links between vehicle weight 

and a host of other vehicle characteristics including aesthetic value, comfort and ride, 

safety ratings, and price [56,119-120].  Though a consumer is less likely to pay attention 

to CWT as compared with FC or ACCEL in a new vehicle purchase, it is a precise and 

objective vehicle attribute by which we can further represent many other more complicated 

or even subjective vehicle characteristics.  Weight effectively becomes a proxy reflecting 

several dimensions of consumer utility.  In this section, we mention CWT last, because it 

is perhaps the least independent and most nuanced of the three selected indicators.  FC and 

ACCEL, as vehicle system parameters, share known yet model-specific correlations with 

CWT. However, FC and ACCEL also depend upon numerous additional factors, which 

serves to reduce potential collinearity with CWT.  CWT has been used extensively as a 

suitable objective proxy for other parameters that are more difficult to quantify or track. 

While neither this study nor consumers are interested in curb weight, per se, it provides an 

excellent complement to FC and ACCEL to accurately characterize vehicle utility in view 

of price.    

Additional parameters of critical importance to most buyers include safety and 

quality.  However, due to the existence of minimum crashworthiness regulatory standards 

and standard factory warranties, such attributes are not believed to be as significant in 

differentiating relative utility for new vehicles.  The same is true for the metric of interior 
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volume in passenger cars according to EPA.  Notwithstanding new definitions for 

classifying passenger cars, passenger interior volume has not varied more than about 4% 

over the past three decades (Table 3.1 and Figure 3.1).  This observation has led the agency 

to suggest vehicle footprint may be a more appropriate indicator of vehicle size [13], and 

may warrant additional investigation as a blocking variable on future studies.  

Clearly, FC, ACCEL and CWT are objective and well understood by OEMs, 

consumers and the research community. They have values that have been historically 

tracked and are either available in reputable databases or can be derived directly from such 

data. At a vehicle model and trim level, these attributes can be linked to data that 

corresponds with selling prices. Finally, they can of course be weighted in importance 

and/or combined to appropriately capture reasonable trends of aggregated utility. Thus, 

while other parameters could obviously be added, we argue that this list can be considered 

necessary and sufficient to approximate and compare historical and contemporary utility 

trends.   

3.1.2 Vehicle price and attribute data 

This study employs two comprehensive data sets in order to investigate attribute 

valuation from both historical and contemporary perspectives. The first set includes sales-

weighted vehicle price and attribute history aggregated for the U.S. vehicle fleet. Nominal 

vehicle price information is derived from [121] and vehicle attribute data are derived from 

[13]. The second set is a trim-level disaggregated record of sales weighted price and 
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attribute data for the 2014 model year. This data is derived predominantly from [122-124] 

with corroborating data from respective automaker specifications and MSRP information.5 

We use two different versions of real vehicle prices in this study. To get the trend 

in real prices from the perspective of consumers, we use the general consumer price index 

(CPI) [80]. This index permits comparison of changes in vehicle prices with the general 

market basket of consumer purchases. The second real price series uses the new vehicle 

price index (CPI, new vehicles: cars [125]), and we use that when doing analysis of 

different vehicle attributes within the auto sector. These are referred to throughout the study 

as “Real Price_1” and “Real Price_2,” respectively. As discussed, the three discrete system 

attributes of fuel consumption, acceleration time and curb weight have been selected 

because each introduces a complementary, yet largely independent aspect of utility, not 

explicitly captured by the others.  

Tables 3.1 and 3.2 contain the historical and 2014 model year data for the two-fold 

analyses that follow.  

 

  

                                                 
5 The historical record reports price data based upon the average expenditure per car, whereas the 2014 record 

reports price data based upon Manufacturer’s Suggested Retail Prices (MSRPs). Actual transaction prices 

for 2014 were not available for this study. Though MSRPs would generally be slightly higher than average 

expenditures per car, they represent a reasonable proxy and are believed to have limited impact on the 

relative weightings or elasticities of the attributes.  In Table 3.1, 2014 “average nominal price” was 

estimated by adding the difference of the average MSRP data for 2013 and 2014 to the actual 2013 average 

expenditures. 
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Table 3.1. Sales-weighted vehicle price and attribute history aggregated for new U.S. 

passenger cars, 1978-2014 [13,80,121,122,125]. 

Table 3.1 Definitions: Real Price_1 = Nominal price inflated by CPI (all items), Real 

Price_2 = Nominal price inflated by CPI (new cars), 6FC = Fuel Consumption, ACCEL = 

0 to 60 mph acceleration time, 6CWT = Vehicle curb weight, VOL = Volume of vehicle 

passenger compartment, PWR = Rated engine power.  All data represent sales-weighted 

averages for the given year. Estimated unit sales are shown for reference. 

 

Year Nominal Real Real Sales FC ACCEL CWT VOL  PWR 

  Price Price_1 Price_2 Units            

  (avg) (avg) (avg) (est) (avg) (avg) (avg) (avg) 
 

(avg) 

    2014$ 2014$ (000) L/100km sec kg ft3 
 

kW 

Source(s) [121-122] 

[121-123, 

80] [121-125] [13] [13] [13] [13] [13] 

 

[13] 

2014 26,320 26,320 26,320 8,000 8.43 8.3 1487 111  149.9 

2013 25,487 25,900 25,407 9,377 8.52 8.5 1475 110  147.6 

2012 25,593 26,389 25,644 8,648 8.71 8.6 1462 111  143.2 

2011 25,474 26,810 25,874 6,934 8.88 8.6 1508 111  149.1 

2010 24,903 27,036 26,052 6,969 9.15 8.8 1471 110  141.7 

2009 23,156 25,552 24,475 6,244 9.41 8.9 1455 110  138.7 

2008 23,442 25,776 25,013 8,243 9.84 8.9 1486 110  144.7 

2007 23,892 27,279 25,406 9,001 9.92 8.9 1478 110  142.4 

2006 23,634 27,753 25,031 8,744 10.23 8.8 1483 112  144.7 

2005 23,017 27,900 24,589 8,839 10.18 9.0 1454 111  136.5 

2004 22,076 27,666 23,813 8,176 10.27 9.0 1451 110  137.2 

2003 21,646 27,850 23,217 8,496 10.23 9.1 1426 110  131.2 

2002 21,249 27,962 22,360 8,904 10.32 9.4 1416 110  129.0 

2001 21,474 28,705 22,331 9,148 10.41 9.4 1414 109  126.0 

2000 21,041 28,927 21,783 9,742 10.45 9.5 1410 110  125.3 

1999 20,710 29,429 21,440 8,865 10.36 10.1 1405 109  122.3 

1998 20,364 29,576 20,910 8,425 10.23 10.2 1379 109  119.3 

1997 19,236 28,373 19,615 8,695 10.14 10.0 1357 109  116.3 

 

Table 3.1 is continued on the following page 

 

  

                                                 
6 Some of the attributes appearing in Tables 3.1 and 3.2 including FC and CWT, are simple conversions from 

the EPA reported data. For example: Fuel Economy, FE (FC=235.21/FE) and Vehicle Inertia Weight, IWT 

(CWT=IWT-300 lbs) 
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Table 3.1. (cont.) 

Year Nominal Real Real Sales FC ACCEL CWT VOL  PWR 

  Price Price_1 Price_2 Units            

  (avg) (avg) (avg) (est) (avg) (avg) (avg) (avg) 
 

(avg) 

    2014$ 2014$ (000) L/100km sec kg ft3 
 

kW 

Source(s) [121-122] 
[121-123, 

80] [121-125] [13] [13] [13] [13] [13] 
 

[13] 

1996 18,777 28,331 19,182 8,177 10.18 10.1 1362 109  115.6 

1995 17,959 27,897 18,663 9,616 10.10 9.8 1352 109  114.1 

1994 17,903 28,598 19,020 8,747 10.23 9.9 1349 108  107.4 

1993 16,871 27,640 18,536 8,929 10.23 10.1 1337 108  104.4 

1992 16,336 27,565 18,385 8,350 10.27 10.8 1343 108  105.1 

1991 15,475 26,898 17,839 8,748 10.10 11.3 1304 107  99.2 

1990 15,042 27,245 17,963 8,875 10.10 11.4 1308 107  96.2 

1989 14,371 27,437 17,411 10,126 9.97 12.5 1275 108  90.2 

1988 13,932 27,880 17,223 10,845 9.76 13.3 1250 107  86.5 

1987 13,386 27,896 16,875 10,826 9.88 13.3 1243 107  84.3 

1986 12,652 27,328 16,524 11,074 9.92 13.2 1247 107  82.8 

1985 11,838 26,045 16,128 10,879 10.23 13.9 1271 108  82.8 

1984 11,375 25,918 15,992 10,730 10.50 14.5 1273 108  79.0 

1983 10,606 25,209 15,343 8,035 10.64 14.8 1278 109  77.6 

1982 9,890 24,262 14,674 7,832 10.60 16.6 1251 106  73.8 

1981 8,910 23,205 13,730 8,734 10.99 15.6 1262 106  73.8 

1980 7,574 21,760 12,384 9,444 11.76 15.5 1273 104  74.6 

1979 6,847 22,327 12,090 10,810 13.68 14.5 1448 109  88.7 

1978 6,379 23,162 12,158 11,191 13.92 13.7 1495 109  92.5 
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Table 3.2. Sampling of 2014 model year trim-level price and attribute data with 

illustrative statistics [118,122-124]. 

Table 3.2. Definitions: MSRP = Manufacturer’s Suggested Retail Price, 7FP = Vehicle 

footprint. Except for 8ACCEL and FP, which are calculated, above data represent vehicle 

specifications for the given make, model and trim level. Estimated trim level unit sales are 

shown for reference. 

 

Make 2014 Model Price Sales FC ACCEL CWT  FP 

  & Trim Level MSRP5 Units          

    2014$ (est) L/100km sec kg 
 

ft2 

… … … … … … …  … 

Chevrolet Cruze LT 19,640 121,699 7.42 9.4 1418  44.8  

Chevrolet Malibu LT 24,435 75,089 7.77 8.3 1560  46.5  

Dodge Charger SXT 30,290 28,562 9.65 6.4 1813  53.1  

Ford Fiesta S 15,425 35,406 6.93 9.8 1151  38.8  

Ford Focus SE 19,440 97,425 7.61 8.6 1319  44.0  

Ford Fusion SE 2L Turbo 27,550 80,060 8.66 7.0 1554  48.7  

Honda Fit 16,215 19,280 7.81 9.9 1132  39.9  

Honda Civic LX  18,980 55,392 7.34 9.4 1316  42.6  

Honda Civic SI 23,780 64,679 8.92 7.1 1362  43.5  

Honda Accord LX-S 24,415 52,608 8.16 7.9 1445  46.5  

Honda Accord EX-L V6 31,135 44,843 8.76 6.5 1612  47.5  

Hyundai Accent GLS 15,455 30,876 7.27 8.5 1129  41.7  

Hyundai Elantra Sport 23,510 45,890 8.16 7.4 1326  45.6  

Kia Soul+ 18,995 86,086 8.72 8.8 1287  43.5  

Lexus ES 350 37,380 57,851 9.14 6.7 1610  48.0  

Nissan Sentra S Plus 14,600 39,168 7.47 10.0 1286  44.4  

Toyota Corolla LE Eco 19,510 66,072 6.72 9.5 1295  44.2  

Toyota Prius III 26,575 26,461 4.78 10.0 1380  44.2  

Toyota Corolla S 19,810 66,072 7.24 9.9 1290  44.6  

Toyota Camry SE 24,210 112,477 7.88 8.5 1470  46.9  

VW Jetta 1.8T SE 19,715 115,511 7.61 8.0 1370  43.9  

… … … … … … …  … 

…793 Additional trim-level models not shown… … … …  … 

N=814 Tot. Observations              

Weighted Mean 27,841   8.16 8.2 1468.6  45.77 

Standard Deviation 13,517   1.52 1.5 200.2  3.12 

Sum (Pass. cars sold)   7,868,192          

                                                 
7 Vehicle footprint (in square feet) is calculated by multiplying the vehicle’s average (front/rear) track width 

(in feet) by the vehicle’s wheelbase (in feet), as discussed in CAFE 2012-2016 [15] and CAFE 2017 and 

later [27].  

 
8
 Acceleration times were determined using comprehensive vehicle specifications from Ward’s [123] and 

using methods described in MacKenzie [118] as discussed in EPA [13]. 
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3.1.3 Initial inspection of attribute trends, periods of interest, and correlations among 

contributing parameters 

At this juncture, a quick overview of attribute trends and primary correlations 

among the selected attributes helps shed light on the approaches undertaken in this study. 

This is particularly relevant given the multi-decade time horizon considered in this study.  

Normalizing the performance of each individual vehicle attribute to a base year of 2014, 

Figure 3.1 illustrates key technological progress trends since 1978. 

 

Figure 3.1. Technological progress trends in key vehicle attributes, 1978-2014. [Data 

source: 13]. 

 

Several points are worth noting to help substantiate the time-period analysis that 

follows. First, Figure 3.1 shows the dramatic reductions in fuel consumption associated 
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with the advent and enforcement of initial CAFE regulations (1978-1990).  Corresponding 

trade-offs in acceleration time and curb weight are similarly reflected during that period. 

CAFE standards remained unchanged between 1990 and 2011, as witnessed by the flat 

response of FC until renewed legislation was signaled in about 2007 [26]. It is of note that 

the relative lines of innovation for FC and ACCEL intersect between 1994 and 1999 (with 

a midpoint about 1996 or 1997).   

A comprehensive review of all the relevant interactions among the selected 

parameters is beyond the scope of this paper.  It is, however, of considerable interest that 

the correlations among the variables are predominantly driven by time period rather than 

by physical correlations.  Three correlation matrices for various subsets of the historical 

data are shown in Tables 3.3, 3.4, and 3.5 for the periods of 1978-2014 (overall period), 

1978-1996 (first half) and 1997-2014 (second half) respectively.  All reported correlations 

during the periods are driven primarily by technological time trends, or more simply 

innovation.  Clearly, the attributes of fuel consumption, acceleration time and vehicle 

weight have been improving together over time even though from a technical perspective, 

they sometimes are counter to each other.  This was shown clearly in Figure 3.1, as well as 

in Figures 2.2 and 2.3. 

Table 3.3. Historical correlations among the three vehicle attributes, 1978 - 2014. 

  FC ACCEL CWT 

FC 1     

ACCEL 0.574 1   

CWT -0.110 -0.745 1 
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Table 3.4. Historical correlations among the three vehicle attributes, 1978 - 1996. 

 FC ACCEL CWT 

FC 1   

ACCEL 0.390 1  

CWT 0.733 -0.307 1 

 

Table 3.5. Historical correlations among the three vehicle attributes, 1997 - 2014. 

 FC ACCEL CWT 

FC 1   

ACCEL 0.728 1  

CWT -0.624 -0.910 1 

 

The positive correlation between fuel consumption and acceleration that typifies 

the historical trends is at odds with the negative correlation expected, since reduced 

acceleration times incur fuel consumption increases. This is explained by technical 

progress made on both fronts simultaneously; the positive correlation is essentially picking 

up the positive time trend in both. The period between 1978 and 1996 largely overlaps with 

the implementation of original CAFE standards, whereas the latter period (from 1997 to 

2014) is dominated by 15 years of unchanged CAFE standards, followed by just 3 years of 

increasing standards. The extent of the innovation trend is best understood by considering 

the correlations within a recent model year as in Table 3.6.    

Table 3.6. Model year 2014 correlations among the three vehicle attributes. 

  FC ACCEL CWT 

FC 1     

ACCEL -0.832 1   

CWT 0.644 -0.667 1 
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Thus, rather than forcing technological trade-offs over the long run, fuel 

consumption has been decreasing as cars have been getting heavier and quicker with 

respect to acceleration. Similarly, acceleration times have dropped as cars have gotten 

heavier, more functional, and more efficient in their use of fuel.  In particular, acceleration 

times have improved 30% while average the fuel consumption has been reduced 40% 

between 1978 and 2014.    

It is of note that within a given model year, correlations are more likely to emulate 

fundamental physics-based limits than long-run correlations.  For instance, for model year 

2014, the magnitude and sign of the FC-ACCEL correlation and the FC-CWT correlation 

are consistent with physics-based principles given that for a given vehicle design in time, 

fuel use increases with reduced acceleration time or with increased mass. The authors’ 

vehicle simulations in MATLAB/Simulink confirm that fuel increase is roughly linear over 

typical ranges of acceleration performance and mass. These trends represent rather 

remarkable simultaneous technological progress in these dimensions.  

3.1.4 Modeling approach 

The first model used in this work describes an expression for utility as a function 

of disaggregated attributes.  

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 𝑓𝑛(𝐹𝐶, 𝐴𝐶𝐶𝐸𝐿, 𝐶𝑊𝑇)           (3.1) 

We define the generalized form of the utility objective function as follows: 

𝑈𝑖 = 𝐹𝐶𝑖
−1 ∙ 𝐴𝐶𝐶𝐸𝐿𝑖

−1 ∙ 𝐶𝑊𝑇𝑖           (3.2) 

Eq. (3.2) can be applied to a given vehicle i or a sales-weighted average data set for a given 

year i.  FCi, ACCELi and CWTi represent respective attribute values for the given vehicle 

or year.   Initially, our objective function for utility is defined as the product of the 
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constituent utility parameters, in a first-order inverse relationship with respect to fuel 

consumption (FCi has units of [L/100km]), in a first-order inverse relationship with respect 

to acceleration time (ACCELi has units of sec), and in a first-order relationship to curb 

weight (CWTi has units of kg).  The units of Ui are: kg*[L/100km]-1*sec-1.  We normalize 

these parameters to a 2014 baseline.  

Our first simple analysis is to demonstrate the link between technological progress 

and vehicle prices. Figure 3.2 shows the time trend for nominal and real vehicle prices and 

for utility as defined above.  

 

Figure 3.2. Passenger car price and utility trends, 1978-2014. [Data sources: 13,80,121]. 
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In this figure we use the general price index (CPI- all items [125]) to convert nominal 

prices to real prices. Two important points emerge from this graph: 

1) Real prices rose from 1978 through 1987, but the 2014 real price is about the same 

as that of 1985. In other words, substantial technical progress has been achieved 

over the past 30 years with no real price increase for consumers. Nominal vehicle 

prices increased at an average annual rate of 3.9% compared with 3.5% for the 

general CPI. All of the difference between the nominal vehicle price increase versus 

the general CPI was between 1978 and 1985. 

2) Utility as defined above has increased at an average annual growth rate of 2.7%. 

The next step in our analysis is to acknowledge that these characteristics do not 

contribute to utility with equal weighting, but to begin with an equal weighting assumption 

for the purposes of comparison to prior research that has made that assumption [5,126].  

Hedonic pricing methods applied to automobile attributes were introduced by Griliches 

[127] and Rosen [128] and others [57,126].  Price is assumed to be an aggregated function 

of the attributes that comprise overall vehicle utility.  

𝑃𝑟𝑖𝑐𝑒 = 𝑓𝑛(𝑈𝑡𝑖𝑙𝑖𝑡𝑦) = 𝑓𝑛(𝐹𝐶, 𝐴𝐶𝐶𝐸𝐿, 𝐶𝑊𝑇)         (3.3) 

A hedonic pricing analysis is subsequently performed on the specified vehicle 

attributes so as to quantify the linkage between consumer utility and purchase prices. The 

desired output of the hedonic analysis is twofold: (1) to determine the approximate 

disaggregated contribution of each attribute to overall utility, where utility is represented 

by the bundled vehicle purchase price; and (2) establish the price elasticities for each 
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attribute with respect to overall vehicle price.  The most useful general model form is log-

log, which provides a convenient basis by which to compare coefficients on the regressors. 

 

                  (3.4) 

 

In Eq. (3.4), Pi represents the purchase price for vehicle i, 0 represents the intercept, 

and the regressor coefficients j represent elasticities of price with respect to a set of up to 

n continuous variables, Xij, and a set of m-n dummy variables, Yij, for vehicle i. i 

represents the residual error between the predicted and actual values.  For purposes of 

simplicity, continuity and comparison, the majority of the analysis in this study assumes a 

three attribute model and neglects the contribution of additional variables, where Eq. (3.4) 

simplifies to: 

ln⁡(𝑃𝑖) = 𝛽0 + 𝛽1 ∙ ln⁡(𝐹𝐶𝑖) + 𝛽2 ∙ ln⁡(𝐴𝐶𝐶𝐸𝐿𝑖) + 𝛽3 ∙ ln⁡(𝐶𝑊𝑇𝑖) + 𝜖𝑖      (3.5) 

In Eq. (3.5), FCi, ACCELi, and CWTi represent the fuel consumption, zero to 60 

mph acceleration time and the curb weight for vehicle i, respectively.  

For this estimation we use the new car price index [125]. The transformed log-log equation 

is useful in that these coefficients indicate the % change in vehicle price caused by a 1% 

change in the given attribute, holding all other independent variables constant (and 

providing changes are relatively small). 

It should be noted here that Eq. (3.5) as shown assumes each data point has equal 

weight, i.e., it uses the Ordinary Least Squares (OLS) regression approach. However, given 

the emphasis of the CAFE policy on sales-weighting, it is preferable to apply a Weighted 

ln(𝑃𝑖) = 𝛽0 +∑𝛽𝑗 ∙ ln(𝑋𝑖𝑗) + ∑ 𝛽𝑗 ∙ 𝑌𝑖𝑗

𝑚

𝑗=𝑛+1

𝑛

𝑗=1

+ 𝜖𝑖 
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Least Squares (WLS) to improve model accuracy as suggested by Kiso (2013) [129]. 

Therefore, where applicable and available, the statistical analysis of this study follows the 

WLS approach. 

With price now replacing utility as our dependent variable, we explore the 

hypothesis that attributes do not contribute to price with equal weight, and further that 

weightings are not static in time. One reasonable way to disaggregate attribute contribution 

is to partition the sum of squares for each attribute using analysis of variance (ANOVA) 

methods.  While the attributes chosen herein are representative system-level attributes, they 

are unfortunately not entirely orthogonal, meaning some confounding is inherent. Due to 

the limited number and utility-proxy nature of the regressor (attribute) variables selected, 

the estimated relative contributions are not intended to correspond directly to a given share 

of purchase price. Rather, it should be emphasized that this approach is intended to 

approximate notional attribute contributions to utility for broad, high-level comparisons 

purposes between major historical time periods. 

In ANOVA, total variability is partitioned into its constituent parts, including 

variability associated with the model and any error unexplained by the model as shown 

below.  

SS𝑇𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑀𝑜𝑑𝑒𝑙 + 𝑆𝑆𝐸𝑟𝑟𝑜𝑟                  (3.6)  

SS𝑀𝑜𝑑𝑒𝑙 = 𝑆𝑆𝐹𝐶 + 𝑆𝑆𝐴𝐶𝐶𝐸𝐿 + 𝑆𝑆𝐶𝑊𝑇           (3.7) 

In Eqns. 3.6 and 3.7, SSx indicates the sum of squares for component x. In a three 

attribute model where confounding may be present, it is useful to perform a sensitivity 

analysis on each of the individual attributes.  This is done by performing ANOVA analyses 

using Statistical Analysis Software (SAS), on the model of Eq. (3.5) six different times: 
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one corresponding to each possible order of regressor variables. In other words, given 

F=FC, A=ACCEL, and C=CWT, Eq. (3.5) as presented suggests the regression algorithm 

proceeds in the order F-A-C.  Thus all possible orders (FAC, FCA, AFC, ACF, CFA, CAF) 

are analyzed, total model variability (SS model) is partitioned among the three attributes, 

allowing for an estimate of the average contribution of each attrbute to the total model 

response. An example of this approach yielding an estimate of the average contribution 

allocable to F is therefore given as follows. 

       

(3.8) 

 

In Eq. (3.8), F is the average portion of the model response explained by attribute 

F alone. SS(F) is the partition of the sum of squares due to F in iterations with regression 

order FAC and FCA, which are commonly referred to as the type I sum of squares for F. 

SS(F|A) and SS(F|C) are the partitions due to F resulting from iterations AFC and CFA 

respectively. SS(F|A,C) and SS(F|C,A) are the partitions due to F in iteration ACF and 

CAF, and are commonly referred to as the type III sum of squares for F.  Since six iterations 

were performed, the total sum of squares paritioned to F are then divided by the model sum 

of squares multiplied by six. Providing the model explains a high level of the total response 

(i.e., the error is small and the R2 is sufficiently high), F gives an average indication of its 

contribution to the dependent variable. The approach qualitatively simulates a compound 

method based upon conventional type I and type III sum of squares analytical methods. In 

this manner, counfounding is effectively navigated to facilitate high-level comparisons. 

The average contributions attributable to A and C are determined in the same manner. 

𝜒𝐹 =
2 ∙ 𝑆𝑆(𝐹) + 𝑆𝑆(𝐹|𝐴) + 𝑆𝑆(𝐹|𝐴, 𝐶) + 𝑆𝑆(𝐹|𝐶) + 𝑆𝑆(𝐹|𝐶, 𝐴)

6 ∙ 𝑆𝑆𝑀𝑜𝑑𝑒𝑙
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Trends in F and 1 with respect to various time periods and with respect to the 

comparative weightings and elasticities of other vehicle attributes convey useful 

information about eonomic trade-offs. Due to the substantially different nature of the 

technological and economic trade-offs, such infomation can provide complementary 

insight into current markets, future scenarios and expected price responses to attribute 

evolution.  

3.2 Results 

In this section, utility trends are investigated in view of real vehicle price data via 

disaggregation of constituent attributes.  As noted, relevant historical time periods are 

considered, including one from 1978 to 1996 during which time increasing CAFE 

regulations were dominant. A second time period covers the years from 1997 to 2014, 

during most of which time, no changes to fuel economy standards were imposed. Model 

year 2014 is reviewed in greater resolution in the context of historical results. For each 

period, price elasticities and average contributions of key attributes are quantified and 

compared, providing linkages and insights to better characterize technological innovation 

and economic trade-offs as enabled by hedonic pricing models.  

3.2.1 Hedonic modeling results: comparing historical and contemporary trends 

The linkage between consumer utility, its constituent attributes, and prices is informed by 

performing a series of hedonic analyses as described in section 3.1.4. We estimate that 

price is an aggregated function of three selected attributes that comprise overall utility. We 

will test the theory that the comparative contributions of attributes are highly sensitive to 

prevailing levels of fuel economy regulation as a prelude to quantifying current-day 

economic trade-offs and valuations of attributes that impact energy use. Table 3.7 
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demonstrates the application of the primary hedonic model employed in this study given 

by Eq. (3.5) to various subsets of the raw data from Tables 3.1 and 3.2 as shown. 

Table 3.7. Regression outputs of log-log hedonic model on historical data sets. 

Time Period   1978-1996 1997-2014 1978-2014 2014 

                    

Data Set   Table 3.1 Table 3.1 Table 3.1 Table 3.2 

Response Variable  ln(Real Price2) ln(Real Price2) ln(Real Price2) ln(MSRP) 

Hedonic Model  Eq. (3.5) Eq. (3.5) Eq. (3.5) Eq. (3.5) 

Estimator   WLS WLS WLS WLS 

Observations  19 18 37 814 

R2   0.992 0.963 0.943 0.722 

                    

Attribute Coeff.   Param. Est. Param. Est. Param. Est. Param. Est. 

    (Std. Error) (Std. Error) (Std. Error) (Std. Error) 

Intercept 0  0.414   -3.526   9.965 *** 0.592   

    (2.054) (3.175) (2.180) (0.527) 

ln(FC) 1  -1.946 *** -0.076   -0.930 *** -0.262 *** 

    (0.163) (0.091) (0.158) (0.049) 

ln(ACCEL) 2  -0.050   -0.414 * -0.647 *** -0.704 *** 

    (0.073) (0.220) (0.114) (0.051) 

ln(CWT) 3  1.951 *** 2.019 *** 0.499 * 1.590 *** 

      (0.314) (0.385) (0.302) (0.063) 

Note: ***denotes significance to the 1% level; **to the 5% level; *to the 10% level. 

These regression results link high level attributes to price over time.  They should 

be interpreted as having both supply and demand components. In other words, they trace 

the supply-demand equilibrium points over time. Thus, they measures both consumer 

valuation on the demand side and manufacturers’ cost components on the supply side.  It 

is interesting to note that the parameter estimates for the price elasticities of the various 

components are strong functions of time, reflecting changes in technology and market 

response to regulations and other factors. There is implicit evidence that these attributes 

(and those for which they represent a proxy) are key in driving cost. They also appear to 
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be important from the consumer perspective.  Note how fuel consumption was dominant 

during the phase I CAFE period (Table 3.7, column 1, 1=-1.946) and acceleration time 

was only a minor factor (2=-.050, with little statistical significance).  This phenomenon 

reversed itself during the period 1997-2014 (Table 3.7, column 2), suggesting consumers 

and/or OEMs allocated higher value to performance (2=-0.414) than fuel consumption 

(1=-0.076, with little statistical significance). Through both periods, CWT has been 

dominant and statistically significant.  When the entire 37 year period is analyzed overall 

(Table 3.7, Column 3), all three attributes are significant and suggest higher price elasticity 

for FC than either ACCEL or CWT.  

With 814 unique trim levels and unit sales information, the 2014 model year data 

has greater richness and resolution. These results (Table 3.7, Column 4) suggest that fuel 

consumption has been de-emphasized with respect to the overall period, but not relative to 

the 1997-2014 period. This suggests that 2014 consumers continue to value fuel 

consumption, but may value acceleration performance even more.  This time-phased view 

of innovation with respect to consumer response quantifies the extent to which periods of 

intense regulation influence economic trade-offs.   

3.2.2 Estimation of attribute contributions to utility 

Having now quantified the extent to which the instantaneous economic trade-offs 

among attributes have evolved over historical periods of time, it is of further interest to 

roughly estimate the share of utility allocable to each attribute during the selected periods. 

As explained in Section 3.1.4, the disaggregated attribute contribution is derived by 

partitioning the sums of squares using the ANOVA approach.  Using SAS to analyze each 

regression order as discussed, model variability is partitioned into its constituent parts 
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yielding an approximation of the average contribution of each attribute. A representative 

sum of squares analysis for the partition allocated to F for the period 1978-2014 is shown 

in the Table 3.8 below. 

Table 3.8. Example partitioning of the sum of squares for F in six regression orders, 

1978-2014. 

ORDER SS(F) SS(F|A) SS(F|C) SS(F|C,A) SS(F|A,C) 

TOTAL 

SS_F SS_Model SS_Error SS_Total 

FAC 10267.3         10267.3 16635.2 1004.8 17640.0 

FCA 10267.3         10267.3 16635.2 1004.8 17640.0 

AFC   1277.1       1277.1 16635.2 1004.8 17640.0 

ACF         1057.6 1057.6 16635.2 1004.8 17640.0 

CFA     9209.6     9209.6 16635.2 1004.8 17640.0 

CAF       1057.6   1057.6 16635.2 1004.8 17640.0 

TOTALS 20534.5 1277.1 9209.6 1057.6 1057.6 33136.4 99811.0 6028.7 105839.7 

   SS_F)/(SS_Model) = 0.332 = F    

   SS_F)/(SS_Total) =  0.313     

    SS_Model)/(SS_Total) = 0.943 = R2     

 

In Table 3.8, the two regression iterations in which F appears first (FAC and FCA) 

yield the type I sum of squares, as if F were the only regressor. Two additional sums are 

then added for the regression iterations in which F appears second (AFC and CFA). Finally, 

the type III sum of squares are added for the two regression iterations in which F appears 

last (ACF and CAF). This grand sum is then divided by the total model sum of squares, 

suggesting the average contribution of F to the overall model of utility is, in this example, 

about 33%. While confounding is much more difficult, if not impossible, to permit 

disaggregation for attributes that are not orthogonal, this approach provides a basis for 

broad comparisons among attributes and over time.  
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Table 3.9 summarizes the estimated percentage contribution of the attributes for the 

given model to utility.  

Table 3.9. Approximate attribute contribution share to total vehicle utility by time period. 

Time Period FC 

F 

ACCEL 

A 

CWT 

C 

Model 

Total 

Unexplained 

Total 

1978-1996 48.9 37.5 13.6 99.2 0.8 

1997-2014 16.4 38.9 44.7 96.3 3.7 

1978-2014 33.2 48.0 18.8 94.3 5.7 

2014 11.2 34.0 54.8 72.2 27.8 

 

A few high level implications of the comparative weighting study emerge. First, 

taken as notional indicators, estimated contributions of FC were comparatively high during 

CAFE 1978-1990, as expected. Second, the overall contribution of FC to utility revealed 

in 2014 is comparatively low. Third, contributions of ACCEL appear to have remained 

more consistent across the diverse time periods.  Fourth, the contribution of CWT appears 

to have increased over time. This is likely explained in the early period by immediate 

substitution to achieve greater FC, and in the latter period due to the fact that it represents 

a proxy for an increasing number of now standard automobile features. Despite the obvious 

limitations of the three attribute model (R2=0.722), the findings suggest contemporary 

responses to regulations may be structurally different than in historical periods.     

3.2.3 Hedonic modeling results: investigating 2014 trends 

The comparative elasticity and contribution analyses provide useful insights into 

the historical evolution of trade-offs and into the implications of future trade-offs. It is of 

interest to utilize similar methodologies to both improve model accuracy and to explore 

individual vehicle classifications. Model accuracy can be readily improved with the 
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introduction of additional vehicle parameters. Noting that our continuous system attributes 

in the foregoing analysis account for more than 72% of the total response, we introduce 

dummy variables to represent drive type and trim prestige level. The 7-parameter model 

has the following form: 

ln(𝑃𝑖) = 𝛽0 + 𝛽1 ∙ ln(𝐹𝐶𝑖) + 𝛽2 ∙ ln(𝐴𝐶𝐶𝐸𝐿𝑖) + 𝛽3 ∙ ln(𝐶𝑊𝑇𝑖) + 𝛽4 ∙ 𝑌𝑖,𝑅𝑊𝐷 +

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛽5 ∙ 𝑌𝑖,𝐴𝑊𝐷 + 𝛽6 ∙ 𝑌𝑖,𝑇𝑅𝐼𝑀𝐵𝐴𝑆𝐸 + 𝛽7 ∙ 𝑌𝑖,𝑇𝑅𝐼𝑀𝑃𝑅𝐸𝑀 + 𝜖𝑖       (3.9) 

In Eq. (3.9), Yi,RWD, Yi,AWD, Yi,TRIMBASE, and Yi,TRIMPREM  represent dummy variables for the 

respective drive and trim features accordingly. For rear-wheel drive (RWD) and all-wheel 

drive (AWD), these dummy variables assume a value of 1 in Eq. (3.9) when they are 

present (or 0 when the default, Front Wheel Drive, is present). For trim prestige level, a 

base level (TRIMBASE) and a premium level (TRIMPREM) are introduced, and similarly 

assume a value of 1 when present (or 0 when Medium Trim is present). The improved 

model now explains about 78% of the overall response across all classes of 2014 cars, and 

helps reduce collinearity that may have been present with the 3-parameter model.  This is 

shown in the “All Cars” column of Table 3.10.  
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Table 3.10. Regression results of the 7-parameter model on the 2014 data set. 

Vehicle Category All Cars Sub-

Compact 

Compact Midsize, 

Lower 

Half 

Midsize, 

Upper 

Half 

Full Size 

Model Year  2014 2014 2014 2014 2014 2014 

Footprint (FP) Min 26.8  26.8  42.1  44.8  47.0  49.1  

Footprint (FP) Max 56.4  42.0  44.7  46.9  49.0  56.4  

FP, Weighted Mean 45.8  39.7  43.7  45.9  47.8  51.7  

Data Set  Table 3.2 Table 3.2 Table 3.2 Table 3.2 Table 3.2 Table 3.2 

MSRP, Wtd. Mean $27,841  $20,097  $21,931  $28,124  $30,368  $46,676  

Sales Vol., Units 7,868,192  672,253  2,376,006  1,825,863  2,309,412  684,659  

Sales Revenue, $B 219.1 13.5 52.1 51.4 70.1 32.0 

Response Variable ln(MSRP) ln(MSRP) ln(MSRP) ln(MSRP) ln(MSRP) ln(MSRP) 

Hedonic Model Eq. (3.9) Eq. (3.9) Eq. (3.9) Eq. (3.9) Eq. (3.9) Eq. (3.9) 

Estimator  WLS WLS WLS WLS WLS WLS 

Observations 814 126 142 156 202 188 

R2  0.781 0.850 0.674 0.825 0.751 0.752 

Attribute Coeff. Param. Est. Param. Est. Param. Est. Param. Est. Param. Est. Param. Est. 

   (Std. Error) (Std. Error) (Std. Error) (Std. Error) (Std. Error) (Std. Error) 

Intercept 0 1.626*** 5.679*** -0.883 0.663 -4.036*** 

-

10.178*** 

   (0.478) (1.630) (1.462) (1.270) (1.189) (2.373) 

ln(FC) 1 -0.306*** -0.709*** -0.301*** -0.359*** -0.034 -2.285*** 

   (0.044) (0.130) (0.070) (0.102) (0.061) (0.204) 

ln(ACCEL) 2 -0.526*** -0.937*** -0.355*** -0.745*** -0.118** -2.664*** 

   (0.048) (0.138) (0.102) (0.099) (0.058) (0.190) 

ln(CWT) 3 1.403*** 1.080*** 1.699* 1.613*** 1.985*** 4.128*** 

   (0.058) (0.199) (0.178) (0.164) (0.161) (0.316) 

RWD 4 0.227*** 0.604*** 0.403*** 0.238*** 0.291*** -0.101* 

   (0.022) (0.072) (0.078) (0.043) (0.038) (0.056) 

AWD 5 0.198*** 0.692*** 0.033 0.217*** 0.188*** 0.061 

   (0.026) (0.141) (0.051) (0.051) (0.040) (0.060) 

TRIMBASE 6 -0.072*** -0.096*** -0.075*** -0.062** -0.075*** 0.083* 

   (0.015) (0.028) (0.024) (0.027) (0.022) (0.043) 

TRIMPREM 7 0.113*** 0.116*** 0.083*** 0.075*** 0.097*** 0.071 

    (0.015) (0.037) (0.024) (0.027) (0.021) (0.046) 

Note: ***denotes significance to the 1% level; **to the 5% level; *to the 10% level. 

We note that compared to the 3-attribute model, the improved model suggests the 

elasticity of FC is greater, while the elasticities of ACCEL and CWT are reduced.  We also 

note that statistical significance has been greatly improved in the expanded model.  
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Given the footprint-based regulations defined in the 2012-2016 CAFE standards, an 

assessment of the relevant elasticities by vehicle class is novel and of considerable interest. 

Table 3.10 also sub-divides the regression results into five different vehicle groupings, 

using vehicle footprint as a blocking variable9. An indication of the relative sales units and 

revenue is also provided for each footprint range. It is of note that the price elasticity of FC 

with respect to vehicle price is lower than that of ACCEL in each vehicle classification. 

However, the spread between these elasticities is more pronounced for the midsize 

categories, presumably because consumers of these vehicles value acceleration and 

performance to a greater extent. Likewise, the elasticities imply that consumers of sub-

compact and compact cars have a greater relative willingness to pay for reductions in fuel 

consumption.  Additional hedonic modeling results by vehicle class for the 2013 model 

year are located in Appendix B.      

3.2.4 Results of this study in context 

By way of quickly corroborating estimated elasticity parameters suggested by our 

2014 data, we compare implied values of fuel consumption reduction to others from the 

literature that employ different approaches.  A benefit-cost study of fuel-saving vehicle 

technologies available in new 2014 compact and mid-size cars suggests that consumers 

who elected to invest in greater fuel economy spent an average of $1490 more than 

consumers who did not, in order to realize an estimated 17.3% improvement in fuel 

economy [32].  This converts to a 14.7% reduction in fuel consumption, and an implied 

                                                 
9
 Due to the disproportionate quantity of sales (by unit volume and revenue) in the “midsize” classification, 

this study divides this group into two roughly equal-sized subsets. The midpoint of the vehicle footprint 

(FP) for the entire midsize class (46.9 ft2) is used as the division criteria between “Midsize, Lower-Half” 

and “Midsize, Upper-Half.”    
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value of about $101 per 1% reduction in fuel consumption (in 2014$).  This compares to 

an implied value of about $85 per 1% reduction in fuel consumption (in 2014$) predicted 

by this study. This $85 estimate is computed by taking the elasticity of price with respect 

to FC (1 ≈ -0.306%, Table 3.10, column 1) for the 2014 model year, dividing by 100%, 

then multiplying by the mean vehicle MSRP for 2014 ($27,841).  Much of the discrepancy 

between to the two estimates can be explained by the fact that this study assesses the entire 

2014 sales-weighted fleet of cars, whereas the higher estimate of the cited study considered 

the willingness to pay for fuel economy in only the best-selling compact and midsize cars.  

Other estimates in the literature corroborate the results of this study, including one 

that used a vehicle miles traveled (VMT) approach to estimate that a 1% reduction in fuel 

consumption for 2001 model year vehicles was in the $47 to $60 range ($2014) [129].  This 

lower estimate confirms the direction and magnitude by which time period and regulatory 

conditions impact the price elasticity of fuel consumption.  That same study suggested that 

the total price attributable to fuel economy in model year 2001 was in the 5-10% range 

[129], suggesting the rough attribute contributions in recent periods estimated by this study 

are plausible and useful for qualitative comparisons.  

The analyses presented are based upon an extensive set of data sources.  Though 

aggregating historical data at a high level incurs risks of lost resolution with respect to a 

specific attribute or measure of utility, this is compensated for by the extended time period 

under review, the estimated 300,000,000 vehicles included in the data, and the qualitative 

and comparative approach taken in the historical trends analysis.  The 2014 data set is 

shown to be invaluable for comparisons of current markets with historical trends, as well 

as for providing insight into the footprint and sales-weighting aspects that will play critical 
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roles in the more highly regulated car markets of the near future. The quantitative technical, 

market and pricing datasets are deemed robust for the purposes of these analyses. 

3.3 Summary of Key Findings 

Objective vehicle attributes as representative indicators of consumer utility are shown 

to have merit in informing economic trade-off trends.  Constant upward trends in 

disaggregated and aggregated measures of utility have resulted in dramatic increases in 

consumer value of the time period studied. Key points that emerge very strongly from this 

research include: 

 Real weighted average prices for autos have remained roughly constant since 1985 

 While real prices have not increased, the technological performance of car 

attributes has increased substantially over this time period.  Initially assuming a 

simple equal weight index shows that performance has increased about 2.7% per 

year while real prices remained relatively constant. 

 The correlation and regression analysis demonstrates that technical progress has 

been achieved on several technical dimensions simultaneously; e.g., quicker cars 

with greater fuel economy. 

 Hedonic pricing methods demonstrate that historical real vehicle prices represent 

strong indicators of consumer utility defined by primary disaggregated attributes. 

In particular, implied valuations of reductions in fuel consumption are rebounding 

after a period of unchanged regulations that ended in 2011. Fleet-wide however, 

consumers appear willing to pay up to 50% more for acceleration performance than 

fuel consumption reductions.  
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 Increasing the accuracy of hedonic models with additional predictor attributes and 

sub-dividing the analyses by vehicle classification provide insight into future 

valuation trends. Consumers of sub-compacts are substantially more willing to pay 

for fuel economy, and consumers of certain mid-size cars appear to neglect the 

value of fuel economy while highly valuing acceleration. 

 These findings imply that vehicle attributes do not contribute equally to consumer 

utility, nor are their price elasticities with respect to vehicle price equal. Both 

weightings and elasticities evolve in response to regulatory constraints and 

consumer preferences by vehicle classification.          

 When we estimate the contribution of different attributes in driving equilibrium 

prices, we find fuel consumption had a significant impact, perhaps as high as 40%, 

during initial phases of U.S. fuel economy regulations (1978-1997), but the current 

share of price allocable to fuel consumption is estimated to be much lower, in the 

10-12% range.  

 The results suggest relative contributions of attributes to utility and the willingness 

to pay for vehicle attributes can be complementary to technological tools for 

estimating the trade-offs required in future (CAFE) compliance scenarios.  

 Given that fuel economy standards are sales weighted, and that consumers appear 

now to place lower value on fuel economy, this suggests it may be more difficult 

and costly to achieve future fuel economy standards than it has been in the past. 
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CHAPTER 4.  A BENEFIT-COST ASSESSMENT OF NEW VEHICLE 

TECHNOLOGIES AND FUEL ECONOMY IN THE U.S. MARKET 

As revealed by the literature in Chapter 2 and the temporal trends in Chapter 3, original 

equipment manufacturers (OEMs) and consumers have generally been successful in 

migrating toward cleaner vehicle options with little sacrifice in cost, performance or overall 

utility.  Projections regarding the challenges and impacts associated with compliance with 

mid- and long-term fuel economy targets in the U.S., however, incur much greater 

uncertainty.  The share of existing new vehicles that is expected to comply with future 

regulations, for example, falls below 10% by 2020. Adding to the uncertainty are volatile 

fuel, energy and commodity prices, as well as consumer acceptance of novel fuel saving 

vehicle technologies.  

This chapter employs a benefit-cost approach to assess advanced technologies that 

result in reduced fuel consumption and emissions.  This study looks at the empirical record, 

drawing from vehicle and technology specifications, published selling prices, and 

established conventions for financial decision-making by consumers and the economy as a 

whole. To ensure consistency, it uses accepted terms, definitions and concepts while 

drawing from many of the same literature sources that were used to formalize the standards.  

The goal of this chapter is to ascertain how closely costs, fuel economy improvements and 

the recently promulgated regulatory standards align, as well as to quantify the extent to 

which novel fuel saving technologies are financially attractive to consumers and how their 
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value proposition may evolve in the future. While the focus of the present study is on mass-

production technologies available in 2014 Model Year compact and midsize passenger cars, 

the methodologies are broadly applicable. Such an assessment may prove valuable to a 

wide range of stakeholders, including researchers working at the intersection of 

transportation and energy, economics and policy as well as consumers and OEMs.   The 

material presented in this chapter was published in Applied Energy (157 (2015) 940-952) 

[32].   

4.1 Resources and Approach 

4.1.1 Vehicle selection and data sets 

In order to appropriately reflect revealed consumer preferences, many of the best 

selling cars in the U.S. market for recent years were included in the analysis.  A database 

populated with vehicle sales by model and engine type, specifications, standard options, 

other options influencing fuel economy, and all associated costs was developed.  For the 

vehicle selling prices, we use Manufacturer’s Suggested Retail Prices (MSRPs) [130].  

Table 4.1 indicates the vehicle makes and models that are included in the analysis, along 

with a few market indicators. 

The grouping of vehicles in Table 4.1 accounts for nearly 4 million units, or about 

55% of new sales (by volume) in the passenger market and 28% of new sales in the entire 

light duty vehicle fleet (light trucks and SUVs account for nearly 50%).  While the top 14 

best-selling passenger cars account for more than half of the sales (by unit volume), some 

200 additional models account for the remaining portion [131].  
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Table 4.1. Compact and Midsize 2014 MY vehicles included in the analysis 

[122,130,132].10,11 

Approx. Vehicle Vehicle Sales MSRP Fuel Economy EPA 

Rank Make Model 1000s Base Base High mpg Class 

by sales      of units Model Model Model12   

        in 2014$ mpg mpg   

1 Toyota Camry 450 22,425 28 40 Mid-size 

2 Honda Accord 375 21,955 28 57 Mid-size 

3 Nissan Altima 350 22,300 31 31 Mid-size 

4 Toyota Corolla 350 16,800 31 34 Compact 

5 Honda Civic 335 18,390 31 45 Compact 

6 Ford Fusion 325 22,400 26 51 Mid-size 

7 Chevrolet Cruze 285 18,345 29 33 Compact 

8 Ford Focus 235 16,810 30 31 Compact 

9 Hyundai Elantra 230 17,250 31 32 Compact 

10 Hyundai Sonata 220 21,450 28 38 Large/Mid 

11 Toyota Prius 220 24,200 50 58 Mid-size 

12 Chevrolet Malibu 200 23,165 29 29 Mid-size 

13 Nissan Sentra 190 15,990 30 34 Mid-size 

14 VW Jetta 170 16,895 28 45 Compact 

- Chevrolet Volt13 23 26,670 63 63 Compact 

 

 

                                                 
10 Unless otherwise specified dollar amounts are in 2014 dollars. 

 
11 Fully electric vehicles (or EV’s) have not been included in this study.  While there are at least 2 EV models 

in the subject classes, it is complicated to account for the loss of utility through reduced range, as well as 

to make a fair accounting for the equivalent energy efficiency (see Appendix A).  It may also be that due 

to low volume production, MSRPs are less likely to reflect true costs.  PHEV’s share some of the same 

concerns, but have little or no range reduction, and, with qualification, have costs and weighted equivalent 

fuel economy ratings that can be compared to the other conventional ICE-only and hybrid vehicles in the 

study.  PHEVs have therefore been included accordingly. 

 
12 The “High mpg Model” listed corresponds to the vehicle sharing the same chassis as the given base model 

with the highest EPA combined mpg rating [132].   

 
13 The Volt is not among the top-selling passenger cars and lacks an internal-combustion-only version. 

However, it is included in this analysis because it offers novel fuel-saving technology.  Though it is 

officially classified in a category of its own as an extended-range electric vehicle, it is simply referred to 

as a PHEV in this analysis.  Also, its base MSRP reflects a $7500 discount offered via Federal subsidy 

because it is a qualifying vehicle [82]. 
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For the purpose of estimating fuel economy improvements, officially reported EPA 

combined city/highway miles per gallon ratings are used [132].  This point is important, 

because real world fuel economy, often termed “adjusted fuel economy,” varies 

considerably and is generally lower than official EPA ratings [68,133].  Though the use of 

official ratings may give a slightly conservative result (i.e., overstating the benefits 

attributable to fuel savings), the analysis remains valid because it is most concerned with 

relative fuel economy improvements over base technologies.  Furthermore, Federal CAFE 

standards employ an EPA rating basis, facilitating comparisons with other studies and 

official regulations.   

4.1.2 Approach methodology 

In this study, costs and fuel economy impacts are compared in two distinct ways.  

In the first approach, technology changes are compared against a specific base model of 

the same manufacturer, with the same chassis.  This is referred to here as a “model-specific” 

approach to benefit-cost analysis.  In the second approach, a sales-weighted average 

vehicle is developed for each vehicle class (compact and midsize).  Then, by tracking the 

relative differences as compared to the model-specific base case, it can be determined how 

a technology compares to a reference vehicle that is representative of consumer preference 

by class.   

Regarding the model-specific approach, the analysis of new technologies against 

their respective baseline models is insightful because it demonstrates the incremental 

impact in cost and fuel economy directly associated with a given technology change.  The 

process for extracting this information is not transparent, however, and great attention to 

detail has therefore been paid in this study to the other variables and attributes of the vehicle 



88 

 

8
8
 

model that are unrelated to the fuel economy technology itself (e.g., larger alloy wheels, 

leather seats, moon roof, navigation, etc.).  Thus what is needed is an approach that extracts 

solely the relevant portion of the price increase that should be allocated specifically to 

changes in fuel economy.  The net price impacts associated with any extraneous attributes 

included in the inflated MSRP can then be subtracted to establish a net price difference.  

As discussed, conventional terminology is used for this difference, known as the 

“incremental retail price equivalent” or IRPE associated exclusively with a given vehicle 

fuel efficiency technology.  This provides the means to populate a chart comparing 

incremental price changes and fuel economy improvements.  Prices are in 2014 dollars, 

and fuel economy improvements are reported as either absolute  mpg (with units of mpg), 

or as  % change (reported in % difference in fuel economy) against a model-specific 

baseline. 

Some vehicle models include upsizing of engine displacement, or turbo-charging 

at constant displacement, both of which result in increased power, but diminished fuel 

economy.  Others include Compressed Natural Gas (CNG) fuel-capable engine 

technologies.  However, a conscious decision has been made to intentionally leave these 

technologies out, in order to develop a curve that focuses specifically on technologies that 

contribute to fuel economy improvements.  That said, there is a notable market demand for 

increased engine power, and even alternative fuel technologies.  While the focus of this 

paper is on fuel economy, certain studies indicate that consumers value an increase in 

power more than an increase in fuel economy [63].  Certainly the interrelationship between 

power and fuel economy has unique implications for consumers, OEMs and compliance 

with future regulations [6].       
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The model-specific approach is a necessary first step to begin quantifying the 

revealed market correlation between end-user prices and fuel economy.  However, this 

model-specific aspect which brings clarity to a true “differential cost vs. differential mpg” 

comparison suffers from the inherent limitation that such findings may not be categorically 

applied to a broad class of vehicles.  In other words, comparing the cost and fuel economy 

associated with a given upgrade on a given chassis is one thing, but comparing several 

different models from different OEMs with different standard specifications and features 

to one another may introduce significant uncertainties in incremental costs and in 

allocations of utility (such as fuel economy, passenger volume, and power).  In addition, a 

few advanced vehicles have been uniquely designed on exclusive platforms to specifically 

introduce fuel saving innovations, such as the Toyota Prius and the Chevrolet Volt.  A 

challenge in determining the incremental costs and impacts associated with such vehicles 

from the model-specific approach is that a “baseline, standard, internal combustion engine 

(ICE) vehicle only” version is non-existent.   

To navigate both of these concerns with the model-specific approach, a 

“classification-average” approach is undertaken in which sales-weighted average criteria 

for vehicles in the compact and midsize car classifications are established.  This is 

accomplished via current-day investigation into the respective market segments for the 

selected advanced fuel-efficiency technology vehicles.  With just a few minor exceptions 

(such as the unique hybrid platforms), OEMs of the selected top-selling models generally 

offer several conventional models, often with multiple engine choices, and one or more 

models that include improved efficiency technologies available at some premium price.  
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Even so, the classification-average approach does not fully isolate the cost-fuel 

economy correlation either, because it remains possible and even likely that aspects of the 

vehicle’s utility may differ (such as power and passenger compartment volume) from the 

baseline. For this reason, most of the analysis follows the model-specific approach, 

whereas the sales-weighted average results are offered merely as a check against this 

preferred method.  Just two exceptions are made to permit the inclusion of data for the 

Prius and Volt.  For these, the sales-weighted average vehicle method is initially employed 

to establish a baseline, then comparative data is transformed and included into the model-

specific analysis14.  This is done to capture the effect of such high-profile, commercially 

available advanced vehicle technologies.  PHEVs introduce the need to account for 

multiple energy sources, and the present study follows EPA guidance to determine relative 

shares of electricity and gasoline, which varies by OEM model15.    

4.1.3 Initial results from the model-specific analysis 

The model-specific approach isolates the true incremental price of a new 

technology specifically allocable to fuel economy, and is performed on a model-by-model 

basis.  By way of example, Table 4.2 describes the basic process for separating the 

                                                 
14 The Toyota Prius is officially classified by EPA as a mid-size vehicle owing to its passenger (93.7) plus 

cargo (21.6) volume of (115.3); EPA defines: midsize 110-110, compact 100-109.  However, the Prius’s 

power (134 hp) is closer to the average compact (144 hp) than the average midsize (191 hp).  Its footprint 

is 44.22 sq ft, aligning more with compact cars (43-45) than with midsize cars (45-49).  Thus in terms of 

power, footprint and other aspects of utility, the Prius is more similar to a compact car than a midsize.  It 

has therefore been so considered in this analysis, to enable an estimation of its incremental price 

equivalent and fuel economy % improvement.  For the purposes of this analysis the Prius (at MSRP of 

$24,200 and 50 mpg) is compared against an average compact vehicle (MSRP=$19,746 and 33.2 mpg).    

 
15 The EPA estimates the share of all-electric driven miles as compared with gasoline driven miles for PHEVs.  

These estimated shares are model specific and based upon “the vehicle’s design and average driving 

habits.”  The assumed shares (elec/gasoline) by vehicle are: Fusion Energi (45/55); Volt (66/34); Prius 

(29/71).  The EPA rated all-electric ranges of these vehicles are: Fusion (20); Volt (38); Prius (11). This 

study uses the EPA assumptions accordingly [132]. See also SAE J1711 [106]. 
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constituent cost and fuel economy improvement data from an actual model, in this case a 

hybrid, drawn from the data set.  Price variances are accounted for between the new 

technology model and a baseline vehicle with which it shares an identical chassis. 

Table 4.2. Example of methodology used to determine the model-specific IRPE and % 

fuel economy improvement. Data sources [130,132]. 

Description Actual 

MSRP 

($) 

IRPE for 

technology alone, 

model specific 

case ($) 

EPA 

combined 

Fuel econ. 

(mpg) 

Fuel econ. 

change  

( mpg) 

Fuel econ. 

percent 

change 

(%) 

Baseline 

Vehicle 1 

18,390  31 - - 

Unrelated 

Options 

2,550     

Hybrid 

version 

Vehicle 1 

24,635 3,695 45 +14 +45.2 

 

This process is continued for each fuel economy technology grouping offered with 

each model. By using the manufacturer’s suggested retail price (MSRP), it is assumed that 

technology costs are directly correlated to suggested retail prices.  It is reasonable that 

MSRPs would more closely reflect true costs than heavily discounted prices, for example 

via year-end or dealer incentives; however, some degree of cost-price uncertainty remains.  

That said, from a consumer perspective, OEM technology costs are less important 

than market-based prices, which reflect what the consumer actually pays for a given 

technology.  Collecting incremental price data from multiple OEMs, as is done here, helps 

reduce potential anomalies.  Groupings by technology type are of interest because they 

provide a means of comparison between different OEMs and with other studies.  This 

allows for decision-makers to assign an order of magnitude to major technology bins as 

well as assess technology penetration in view of near- and long-term requirements.  Table 
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4.1 shows the relative position of major technology categories on a cost vs. fuel economy 

improvement graph for selected compact cars.   

 

Figure 4.1. Cost of improved efficiency from 2014MY vehicle technologies, compact 

class, model-specific basis. 

The purpose of this figure is to illustrate where the benefits and costs of fuel-saving 

technologies fall on a spectrum, and that they can roughly be grouped by technology 

category and relative impact level.  A few of the technology categories overlap or are 

bundled, as shown by data points that include advanced transmissions with 5 or 6 speeds 

with features marketed in “ECO” packages.  These generally include modest weight 

savings, for example provided by replacing steel wheels with aluminum alloys, or 

removing a spare tire in exchange for a tire patch kit.  Some of the ECO technologies 

include low rolling-resistance tires, or aerodynamic features such as underbody treatments 

or spoilers to reduce drag.  Generally, transmission technologies and ECO options have 

costs below $1000 and improvements on the order of 3 to 10%.  In the case of most turbo-
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chargers in the compact and midsize classes, engines are downsized first, and then boosted 

to recover the power, frequently at a lower fuel consumption level.  Turbocharging and 

downsizing often accompany gasoline direct injection, and therefore often include the 

impact of all three changes simultaneously.  There is variation in different OEM 

approaches to turbocharging and downsizing, because power is dependent on engine design, 

which is in turn linked to fuel economy.  In most cases, OEMs elect to match or exceed the 

power level of the normally aspirated version, which does not always result in the same 

fuel savings.  This is a complicated marketing trade off, but one with significant 

implications on future trends.   

The cost of a given improvement in fuel economy over time has been estimated in 

the literature [45,134].  Though such estimates cannot be generalized, it is of note that the 

ranges typical of technologies considered in the authors’ study here are consistent with 

those of other studies.  For the compact and mid-size classifications, current technologies 

in the 0-15% improvement range cost between $50 and $100 per percent improvement in 

fuel economy.  For larger increases, the range can be broader, extending upwards to $200. 

However, depending on the type of technology used, hybrids appear to come in below $100. 

It should be noted that at a level of 50 mpg, a 1% increase represents lower volumetric fuel 

savings (0.000198 gal/mile) than a 1% fuel economy increase on a baseline of 30 mpg 

(0.00033 gal/mile).  For this reason, many researchers prefer to use fuel consumption in 

lieu of fuel economy when considering broad ranges of improvement, and caution is 

advised in the use of such rule of thumb indicators. Figure 4.1 exhibits an interesting 

bifurcation: there are many relatively low cost technologies that deliver modest gains and 
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another grouping of high cost technologies delivering substantial increases.  Though this 

data set is not comprehensive, the valley between is of note.   

4.2 Benefit-Cost Assessments 

In order to generate a baseline benefit-cost analysis, it is more compelling to use the 

model-specific data since the goal is to estimate the investment and fuel savings on actual 

vehicles. In simplified terms, the model specific approach considers the IRPE as the initial 

outlay of cost, and the % fuel economy increase as an incremental time-phased benefit (i.e., 

fuel savings).  Table 4.3 defines the assumed or given values, which along with the existing 

IRPE and % fuel economy improvement data can establish a baseline benefit-cost curve. 

The impact of the most significant parameters is assessed by virtue of the sensitivity 

analysis.  The residual (or salvage) value is an important aspect of this study, since it is 

well known that more advanced technologies such as diesels and hybrids retain their value 

more strongly than vehicles operated exclusively by an internal combustion engine.  The 

residual values indicated in Table 4.3 represent a best fit exponential function of average 

residuals by technology type for the subject classes.  Since time value of money has not 

yet been considered, all references to IRPE thus far imply the entire incremental retail price 

equivalent (i.e., the full price paid for a given technology at the time of purchase).   
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Table 4.3. Parameters used in the benefit-cost analysis, their baseline values and bases. 

Parameter 
Baseline 

Value 
Units Source or Basis16 

Gasoline Price (initial)17 3.50 $/gal [135] 

Diesel Price (initial) 3.87 $/gal [135] 

Annual Mileage18 12,000 miles/yr [136] [137] 

Vehicle Service Life19 7 years [138] & author 

Residual (Salvage)20 Value-Default 21.0 % [139] & author 

Residual (Salvage) Value-Hybrid 26.0 % [139] & author 

Residual (Salvage) Value-Diesel 23.0 % [139] & author 

Interest rate (or discount rate)  7.0 % [15] [27] & author 

Inflation rate 2.0 % [140] 

Real interest rate 4.9 % calculation 

Real gas price increase (annual) 1.5 % [141] 

Nominal gasoline price increase (annual) 3.5 % calculation 

 

Upon analyzing benefit cost results and for all net present value calculations, 

attention is now paid to the residual value of the technology assessed, such that a net present 

value (or NPV) of its salvage value can be deducted from the initial investment, yielding a 

“net IRPE.”  For advanced technologies which incur considerable capital cost premiums, 

residual value may have a significant impact on the final benefit cost result.  In this study, 

                                                 

16
 When “author” appears in the “source or basis” column next to a given reference citation, that indicates 

the authors relied upon multiple sources, or applied reasonable judgment to cited norms in selecting the 

baseline values.   
 
17

 The initial price of U.S. Regular gasoline for the period July 14 through August 4, 2014 is taken to be 

$3.50 per gallon.  The initial price of U.S. on-highway Diesel fuel prices for the same period is taken to be 

$3.87 per gallon.  Per EIA, prices include all taxes [135]. 
 
18

 The 12,000 mile annual estimate of vehicle miles traveled is determined by averaging self-reported actual 

annual mileage for US household vehicles with odometer readings [136-137]. 
 
19

 [138] indicates ownership life of new vehicles was about 6 years in 2011 and is combined with authors’ 

projection of trends to 2014, yielding an average ownership life of new vehicles of about 7 years. 
 
20

 [139] provides residual values by selected technology classes at 5 years from purchase.  This was then 

combined with authors’ (exponentially decaying) curve-fitting analysis to project residuals at the end of 

the 7th year of vehicle ownership. 
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a seven-year service life is assumed based upon ownership trends for new vehicles in the 

U.S. market [138].  That said, since a salvage value is computed at the end of the terminal 

year, the given service life assumption used in this study has much less effect on the net 

present value results than annual vehicle miles traveled.  In other words, it is vehicle usage, 

not calendar life that has the greater impact. The baseline assumption for annual usage is 

12,000 miles per year, based average new vehicle mileage data for U.S. households drawn 

from DOT’s National Personal Transportation Survey [136].  Using the model specific data, 

baseline benefits derived from fuel savings over time, and net IRPE costs for the vehicle 

technologies have been generated.  Figure 4.2 illustrates the benefit-cost results by 

technology grouping for the baseline case.  

 

Figure 4.2. Results of baseline benefit-cost assessment by technology category. 

By definition, a “Benefit/Cost (B/C) ratio” is the quotient of the net present value 

of the benefits (or fuel savings) divided by the net incremental retail price equivalent (or 
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net investment costs) of the technology; thus a ratio of unity means that benefits and costs 

are equal.  Benefit-cost ratios for each technology category have been averaged and 

reported in Figure 4.2 above each respective grouping.  For the baseline condition, an un-

weighted average benefit-cost ratio can be obtained by considering each individual 

observation in the analysis as equal weight.  Though perhaps slightly more biased toward 

what is offered than toward what is actually purchased, this “notional” average ratio of all 

constituent technologies assessed is 0.73 (R2 = 0.88).  This means that under the assumed 

conditions, these technologies do not, on average, yield economic returns to consumers 

that buy them instead of base model technologies.   

Despite these relatively low values, the figure illustrates that substantial fuel 

savings can be generated at reasonably affordable costs, especially for specific technology 

groupings such as transmission upgrades, downsized turbos and hybrids.  Payback periods 

and benefit cost ratios obviously have a greater financial impact when a consumer invests 

in more expensive technologies.  Thus, a low B/C ratio may not result in meaningful cash 

losses by a consumer adopting weight savings, drag reduction, or upgraded transmission 

technologies; but it would be more imperative to rational consumers that B/C ratios 

approach or exceed 1.0 for higher cost technologies, such as diesels, hybrids, and PHEVs.  

Average B/C ratios below one are not meant to imply that specific technologies on specific 

models do not exceed a breakeven condition (as several do), but rather that consumers of 

these selected technologies as a whole under the given assumptions do not generally appear 

to breakeven.       

Figure 4.3 displays all of the discrete technology packages on a common plot. For 

reference, a benefit cost curve equating to a breakeven condition (B/C = 1.0) is shown.  
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This breakeven line was generated by requiring the net IRPE costs to be equal to the 

benefits of a given model under given assumptions.  In other words, we work backward to 

determine what the costs have to be in order to justify their payback in fuel savings over 

time.  The resultant virtual costs are then plotted against the corresponding fuel economy 

improvements, and linearly regressed to characterize the breakeven condition.   

 

Figure 4.3. Discretized data points representing compact and midsize car technologies from 

model-specific basis and best fit regression shown relative to the breakeven line. 

As shown in Figure 4.3, approximately six of the 28 discrete technologies in the 

study yielded benefit-cost ratios greater than one in the baseline case.  Three of these have 

turbos with downsizing, two are hybrids, and one has a continuously variable transmission.  

These points appear on the plot below and to the right of the breakeven line in the region 

that yields a favorable benefit cost ratio for the consumer.  Two additional points are 

extremely close to breakeven (such that the line appears to intersect them), have benefit-
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cost ratios of 0.94 and 0.93, and include CVT and CVT+ECO, respectively.  Conversely, 

points that are above and to the left will yield an unfavorable result for the consumer under 

the assumed conditions.  A linear regression is performed to characterize the relationship 

between cost (net IRPE) and fuel economy improvement according to the model specific 

basis.  The relationship is of first order, has an R2 of 0.88, and can be estimated by the 

following formula where IPRE1 represents the net incremental retail price equivalent in 

dollars compared to the model-specific baseline, MPGX and MPGMS represent the fuel 

economy of the improved model (X) and the model-specific (MS) baseline respectively, 

and the argument in parentheses is the percent change in fuel economy relative to the 

model-specific (MS) baseline. 

𝐼𝑅𝑃𝐸1 ≈ 67 ∙ (
𝑀𝑃𝐺𝑋 −𝑀𝑃𝐺𝑀𝑆

𝑀𝑃𝐺𝑀𝑆
∗ 100) + 451 (4.1) 

 

Performing a regression on the aggregated set of technologies has clear limitations, 

but helps to indicate relative cost effectiveness for both discrete technologies and families 

of technologies.  It serves to demonstrate, for example, that passenger cars with diesel 

engines and certain plug-in hybrids deviate significantly from the mean expected trends.  

It also shows that the initially small gap between the unweighted average trendline and the 

breakeven line grows larger as a function of fuel economy improvement. The non-zero 

intercept is of note, and is possibly a function of the model specific approach, where 

extraneous costs (due to the inclusion of more options as ‘standard’) are inadvertently 

linked to “premium” fuel saving technology attributes. When technologies with lower fuel 

economy improvements (<20%) are evaluated as a separate group, the regression slope 

decreases with respect to the larger data set and roughly predicts that a $500 to $600 
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incremental cost will buy a 10% increase in fuel economy (from 5% to 15%).  However, 

the non-zero intercept implies some minimum static threshold of cost (up to $450) may be 

required on actual vehicles to realize this rate of gain. 

Downsized turbos provide from 7 to 22% fuel economy improvements for costs 

ranging from $700 to $1600.  This seems to offer consumers considerably more value than 

diesels which increase fuel economy by about 22% at costs between $3000 and $4000.  

Hybrids can deliver about twice this fuel economy improvement (from 35 to 63%) for costs 

between $2700 and $5200.             

4.3 Sensitivity Analysis 

Uncertainty is inherent in many variables relevant to this analysis, including 

technology specifications, market pricing, driving modes and behavior, and exogenous 

macro-economic factors.  However, an appropriate sensitivity analysis quantifies the extent 

to which critical factors influence the results.  Included in the sensitivity analysis are 

discount rate, annual mileage, and fuel price. Table 4.4 demonstrates the ranges of variables 

considered, as well as the baseline reference assumptions for each factor. 

The literature provides good guidance on parameter values typically used for 

similar analyses (Table 4.3), and relevant sources from which the established baseline 

values and low and high limits are cited (Table 4.4).  This study does not fully consider the 

impact of differing driving habits or driving modes (such as city vs. highway).  Clearly 

these factors would affect the value proposition, but are highly variable, and would affect 

“fuel efficient” and “standard” technologies similarly, and are therefore not deemed to be 

differentiating in this analysis. 
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Table 4.4. Minimum, baseline, and maximum parameter values used for the sensitivity 

analysis.21 

Variable Nominal 

Discount Rate 

Annual Miles 

Driven 

Fuel Price Rate of Change22 

 
Units  % miles Rates of change over 7 years 

[Source] [15] [27] [142] & auth [136] [137] & author [141] [142] & author23 

Low limit 3 9,000 Decreases at 3% per year 

Baseline value 7 12,000 Increases at 1.5% per year 

High limit 10 15,000 Increases at 7% per year 

 

 

 Recall that under the baseline conditions, the un-weighted average benefit-cost 

ratio of all unique models and constituent technologies assessed is about 0.73 with an R2 ≈ 

0.88.  As described in the preceding section, consumers will realize a net economic benefit 

for anything below or to the right of the breakeven line (B/C=1.0 in Figure 4.3), and 

conversely will incur a net economic cost for anything above or to its left.  Instead of 

exploring which specific technologies on this plot have a favorable benefit-cost ratio 

(which is in itself of interest), this sensitivity analysis is rather aimed at establishing a sense 

for the likelihood that a consumer will experience a positive net economic benefit from a 

given technology. 

All three sensitivity variables seem to have a similar impact on the results within 

the stipulated ranges, with annual miles driven being narrowly more significant than fuel 

                                                 
21

 For simplicity and to clarify the independent impacts of the sensitivity variables, only one parameter is set 

to its low (or high) limit at a time, while the other two are held at their baseline values.  

 
22

 For initial fuel prices of fuel, please see Table 4.3 or source [135]. For fuel price rates of change, annual 

rates of increase (or decrease) are inferred based upon EIA long-term oil price forecast in 7 years: high 

case ($165/bbl), reference case ($110/bbl), low case ($75/bbl) [141-142].  

  
23

 Again, when “author” appears along with a given reference citation, that indicates the authors considered 

multiple sources and applied reasonable judgment in selecting appropriate ranges for the values of 

sensitivity parameters 
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price and discount rate.  However, if all breakeven benefit-cost ratios are averaged among 

all technologies, an average B/C of unity is not achieved by any one of the individual 

sensitivity variables alone, even when calculated at the given limits. In other words, no 

sensitivity parameter by itself taken to its limit results in a breakeven condition for all 

technologies. Table 4.5 illustrates the response of the benefit cost ratio to the sensitivity 

variables when the others are held at baseline values. 

Table 4.5. Impacts of the sensitivity variables on benefit cost ratio. 

 Discount Rate Annual Miles Driven Fuel Price Rate of 

Change 

low limit high 

limit 

low limit high Limit low limit high Limit 

3% 10% 9,000 mi 15,000 mi -3%/yr +7%/yr 

B/C value 0.896 0.639 0.548 0.914 0.616 0.901 

Note: These results assume only one variable is changed (i.e., the heading of the given 

column) and the other two sensitivity parameters are held at the baseline values (which are: 

discount rate=7.0%, mileage=12,000, fuel increase = +1.5%). 

These observations may be interpreted to mean that economic or personal vehicle 

use conditions will have to vary substantially and in more than one major aspect from the 

assumed baseline for the consumer to realize any net economic savings from the investment 

in these technologies.  To help quantify this, three additional scenarios were performed 

where sensitivity parameters were allowed to exceed the stipulated min/max criteria in 

Table 4.4. When the discount rate falls to 1.1% (a somewhat impractical rate, but meant 

for illustrative purposes), and the other two parameters are at their baseline values, a B/C 

of 1.0 is attained.  When the annual mileage is 16,400 (a very likely possibility for some 

consumers), and the other two parameters are at their baseline values, again a B/C of 1.0 is 

reached.  When fuel prices increase at a rate of 9.7% per year (or equivalently, the nominal 
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price of fuel averages about $5.60/gallon over 7 years), and the other two parameters are 

held at their baseline values, a B/C of 1.0 is reached.   

For context, when all parameters from Table 4.4 are set at their “best case” limits 

for maximum consumer benefit (i.e., discount rate at 3%, mileage at 15,000 mi/yr, and fuel 

at +7%/yr), the result is a compelling B/C = 1.39.  A combined scenario such as this is 

extremely unlikely.  Conversely, a minimum B/C taken at the opposite limits would 

approach a highly unfavorable ratio of 0.40.  This simplified techno-economic analysis 

considers only the direct savings in fuel and the incremental capital outlay less residual for 

the technology upgrade.  No consideration is given to either individual or societal follow-

on impacts of reduced fuel consumption such as reduced fueling time, increased vehicle 

miles traveled, social cost of carbon, health effects, or energy security implications.  

However, second order effects have been shown to be about one order of magnitude lower 

than the direct, first-order effects of incremental investment and fuel savings [15,27].  

Figure 4.4 depicts the breakeven conditions graphically.  Note that many of the 

individual technologies are below the breakeven lines for both the high mileage and high 

fuel price conditions.  This is particularly true for the points nearer to the origin, where fuel 

economy improvements between 5 and 15% have comparatively low investments and 

compelling cost tradeoffs.  It is not surprising that many taxis and fleets in large urban 

centers, where both fuel and annual miles driven are much higher than average, have been 

quick to convert vehicles to include downsized turbos, reduced weight options, and hybrids.  

This figure helps to illustrate why the economic basis for such early adoption is compelling 

since many key technologies are below the high mileage breakeven line and therefore have 

B/C ratios greater than 1.0.  
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Figure 4.4. Graphical implications of the sensitivity analysis.  

Note: “High mileage breakeven” means mileage=15,000 miles per year, discount rate and 

fuel price at baseline values. “High fuel breakeven” means fuel price ≈ nom $5.60 avg over 

7 years, discount rate and mileage at baseline values. “Low mileage breakeven” means 

mileage =9,000 miles per year, discount rate and fuel price at baseline values. “Low fuel 

breakeven” means fuel price ≈ nom $3.20/gal over 7 years discount rate and mileage at 

baseline values. 

It should be noted that even though the low discount rate scenario is not shown in 

Figure 4.4, its breakeven line is just slightly below the high fuel breakeven line, meaning 

that providing other sensitivity parameters are held at their baseline values, a discount rate 

at 3% has a similar impact on the results as a nominal fuel price of $5.60, as well as an 

annual mileage in the range of 15,000.  It is also of note that transmission upgrades, turbos 

with downsizing and hybrids are the technologies most significantly impacted by the 
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sensitivity variables.  In the high mileage scenario, for example, 3 CVTs, 3 turbos with 

downsizing and 4 hybrids have B/C ratios of greater than unity.  

4.4 Implications of Sales-Weighting 

Though complicated due to OEM options-bundling, the model-specific approach, 

when IRPE values can be appropriately filtered from the base model, has merit.  However, 

as a final check, it is of interest to consider the average vehicle in a class, by way of 

understanding whether a new technology is good overall, and not just with regard to its 

base chassis.   

This approach begins with the model-specific IRPE. To this is added (or subtracted) 

any pricing difference between the MSRP of the base model for the given technology and 

the MSRP for the sales-weighted average vehicle in that class.  This becomes the sales-

weighted average IRPE.  Likewise, the fuel economy improvement becomes the percentage 

difference between the fuel economy of the given technology and the sales-weighted 

average fuel economy in that class (not the model-specific fuel economy). Together the 

sales-weighted average IRPE and fuel economy improvements are used to characterize the 

relationship between benefits and costs of new technologies as compared to average 

vehicles in the appropriate class.      

Despite certain obvious differences in MSRP, power and interior volume, the 

compact and midsize classifications are consistent in their qualitative trends.  The average-

vehicle basis permits the inclusion of additional Plug-in hybrid electric vehicles (PHEV) 

and hybrid vehicles for analysis in the model-specific analysis.  A linear regression 

performed on all technologies using the sales-weighted average vehicle approach across 

both classes fits the data reasonably well (R2 = 0.80) and yields Eq. (4.2). Here, IPRE2 
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represents the net incremental retail price equivalent compared to the sales-weighted 

average vehicle baseline, MPGX and MPGAV represent the fuel economy of the improved 

model (X) and the average vehicle (AV) baseline respectively, and the argument in 

parentheses is the percent change in fuel economy relative to the average vehicle baseline. 

𝐼𝑅𝑃𝐸2 ≈ 68 ∙ (
𝑀𝑃𝐺𝑋 −𝑀𝑃𝐺𝐴𝑉

𝑀𝑃𝐺𝐴𝑉
∗ 100) + 142 (4.2) 

  

This relationship essentially only differs from the model-specific case in y-intercept 

and in certain characteristics near the origin.  Weighted class average selling prices are 

typically between the base MSRP of a given model and the MSRP associated with a fuel 

economy technology, explaining the price reduction of new technologies relative to an 

average vehicle basis.  This modestly shifts the cost curve downward while keep the 

slope relatively constant.  Serving primarily to corroborate the preferred (model-specific) 

approach, the sales-weighted average analysis is theoretical, since a consumer cannot 

actually purchase technologies according to this relationship.  However, it may be a 

useful tool in isolating costs attributable to specific technological changes relative to 

average vehicle-derived market conditions. 

4.5 Implications of Revealed Consumer Preference for Fuel Saving Technologies 

Owing to the multiple interactions between consumers, OEMs, and the regulatory 

standard, it seems prudent to assess new fuel saving technologies in light of market 

conditions and the current phase of the regulatory cycle.  Figure 4.5 depicts a sales-

weighted bubble chart of the key technologies assessed in this study.  Base models are not 

included, as they comprise more than half of the sales volume, and would further crowd 
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the origin.  From this figure, it can be concluded that benefit-cost ratio is not a litmus test 

for technology acceptability and market penetration.  The fact that many high volume 

technologies have benefit-cost ratios of less than 1.0 (meaning they are above the B/C=1 

line in Figure 4.5) implies that consumers purchase fuel efficiency in spite of the fact that 

it may not immediately, if ever, return on its investment.    

 

Figure 4.5. Costs, fuel economy improvements and sales weighting of key vehicle 

technologies. 

 

Figure 4.5 Legend: Technologies are grouped by categories which share similar shading, 

and bubble size corresponds to relative sales unit volume for the models employing the 

subject technologies of Table 2.1 in the 2014 MY vehicles summarized in Table 4.1.  

Models with B/C > 1.0 under baseline assumptions are indicated by a circled number. 

 

An aggregate sales-weighting performed on the entire set of fuel saving technologies 

reveals that the average consumer paid $1490 for an estimated $1070 savings in fuel, which 

represented an estimated 17.3% fuel economy improvement as compared to consumers that 

did not buy fuel saving technologies.  As a result, the effective, sales-weighted average 
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benefit-cost ratio for consumers is computed to be 0.72, very close to the un-weighted 

estimate of 0.73 reported in Section 4.2.  

Several key insights emerge from this analysis of the MY 2014 trends.  Based upon 

recent progress toward improved fuel economy, OEMs are likely to consider several 

options for compliance.  Some are technological, while others are related to business and 

marketing.  OEMs have squeezed additional mpg from existing models via a diversity of 

measures including refreshed designs, engine tuning, weight trim, aerodynamic tweaks, 

and friction reduction, among others.  Fuel economy gains from such actions have 

limitations, but are low cost.  Advanced transmissions, more aggressive “ECO” 

countermeasures such as more significant reductions in weight, drag and rolling resistance, 

and valve actuation technologies are the next set of likely improvements.  These have 

already contributed significantly to the estimated 10% gains in new passenger car fuel 

economy since 2011.  These too will eventually run their course, and be more or less fully 

integrated into the new vehicle fleet.  This is the nature and intent of a continuously 

improving regulatory standard.  That sets the stage for a sustained transition to downsized 

turbos and diesels, which may ultimately be incorporated into hybrids.  The foregoing data 

indicate that turbos with downsizing deliver nearly twice the value today than diesel 

engines for small passenger cars.  That notwithstanding, diesels may perform better in high 

mileage cases, or in vehicle applications where the EPA combined fuel economy rating 

may not be a preferable metric for quantifying the real-world benefits.    

Based upon current sales volumes, it is likely that OEMs have adjusted pricing to 

incentivize purchase of higher efficiency vehicles.  This is actually an accounting approach, 

as there is an implicit cost associated with failure to comply (i.e., a $ fine per mpg below 
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regulatory standard).  Even if costs are equal, most OEMs would rather sell volume at 

reduced or amended pricing than run the risk of paying a fine.   

Hybrids are among the most capitally intensive new technologies, but also among 

the most promising in terms of sizeable leaps in fuel economy.  As productivity and 

learning continue, costs will come down; and benefit-cost propositions will rise for 

consumers, accelerating their adoption.  It is less clear whether PHEVs can be viable in the 

near term, given the massive subsidization and fuel economy “equivalent” ratings that have 

been needed thus far to facilitate their early commercial introductions.  

Finally, in view of Figure 4.5, consider that each 10% increment can be roughly 

equated to two years’ time (using a 5% yr/yr increase in fuel economy as called for by 

CAFE 2017-2025).  This means that to sustain compliance though 2020, costs will rise to 

support the aggressive rate of technological improvement.  

4.6 Summary of Key Findings 

Eight significant conclusions can be drawn from this research: 

 The continued commercialization of fuel efficiency technologies have enabled 

automakers to comply with CAFE standards, increasing the fuel economy of the 

passenger car fleet by about 10% since 2011.  Vehicle models sold with specific 

fuel-saving technologies account for approximately 45% of total sales (by unit 

volume) considered in the present study for the 2014 model year.  Key factors 

underpinning recent improvements include reductions in weight, friction, and drag; 

advancements in internal combustion efficiency, engine downsizing; transmission 

upgrades; and the growth of hybrids.  
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 Data from 2014 Model-Year compact and midsize vehicles provide insight into 

advanced fuel saving technologies, and their associated costs and benefits.  Benefit-

cost analysis performed on best-selling models in these classifications reveals a 

sales-weighted average benefit-cost ratio of 0.72, and as such, consumers thus far 

are not incentivized to purchase higher fuel economy.  Furthermore, under baseline 

conditions, benefit-cost ratios are above a breakeven value of 1.0 for just 6 of 28 

models employing improved fuel economy technologies. 

 Aggregated benefits and costs for new fuel saving technologies based upon sales-

weighted data indicate that the “average” consumer that elected to invest in greater 

fuel economy spent $1490 to realize a 17.3% improvement in fuel economy, 

equating to estimated savings of $1070. Thus savings were, on average, insufficient 

to cover technology costs in the baseline scenario.  

 A sensitivity analysis performed on critical parameters reveals that annual miles 

driven and fuel price are the two most significant parameters influencing a 

consumer’s benefit-cost results.  A majority of new technologies become 

economically attractive to consumers (meaning benefit-cost ratios are greater than 

1.0 for the given investment and ownership scenarios) only when annual miles 

travelled exceed 16,400, or when average fuel prices exceed $5.60/gallon.  For the 

high mileage scenario, the technologies with the best overall value proposition are 

turbos with downsizing and regular hybrids (HEV).  

 In the near term, fuel economy improvements between 5 and 15% over base models, 

will continue to be met by increasing transmission speeds from 4 to 5 and 6, and 

deepening the market penetration of advanced internal combustion technologies 
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including: variable valve architectures, gasoline direct injection, and turbocharging 

with downsizing.  Improvements between 20 and 70% can be achieved by diesels 

and hybrids.  The relationship between costs and fuel economy improvements from 

these families of technologies can be represented by a linear relationship 

characterized by a reasonably good fit (R2=0.88).   

 Other vehicle attributes that are related to fuel economy, such as power and torque, 

have largely been unaccounted for in this study. This is reasonable when vehicles 

of like size and classification are compared. The exclusion of such parameters has 

the tendency to overstate the isolated value of fuel economy since reductions in 

power or other potential loss of utility are not considered. 

 Based upon the selected 2014MY vehicles, fuel economy technologies fall into two 

distinct bins of cost and relative efficiency that are separated by a relatively sizeable 

gap. Costs up to $2000 will buy fuel economy improvements up to 20%. Costs 

between $3500 and $10000 are needed to reach improvements that exceed 50%.  

The large costs associated with large fuel economy gains present consumers with 

capital constraints, economic viability issues, and slow their market penetration.         

 Regarding alignment of future trends with CAFE predictions by NHTSA or EPA, 

few advanced technologies in the 2014 MY assessment can demonstrate economic 

viability at higher fuel economy levels.  While technologies having the required 

efficiency levels are now (and will continue to become) available, current market 

data indicate that they will be more expensive than predicted by EPA/NHTSA.  

Even the relatively easy, evolutionary fuel economy gains are often not financially 

compelling for consumers. This implies OEMs may need to adjust sales with 
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creative pricing strategies, or cross-subsidization. The reality is that the higher fuel 

economy levels currently envisioned in CAFE are not expected to be economically 

viable for consumers at currently projected fuel prices.  
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CHAPTER 5.  HYBRID, PLUG-IN HYBRID AND ELECTRIC VEHICLE ENERGY 

CONSUMPTION SENSITIVITY TO DRIVING CYCLE, AMBIENT 

TEMPERATURE AND LOCALITY 

This chapter presents a comparative investigation of vehicle energy consumption 

for various vehicle architectures, driving cycles and ambient temperature conditions. 

Objective methodologies and quantitative metrics are developed for comparison among 

unlike energy sources, and disparate power and thermal management strategies available 

in today’s hybrid and electric vehicles (EV). The three-step modeling approach includes a 

thermodynamic model of heating and cooling demands, a vehicle propulsion model of 

tractive power and battery attributes, and a dynamic vehicle modeling simulation of vehicle 

efficiency under a range of operating conditions. Locality-specific energy consumption 

values from a system perspective are then computed based upon relevant characteristics of 

large U.S. cities such as electricity generation, petroleum refining, and typical weather.   

The chapter seeks to quantify the extent to which vehicle energy requirements are 

lower for hybrid and EV when operated under moderate driving cycles and temperatures, 

as well as to investigate the hypothesis that their energy use is substantially more sensitive 

to driving cycles and extreme hot or cold temperatures.  This study quantifies the strong 

sensitivity to locality on energy and emissions for advanced vehicles, and highlights 

implications of their deployment.  A portion of the material presented in this chapter was 

published in the proceedings of the 3rd Sustainable Thermal Energy Management 
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International Conference (SUSTEM 2015) [143]. The material presented in this chapter 

has been submitted for publication in Applied Energy [33]. 

5.1 Vehicles, Driving Cycles and Temperature Ranges Considered in the Study 

The three primary independent inputs for this study are: vehicle architecture, 

driving cycle and outdoor temperature.  A primary objective in considering multiple 

independent inputs to the simulation is to characterize the complicated interactions that 

occur among these inputs. A set of representative, commercially available, 2014 model-

year vehicle architectures in the compact classification are chosen for this technology 

comparison. Key specifications appear in Table 5.1.  

The five distinct driving cycles that comprise the EPA test and labelling protocol 

are well documented and widely used for comparative analyses [144].  The three 23°C 

(75°F) tests include a derivative of the Urban Dynamometer Driving Schedule (UDDS) 

known as the Federal Test Protocol (FTP), the high-acceleration aggressive driving 

schedule identified as the Supplemental FTP (US06), and the Highway Fuel Economy 

Driving Schedule (HWFET).  The 35°C drive cycle is the Air Conditioning Supplemental 

FTP driving schedule referred to as SC03.  The -7°C cold weather test schedule repeats the 

original FTP at the reduced temperature.   

This study simulates vehicle performance when exposed to a continuous range of 

outdoor temperatures typical of seasonal variations in North America.  The range selected 

is -16°C (3°F) to 42°C (108°F).   
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Table 5.1. Vehicle architectures used in the study and representative attributes.24 

Vehicle Type: 
ICE-  

SI25 

ICE-  

CI26 

HEV- 

PS27 

PHEV- 

4028 

EV-

PAC29 

Source: [100a,b,c] [100d] [100a] [100e] [100f] 

Vehicle Attribute       

Vehicle mass30 [kg] 1438 1595 1519 1857 1610 

Drag coefficient  0.29 0.30 0.25 0.29 0.28 

Frontal area [m2] 2.12 2.10 2.17 2.16 2.31 

Engine power31 [kW] 108 104 73 63 - 

Electric motor power31 [kW] - - 60 111 80 

Total vehicle power31 [kW] 108 104 100 111 80 

Battery mass32 [kg] - - 45 198 294 

Battery capacity32 [kWh] - - 1.3 16.5 24.0 

Fuel economy33 [US34mpg] 31.4 34.0 50.0 37.0 - 

Fuel consumption33 [L/100km] 7.5 6.9 4.7 6.4 - 

Elec. consumption35 [Wh/km] - - - 214 184 

Equiv. fuel econ.35 [mpge] - - - 98 114 

All electric range [km(mi)] - - - 64(40) 134(84) 

                                                 
24

 Vehicle specifications such as engine maps and motor performance, battery cell parameters, physical or 

operational characteristics have been obtained from either OEM fact sheets or the literature [100a-f].     

25
 The key specifications for three top-selling models (Toyota Corolla, Honda Civic, Ford Focus) were 

averaged to represent a baseline compact non-aspirated ICE-SI where SI=Spark Ignition.   

26
 Volkswagen Jetta Value Diesel (ICE-CI) where CI=Compression Ignition. 

27
 Toyota Prius (HEV-PS) where PS=Power Split. 

28
 Chevrolet Volt (PHEV-40) where 40 represents the all-electric range in miles. 

29
 Nissan Leaf (EV-PAC) where PAC=Passively Air Cooled. 

30
 Vehicle mass reflects “vehicle inertia weight” which is equal to curb weight plus 136 kg per EPA rule. 

31
 Engine and motor power represent maximum rated values reported by OEMs at vehicle-specific 

engine/motor speeds.  Total vehicle power applies to HEV and PHEV, and reflects the maximum net 

combined propulsion of engine and motor.   

32
 Battery mass and capacity represent complete battery modules. 

33
 Fuel economy, consumption and range values reflect 5-cycle EPA combined ratings [14]. 

34
 This study uses U.S.gallons (not imperial) in all fuel economy MPG references. 

35
 Electricity consumption is on a vehicle, not system basis, and is derived by dividing the energy content of 

a gallon of gasoline (33.7 kWh) by the EPA-reported equivalent fuel economy in MPGe. (Appendix A)  
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5.2 Vehicle Modeling Methodology and Analytical Basis 

The present study introduces an iterative modeling approach depicted graphically in 

Figure 5.1.  

 

Figure 5.1. Iterative vehicle energy consumption modeling approach. 

Energy consumption metrics are computed on a vehicle architecture basis as a 

function of temperature and driving cycle using the nested propulsion and thermal models 

as shown. Once the relationship between vehicle energy and temperature is determined, 

driving pattern and locality parameters are introduced to determine system-level equivalent 

energy and emission metrics. This investigation uses a backward-facing model which 

means that driving cycle velocities at every time t dictate vehicle power requirements at 

the wheel that are in turn met in real time by the propulsion system. This approach 

facilitates accurate and readily computable comparisons among vehicle architectures.  The 

integrated model is created and executed in MATLAB/Simulink.  
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5.2.1 Power management strategy 

Power management and traction battery subroutines comprise the vehicle 

propulsion model.  The baseline power management follows that of a power-split or series-

parallel HEV, because it embodies all constituent operational modes: gasoline-only, hybrid 

(CS) mode, and all electric (CD) modes.  The governing formulae for the various tractive 

forces (Ftr) on the vehicle are: 

accelhillaerorrtr FFFFF                                                                                          (5.1) 

vehvehgradevehvehFDairvehrrrrvehtr amgmvACvCCgmF   sin5.0)( 2

1,0,            (5.2) 

Frr, Faero, Fhill and Faccel are the forces due to rolling resistance, aerodynamic drag, hill 

climb and acceleration, respectively. The mass, velocity and acceleration of the vehicle are 

mveh, vveh, and aveh, respectively. Crr,0 is the constant portion of the coefficient of rolling 

resistance and Crr,1 is the first-order speed-dependent portion of the coefficient of rolling 

resistance. From [145], we assign values to these variables of 0.01 and 0.000225, 

respectively. The air density, vehicle drag coefficient, frontal area, and acceleration due to 

gravity are denoted as air, CD, AF and g, respectively. Hill grade, grade, is assumed to be 

zero in our study, since a level ground assumption is reasonable for comparison purposes 

and the driving schedules employed do not include hill climb.  An expression for tractive 

power (Ptr) in terms of tractive force and vehicle speed is: 

  dtvFP vehtrtr                                                                                           (5.3) 

The tractive power requirements are met by the baseline HEV according to several 

basic tenets of control strategy: (1) the engine is off when Ptr is below a predefined 
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minimum threshold (10 kW default value) to conserve fuel and utilize the electric machine 

in either motoring or generating (“regenerative braking”) mode; (2) the engine is also off 

when its speed is below a minimum (about 1000 RPM) as determined by vehicle driveline 

gear ratio; (3) when Ptr exceeds the maximum rated power of the engine, the electric 

machine provides the required difference (Ptr-Peng,max); (4) whenever the engine is engaged, 

it operates on the optimum Brake Specific Fuel Consumption (BSFC) line for the 

calculated power at the given speed enabled by a Continuously Variable Transmission 

(CVT); and (5) the battery state of charge (SOC) is maintained at about 0.5 during charge 

sustaining operation, and  the engine is decoupled from vehicle speed such that it operates 

on the optimal brake specific fuel consumption (BSFC) line. Net transmission efficiency 

factors based upon typical values of discrete speed and CVT transmission drivelines are 

applied to each vehicle architecture according to its design.   

These simplified control strategies are sufficient for the purpose of the comparison 

in the present study.  Straightforward modifications are made for gasoline-only operation, 

wherein the engine is the exclusive means of meeting Ptr requirements, and the engine is 

not capable of turning itself off at low power requirements, low speeds, or under idling 

conditions.  Modifications are similarly made to adapt to charge-depleting mode, wherein 

the battery module and electric machine are the exclusive means for meeting the vehicle’s 

tractive power requirements. In the case of the PHEV in CS mode, the engine operates at 

its most efficient point and is used exclusively to charge the batteries. In addition to tractive 

power requirements, the vehicle must satisfy the demand for auxiliary loads, denoted by 

Paux, imposed upon the system, such as HVAC and accessory needs as defined by: 

Ptotal=Ptr+Paux. For HEV and PHEV, the auxiliary power required to meet vehicle needs 
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includes two components: one to satisfy cabin HVAC demands and a second to meet 

battery thermal management demands as follows: Paux=Paux,cabin+Paux,batt. For the EV-PAC 

(Passive Air Cooled), passive convection battery thermal management does not incur 

auxiliary energy demands. While the PAC design has obvious energy benefits, concerns 

are warranted over reduced lifespan and performance.   

5.2.2   Battery equivalent circuit (BEC) model 

Battery operation and by extension, HVAC requirements, are strong functions of 

driving cycle and ambient temperature; an initial value for roundtrip battery efficiency 

must therefore first be determined before heating and cooling loads can be resolved.  Here, 

an iterative modeling approach is proposed where an equivalent circuit determines the 

cumulative I2R power losses that contribute to battery heating.  A first-order RC model has 

proven successful at characterizing the charge-discharge response of vehicular lithium ion 

batteries, and is depicted by the equivalent circuit in Figure 5.2.  

 

Figure 5.2. Battery Equivalent Circuit Model. 

The voltage balance across the cell and the current through the R1C1 pair are:  

11 0 CROCcell VRIVV                                                                                                (5.4) 

 
1

1
1

11111 R

V
VC

dt

d
III

C

CCRCR                                                                                (5.5) 
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In Eq. (5.4), Vcell is the unknown cell voltage and VOC is the open circuit voltage.  

Noting that IR0 = IR1C1 = Icell and substituting Eq. (5.5) into Eq. (5.4) yields a differential 

equation that can be solved to determine Vcell at any current, using a user-defined 

correlation for VOC(SOC) and approximate values of R0, R1 and C1 as functions of 

temperature as defined by Huria [116].  For baseline operation at 23°C, the parameters are 

R0 = 0.0085 Ω, R1 = 0.002 Ω and C1 = 25,000 F.  The modeling approaches used for HEV 

and PHEV/EV are differentiated due to the location and size of the respective battery 

modules36.  

The coulomb counting method is used to determine battery SOC as a function of 

the initial SOC, SOCinit, the fully charged battery cell capacity QBC, cell current Icell, and 

time t.   



t

cell

BC

init dtI
Q

SOCtSOC
0

1
)(                                                                                      (5.6) 

Given the defined indexing of SOC from zero to unity, Eq. (5.6) is valid for both a 

single cell and the full battery module. Battery roundtrip efficiency can now be determined 

with the introduction of additional variables. The power consumed or supplied by the 

electric machine is defined to be Pem(t), and terms to capture the on-board charging and 

                                                 
36

 For HEV, following transient start-up conditions, the battery temperature is assumed to be maintained near 

(±10°C) the controlled cabin environment of 23°C, implying that the resistances and capacitances should 

be relatively temperature-independent during vehicle operation.  For the PHEV and EV, the batteries range 

from 4 to 7 times larger in mass and are enclosed in underbody/mid carriage compartments that are more 

exposed to the external environment. Thus during PHEV/EV operation in charge-depleting mode, battery 

resistances, which are strong functions of operating temperature, are estimated using empirical correlations 

for individual cell resistances at 5°C, 20°C, and 40°C from Huria [116] and correlations for module 

resistances at -7°, 22°C and 35°C from Lohse-Busch [96].  The empirically-derived relationships are then 

used to more accurately estimate vehicle energy consumption across the temperature spectrum for vehicles 

operating in CD mode. While the decrease in battery module resistance from 23°C and 42°C is minimal 

(<15%), the increase between 22°C and -7°C is significant (on the order of 200% for these particular 

vehicles). 
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discharging efficiencies are defined as ch and dch.  Current through a given cell during 

charging and discharging modes and cell power loss at time t are:  

  ),(/)()(, tSOCvtPtI cellchemchcelll                                                                               (5.7) 

  ),(//)()(, tSOCvtPtI celldchemdchcell                                                                              (5.8) 

)()()()(, tPSOCVtItP emOCcelllosscell                                                                            (5.9) 

Note that Pem>Icell*vcell during charging as per Eq. (5.7), and Pem<Icell*vcell during 

discharging as per Eq. (5.8) to reflect the resistive dissipation according to current direction.  

Battery roundtrip efficiency b,rt and total energy loss in the battery module Ebatt,loss [Wh] 

are found as follows, where Nt represents the total number of cells in the battery module.  














 

t

em

t

losscellrtb dttPdttP
00

,, )()(1                                                                          (5.10) 

  dttPNE

t

losscelltlossbatt 
0

,, )(3600                                                                                (5.11) 

This cumulative loss is time-averaged over the given driving cycle, yielding a 

battery heat generation rate, Qb,cycle in W, where t is the total drive cycle duration in hours.  

This heat rejection term becomes a first-iteration heat addition term in the cabin and battery 

thermal model.  

tEQ lossbattcycleb  ,,
                                                               (5.12) 

5.2.3 Cabin HVAC model and battery thermal management (BTM) model 

Primary sources of cabin HVAC loads include solar insolation through glass, heat 

conduction to/from the exterior surfaces, convection at exterior surfaces, flow leakage, 
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fresh air intake, and heat from passengers and electronics, for which a variety of modeling 

tools have been developed. Due to substantial variation in these factors and the 

predominantly comparative nature of this study, expressions for simplified baseline cabin 

HVAC demand as a function of outdoor temperature are derived based upon studies in the 

literature, and corroborated with published component design specifications [92,96,105]: 

814.3221.0,  outdoorCabinAC TQ  {Toutdoor ≥ 24°C}                                                (5.13) 

00.3150.0,  outdoorCabinHeating TQ  {Toutdoor ≤ 20°C}                                                (5.14) 

 

Figure 5.3. Empirical correlations for cabin heating and cooling loads. 

The cabin air-conditioning demand is given by Eq. (5.13) when the outdoor 

temperature is greater than or equal to 24°C, while the cabin heating demand is given by 

Eq. (5.14) when the outdoor temperature is less than or equal to 20°C. These linear 

responses are depicted in Figure 5.3. It is assumed that the selected vehicle architectures 

will use a conventional vapor compression air conditioning cycle of equal performance 

using R134a with either a clutch-driven or electric compressor.  For ICE, HEV and PHEV 
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in CS mode, it is assumed that cabin heating requirements will be satisfied by the 

conversion of waste heat from the engine.  For PHEV and EV in CD mode, it is further 

assumed that initial heating requirements will be met via a heat pump cycle with similar 

thermal performance as the air conditioner, since it will utilize the same machinery and be 

activated by reversing valves.  For temperatures between -6°C and -16°C, it is assumed 

that EV will supplement heating requirements using an electrical resistance heater with a 

maximum capacity of 2 kW and a COP of unity.  A parametric model was created in 

Engineering Equation Solver (EES) [146] to facilitate simulations of the baseline system 

with varying thermal inputs coming from the vehicle propulsion and battery equivalent 

circuit subroutines.   Values assumed for the EES model include: superheating of 8.3°C, 

subcooling of 2.7°C, maintained cabin air temperature of 23°C, compressor isentropic 

efficiency of 70%, recirculation (if no battery cooling) of 100%, blower fan power of 100 

to 250 W, and exterior condenser fan power of 0 to 200 W (depending upon average vehicle 

speed).      

Air-cooled battery thermal management (BTM) systems are assumed for hybrid 

vehicles having modest battery capacities (< 3 kWh).  The HEV of this study maintains 

battery temperatures via cabin air that is ducted around the battery housing with an 

adjustable speed auxiliary fan. The PHEV investigated here requires active battery cooling 

that can be achieved via liquid-cooling heat exchange with an auxiliary liquid-liquid heat 

exchanger connected in series with the baseline vapor refrigeration system. The EV 

investigated uses a passive air-cooled strategy (via external convection) which imposes no 

auxiliary power demands on the vehicle. Typical BTM strategies are well documented in 

Rao [147]. The EES model estimates the additional vehicle energy demand that is required 
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to maintain desired battery temperatures. For the air-cooled BTM, the rate at which battery 

heat is transferred to the cabin is:  

      acbaoacpbaacbaobbb TTcmTTThAQ  ,,2/                                                (5.15) 

   acaoaopacaobab TTcmQ  ,,                                                                           (5.16) 

bLoadtot QQQ                                                                                                              (5.17) 

In Eq. (5.15), the product of the heat transfer coefficient and battery module surface 

area (hA)b is considered a constant specific to the battery module within the given range of 

temperatures. For the purpose of this analysis (hA)b has an approximate value of 16 W/°C 

based upon empirical observation.  The energy balance of Eq. (5.15) quantifies the mass 

flow of air required to maintain a desired battery outlet temperature. Battery heat 

generation, bQ  (Eq. (5.16)), is then simply equated to cyclebQ ,
  (Eq. (5.12)) to connect the 

thermal and equivalent circuit subroutines. Thus the total HVAC load for the air-cooled 

system is the sum of cabin and battery loads as shown in Figure 5.4 and Eq. (5.17).   

 

Figure 5.4. Cabin/battery thermal energy flows in HEV-PS with active air-cooling. 
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For liquid-cooled systems such as PHEV, the energy balance follows the same form 

as Eqns. (5.15-5.17), but for simplicity, the heat transfer between the battery module and 

the liquid-liquid heat exchanger is assumed to be perfect.  Thus battery heat generation 

may be added directly to the cabin load: cyclebLoadtot QQQ ,
  . For the EV with passive 

thermal management, cyclebQ ,
  is assumed not to contribute to vehicle thermal or energy 

demands. 

In heating mode, the auxiliary power requirements for ICE and HEV in CS mode 

are zero. In heat pump mode, electrical requirements are determined using the cabin HVAC 

model in EES.  For the EV, additional electrical requirements from the resistance heater 

below -6°C are included in a linearly increasing demand up to a maximum supplement of 

2 kW.  No heating benefit from battery heat generation is assumed in any of the vehicle 

architectures, though it may be possible to harvest some of this waste heat to reduce vehicle 

power demands in cold weather. For a given vehicle and drive cycle, the battery loss term 

and resulting auxiliary power demands on the vehicle are determined iteratively as a 

continuous function of temperature using the MATLAB/Simulink and EES models. 

5.2.4 Estimating fuel and electricity consumption as functions of temperature 

To determine vehicle energy consumption as a continuous function of temperature 

within a consistent comparative framework, this study introduces new approaches that 

derive from established EPA fuel economy rating methodologies [14] in which five 

weighted cycles are prescribed, including three at 23°C and two intended to account for 

the effects of hot (35°C) and cold (-7°C) weather operation.  A shortcoming of this 

approach is that a baseline performance is computed for operation under UDDS, US06 and 
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HWFET driving cycles and adjusted by supplementary “weather” cycles at merely the two 

discrete temperatures. A final adjustment (equal to -9.5% on a fuel economy basis, or +10.5% 

on a fuel consumption basis) is applied to correct for “non-dynamometer” effects including 

road roughness, road grade, tire pressure, vehicle payload, wind and precipitation. The 

formulae for computing the EPA five-cycle city and highway fuel economy are available 

in [14] and example equations are provided for reference in Appendix C.  

 The analysis in the present study retains the relative weightings of the various drive 

cycles for the city, highway and combined modes, but removes the reliance on discrete data 

at 35°C and -7°C, instead simulating the core driving cycles across the full range of 

temperatures. Since one aim of the study is to understand the impact of locality, we 

distinguish between the aspects that may be dependent on geographic location (such as 

HVAC use and fuel or energy required at vehicle start-up) from those that are generally 

independent of geographic location (such as non-dynamometer adjustments). The impact 

of HVAC and BTM are quantified across a full range of temperatures. So-called “starting 

fuel” is meant to account for any initial fuel or energy required by the vehicle during its 

warm-up period to overcome such items as static inertia, viscous and mechanical friction, 

thermodynamic combustion losses and unburned hydrocarbons prior to reaching steady 

state, and electrical system losses due to elevated transient resistances. While clearly 

correlated to ambient temperature, the theoretical system modeling of such losses is 

complicated and experimental data are often proprietary to component manufacturers and 

automakers. For the purposes of this study, close approximations of start-fuel estimates as 

a function of temperature and vehicle architecture are derived from curve-fits to 

experimental results, such as those found in [14,96]. While these empirically-derived and 
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drive-cycle-weighted start fuel estimates facilitate excellent first order comparisons, it 

should be noted that this study does not fully consider the trade-off of fuel consumption to 

ensure acceptable levels of NOx emissions in diesel engines. Though impacts are 

moderated by highway driving where start fuel levels are substantially lower, this study 

may slightly underestimate the cold weather energy consumption of diesels as additional 

fuel use to catalyze NOx is largely neglected. As noted, the non-dynamometer adjustments 

are not generally dependent upon locality and therefore need not be adjusted from the EPA 

values.   

 The following two steps are therefore taken.  First, the architecture-specific 

combined propulsion/battery/thermal model is developed and vehicle simulations are 

performed under stipulated test conditions (drive cycles at 23°C, -7°C and 35°C) and 

compared to official estimates using standard five-cycle EPA calculation methods. Second, 

temperature variability in a range from -16°C to 42°C is imposed upon vehicle simulations 

under the three core driving cycles (UDDS, US06 and HWFET), with defined analytical 

and empirical correlations for component and system energy demands.  In this way, 

complicated interactions among the driving cycles and thermal demands of the cabin and 

battery modules are more accurately characterized, yielding fuel and energy consumption 

data for each vehicle across a continuous spectrum of outdoor temperatures.  The equations 

used to estimate fuel and energy consumption are represented as follows. 

    )()()()( , TFCTFETFENTFC startikkjjii                                             (5.18) 

    )()()()( , TECTECTECNTEC startikkjjii                                            (5.19) 
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Table 5.2. Driving cycles, parameter values and weightings used in Eqns. (5.18) and 

(5.19). 

Weighted average  

cycle name, i 

Non-dynamometer 

correction, Ni 

Weighting, 

j  
Driving 

cycle, j 

Weighting, 

k 
Driving 

cycle, k 

 

City 1.105 0.89 UDDS 0.11 US06 City 

Highway 

Combined 

 1.105 

N/A (1.000) 

0.79 

0.43 

US06 Hwy 

City 

0.21 

0.57 

HWFET 

Highway 

 

This approach utilizes EPA-defined driving cycles and weightings from [14] shown in 

Table 5.2 to facilitate comparisons among vehicle architectures and rating conventions.  It 

should be noted that electrical energy consumption (EC) for vehicle operation in CD mode 

involves arithmetic averaging via weighting factors (Eq. (5.19)), in contrast with fuel 

consumption calculations which use harmonic weightings of constituent fuel economies 

(FE) during gasoline or CS mode (Eq. (5.18)).  

The final step required to facilitate comparison among the vehicle architectures 

from the standpoint of the vehicle boundary (“vehicle-basis”) is to report energy 

consumption in common units.  This is done by converting fuel economy (US mpg) or fuel 

consumption (L/100 km) to energy consumption per unit distance (Wh/km).  

  fuelimCSVeh LHVTFCTEC *100)()(,,                                                                         (5.20) 

 In Eq. (5.20), ECVeh,CS,m(T) is the vehicle-basis energy consumption in CS mode for 

vehicle m at temperature T, FCi(T) is the simulated fuel consumption of cycle i at 

temperature T, and LHVfuel is the lower heating value of the relevant liquid fuel, which is 

8.9 kWh/L for gasoline and 9.9 kWh/L for diesel. For the majority of the vehicle-level 

comparisons in Section 5.4, the driving cycle, i, is taken to be the EPA combined city-



129 

 

1
2
9
 

highway weighting, though the methodology is broadly applicable. Following conversion, 

vehicles consuming liquid fuels can be equitably compared on a common energy basis with 

vehicles consuming grid-derived electricity.   

5.3 Modeling Approach for Assessing the Impacts of Locality 

5.3.1 Estimating vehicle-basis energy consumption by locality 

This study estimates average energy consumption values for vehicles and cities of 

interest using energy consumption as a continuous function of temperature. These EC(T) 

correlations are outputs of the vehicle modeling and inputs to locality estimations. Other 

inputs to the vehicle-basis locality study include typical driving patterns (such as average 

trip distances, times, daily and annual vehicle miles traveled, VMT) and climate data (e.g., 

temperature by city, hour and day of year). A mathematical expression approximating the 

weighted annual average energy consumption is given by:   


 


365

1

24

1

,,, )(
p q

qpnmqpnm TECEC                                                                               (5.21) 

 In Eq. (5.21), nmEC ,  is the annually-averaged energy consumption of vehicle m in 

city n, p is the fraction of the total year’s driving occurring on day p, and q is the fraction 

of day p’s driving occurring in hour q. The sum of all p over the year is equal to unity, as 

is the sum of all q over the day.  Finally, ECm(Tn,p,q) is the energy consumption for vehicle 

m associated with the temperature in city n on day p and in hour q. In the 

MATLAB/Simulink environment, a matrix of ECm(T) (for -16°C ≤ T ≤ 42°C) is established 

from the vehicle simulations of each architecture and then used as a lookup table for the 

integrations (piecewise summations) performed in Eq. (5.21).    
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 The hourly use fraction of a vehicle on a typical day is derived from the U.S. 

Department of Transportation Household Survey [136]. The daily use fraction is derived 

from annual vehicle miles traveled (VMT) data in the DOT survey and monthly driving 

information described in EPA’s label regulation [14]. It is assumed that the average driving 

frequency on every day of the week is the same throughout a given month; however, each 

month is unique with greater driving distances common during summer.  Plots used to 

determine the hourly and daily VMT share allocations are provided in Appendix D. 

 Weather data for 22 of the most populated U.S. urban areas are extracted from the 

U.S. Department of Energy, NREL Typical Meteorological Year (TMY3) database [148]. 

It is our aim to estimate typical, rather than extreme, responses to varying ambient 

temperatures, for which the TMY3 database is ideal [149]. Temperature data by running 

hour of the typical year for a given city is accessed in sequence, energy consumption for a 

given vehicle at the given temperature is obtained from the simulation output, and the 

hourly and daily fractions are applied. This process is repeated following the form of Eq. 

(5.21) for every hour of the year, for each vehicle m and city n.  Notional depictions of 

temperature vs. running hour of the year for three cities (IND, LA and MIA) and diurnal 

temperature variations (for IND) are included in Appendix E.     

5.3.2  Estimating system-equivalent energy consumption by locality 

In order to compare net or equivalent system-level energy consumption, a 

simplified variation of a Life Cycle Analysis (LCA) is applied.  It considers vehicle-basis 

energy requirements as well as energy to deliver the liquid fuel or electricity to the vehicle, 

back to the level of the extracted raw material.  Though not a complete wells-to-wheels 

(W2W) basis, this is a reasonable assumption for this comparative study because it avoids 
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uncertainty associated with sources and origins of raw materials, but captures primary 

factors such as the refining of liquid fuels and the electrical generation of fossil-fuels and 

non-fossil fuels.  Estimates for equivalent energy consumption, ECSysEq, in units of [Wh/km] 

are given for the CS and CD modes are derived according to:  

)()()( ,,,,, liqtrnliqrefmCSVehmCSSysEq TECTEC                                                                (5.22) 

 ngenntranschgmCDVehmCDSysEq TECTEC ,,,,,, )()(                                                       (5.23) 

 Here, ECSysEq,CS,m(T) and ECSysEq,CD,m(T) are the system-level equivalent energy 

consumption for vehicle m at temperature T in CS and CD modes, respectively.  Efficiency 

terms are introduced for liquid fuel refining efficiency for city n (liqref,n) and liquid 

transport efficiency (liqtr) for CS-mode operation, and wall- or station-to-vehicle charging 

efficiency (chg), electricity transmission efficiency (trans,n) in city n, and electricity 

generation efficiency in city n for CD operation (gen,n). Thus, this study assumes that 

efficiencies for refining, transmission of electricity from power planta to charging stations 

and generation are locality-dependent, but assumes a national average value for the 

transport of refined fuel liquids to fueling stations, liqtr = 0.992 [21], and a representative 

value of 0.87 for the external charging efficiency of EVs (chg) based upon typical 

efficiencies of Level 1, 2 and 3 charging systems [150]. Source data for liquid fuel refining 

efficiencies by city (liqref,n) is derived from Elgowainy et al. [151] and Argonne National 

Laboratory’s GREET1_2014 Fuel-Cycle Model database [19].  The efficiencies of 

transmission and distribution of electricity from power plants to charging stations by 

locality (trans,n) are obtained via regional grid loss data reported in the U.S. EPA Emissions 

& Generation Resource Integrated Database, eGrid [22] for the most recent year available, 
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2010.  Efficiencies for generating electricity by city (gen,n) are derived from state and 

regional data on sources and heat rates from the Energy Information Administration 

Electric Power Annual [152] and assessments of renewable energy technologies [153] for 

the most recent year available, 2013.  A generalized expression for system-equivalent 

energy consumption of vehicle m, ECSysEq,m, is provided in terms of the relevant utilization 

factors (UF) for the CS (ICE/HEV) and CD (EV) modes as:   

)()()( ,,,,,,, TECUFTECUFTEC mCDSysEqmCDmCSSysEqmCSmSysEq                                   (5.24) 

In turn, an average system-equivalent energy consumption for vehicle m and city n 

can now be computed as follows:   


 


365

1

24

1

,,,,, )(
p q

qpnmSysEqqpnmSysEq TECEC                                                                  (5.25) 

 This locality-specific system equivalent energy consumption computation is similar 

to the locality-specific vehicle basis energy consumption. In Eq. (5.25), nmSysEqEC ,,  is the 

annually-averaged system-equivalent energy consumption of vehicle m in city n, p and q 

are as before, and ECSysEq,m(Tn,p,q) is the system-equivalent energy consumption for vehicle 

m at the temperature associated with city n, day p, and hour q. This time, a matrix of 

ECSysEq,m(T) (for -16°C ≤ T ≤ 42°C) is established from the vehicle simulations and then 

used as a lookup table for the double summation of Eq. (5.25).  

5.3.3 Estimating system-equivalent emissions by vehicle type and locality 

 Estimates of vehicle emissions consider both tailpipe and upstream sources back to 

the level of the extracted raw material (i.e., not including extraction). Due to differences in 
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the upstream fuel and electricity cycles, three expressions are employed in this analysis as 

follows: 

gasolinenSIICESysEqnSIICE EIECEI   ,,,                                                                             (5.26) 

dieselnCIICESysEqnCIICE EIECEI   ,,,                                                                               (5.27)

n

transchg

nEV
nEV EIEG

EC
EI 




















,
,                                                                                      (5.28) 

In Eq. (5.26), nSIICEEI ,  represents the average Emission Intensity (EI) for the ICE-SI in 

city n measured in grams of CO2 equivalent per kilometer [gCO2eq/km]. nSIICESysEqEC ,,   is 

as determined previously by Eq. (5.25), and EIgasoline is the emission intensity associated 

with the combustion of gasoline, defined by EPA to be approximately 0.264 gCO2eq/Wh 

[154]. Eq. (5.26) is valid for the HEV as well. Eq. (5.27) is substantively similar to with 

exception that EIdiesel is the average emission intensity associated with the combustion of 

diesel, defined by EPA to be approximately 0.272 gCO2eq/Wh [154].  

 In Eq. (5.28), nEVEI ,  represents the average Emission Intensity for the EV in city 

n measured in grams of CO2 equivalent per kilometer [gCO2eq/km]. To estimate this, we 

divide the vehicle basis energy consumption, nEVEC ,  by the charging and transmission 

efficiencies and then multiply the result by the Emission Intensity due to Electricity 

Generation for city n (EIEGn again measured in gCO2eq/Wh). Estimates of EIEGn by city 

are determined from multiple sources [22,152-153].  The EI of the PHEV is the weighted 

sum of a CD mode subtotal (Eq. 5.28)) and a CS mode subtotal (Eq. (5.26)). The weightings 

are given by the Utility Factor introduced in Eq. (5.24). It should be reiterated that the 
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Emission Intensity comparisons presented in this study are distinct from conventional 

lifecycle assessments (LCA) which typically include emissions associated with resource 

extraction.  

5.4 Results & Discussion 

 In this section, comparative results are presented in three stages. First, the energy 

demands of various vehicle technologies are quantified as functions of ambient temperature 

and driving cycle. Comparisons are made on the basis of common energy units, specifically 

energy consumed per distance travelled (Wh/km). Second, the energy demands for the 

vehicle technologies are compared on a vehicle-basis (i.e., the fully-fueled or fully-charged 

vehicle as a system boundary) for 22 major U.S. urban metropolitan areas. Vehicle-basis 

comparisons are reported in terms of absolute energy consumption and in terms of “Energy 

Consumption Locality Multipliers” (ECLMs). Finally, estimates of the “system-equivalent” 

energy consumption and emissions (i.e., associated with upstream energy supply, 

processing and transmission) for the selected technologies and cities are presented.  

5.4.1 Fuel and electricity consumption sensitivity to drive cycle and temperature 

5.4.1.1 Illustrative simulation results for the UDDS driving cycle 

For each given drive cycle and vehicle type, dynamic simulations are performed in 

MATLAB/Simulink to determine the real-time tractive power requirements. At baseline 

conditions, which assume an ambient outdoor temperature of 22°C and nominal auxiliary 

power demands, tractive power is plotted for ICE-SI, HEV and EV respectively in Figures 

5.5 - 5.7.  These representative simulation outputs were generated by imposing a temporal 

vehicle target velocity that complies with the EPA Urban Dynamometer Driving Schedule 
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(UDDS), which is included for reference in Appendix F. Note that tractive power demands 

met by the engine are indicated in purple (for the ICE-SI and HEV), whereas tractive power 

demands met by the electric machine (either in motoring or generating mode) are indicated 

in orange (for the HEV and EV). A negative tractive power suggests the vehicle is 

recovering kinetic energy by virtue of its combined generator/energy storage system (i.e., 

“regenerative braking”). The UDDS cycle, as compared to the highway or aggressive 

driving cycles, is known to more fully manifest the energy-recovery capabilities of HEVs 

and EVs. 

 

Figure 5.5. ICE-SI Tractive Power and Energy Consumption, UDDS cycle. 

 

 

Figure 5.6. HEV Tractive Power and Energy Consumption, UDDS cycle. 
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Figure 5.7. EV Tractive Power and Energy Consumption, UDDS cycle.  

 

Figures 5.5-5.7 are also intended to begin illustrating the variation in energy 

consumption as a function of operation at three selected ambient temperatures for the ICE-

SI, HEV and EV respectively. These EC curves are to be read on the right hand y-axes. EC 

is shown to be a function of temperature, color coded as follows: -10°C (blue), 22°C (black), 

and 35°C (red). For comparison purposes EC values have been converted to common units 

at the vehicle boundary using the lower heating value of gasoline. Please note that even 

though three EC curves are plotted corresponding to operation at different temperatures, 

only the 22°C tractive power curve is included for reference. In other words, Figures 5.5-

5.7 do not show auxiliary or total vehicle power demands for any of the temperature 

scenarios.  

It is not surprising that the ICE-SI has the highest energy consumption and the 

lowest sensitivity to cold operation. Though required to idle at all times, this vehicle type 

recovers waste heat to meet cabin heating demands. Conversely, the HEV completes the 
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sensitive to hot and cold weather. At -10°C, engine on-time is increased to maintain 

sufficient cabin heat, whereas at 35°C additional energy is consumed to maintain proper 

battery thermal management.  For the EV, an average of ten cycles is reported to ensure 

compliance with net energy change tolerance protocols. Nominal (22°C) EV energy 

consumption on a vehicle basis is substantially lower than both ICE-SI and HEV. However 

EV operation at -10°C incurs losses attributable to increased electrical resistances and 

cabin heating demands, resulting in a larger percentage change compared to either ICE-SI 

or HEV. This initial analysis of simulated vehicle operation at discrete temperatures 

provides a foundation for the investigation of energy sensitivity across a continuous 

spectrum of ambient temperatures.  

5.4.1.2 Comparison of vehicles operating on liquid fuel and grid-derived electricity 

The vehicle architectures simulated in this study consume energy in one of two 

forms: liquid fuel during ICE-only or HEV CS mode, or electricity during EV or CD mode. 

Figures 5.8 and 5.9 illustrate the comparative fuel and energy consumption by vehicle 

architecture for liquid fuel and all-electric operating modes respectively.  These data span 

a continuous range of outdoor temperatures and now represent the weighted average effect 

of multiple drive cycles based upon the EPA combined fuel economy calculation 

methodology described in section 5.2.4 and Appendix C.   

Composite weighting of the various city and highway drive cycles confirm that 

HEVs consume between 25% and 40% less fuel than ICE-SI, ICE-CI and even PHEV40 

in CS mode.  This trend is essentially consistent across the temperature spectrum because 

the heat rejection of the hybrid vehicle batteries in CS mode is relatively low, typically 
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between 100 and 200 W.  Only during the US06 cycle do HEV batteries in CS mode reach 

Qb,cycle rates of 400 W. Since these vehicles are equipped with an ICE, waste heat is utilized 

to satisfy cabin heating requirements during cold weather conditions, as evidenced by the 

relatively flat responses when the outdoor temperature is between -16 and 20°C. 

While all vehicles demonstrate a similar trend during warm weather, the HEV is 

slightly more sensitive to AC use for two reasons.  First, owing to its superior baseline 

efficiency, it consumes a comparatively higher percentage of energy to maintain the cabin 

at the desired temperature.  Second, its slope is slightly steeper than the other vehicles due 

to battery thermal management demands (Figure 5.8).  HEV fuel consumption at 35°C is 

simulated to be 21% greater than its baseline at 22°C as compared with increases of 9% 

for ICE-SI and 12% for ICE-CI, relative to their respective baselines.  The CI engine 

outperforms the SI engine, as may be expected, due to the superior thermal efficiency of 

the diesel cycle.  The PHEV40 in CS mode performs better than the CI vehicle, but due to 

its 200 kg battery module and additional powertrain mass, its combined fuel consumption 

is greater than 6 L/100km.  The heat generated by its batteries in CS mode is very similar 

to the HEV. 
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Figure 5.8. Fuel Consumption temperature sensitivity, gasoline or CS mode. 

 

Figure 5.9. Electricity Consumption temperature sensitivity, all-electric or CD mode. 

The PHEV and EV can both operate in CD mode, whereby the source of vehicle 

energy is derived exclusively from electricity stored in the batteries.  Figure 5.9 illustrates 

simulated energy consumption (EC) for the subject vehicle architectures. Vehicle-basis 

energy consumption, ECi(T), reflects only the portion available and consumed on-board, 

and does not account for upstream electrical generation, transmission or charging losses.  

For CD operation, Figure 5.9 illustrates the substantial energy demanded by the vehicle 

during cold weather operation.  Even though a heat pump with COP > 2 can provide cabin 
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and battery heating down to about 0°C, energy penalties average about 30% for the 

combined city and highway drive cycles at that temperature in CD mode.  In certain city 

modes, this penalty can exceed 40%. For extremely cold operation (Toutdoor < -6°C), an 

auxiliary resistance heater is employed in certain designs, including the EV and PHEV 

modelled in the present study. In both of these vehicles, the energy consumption at -16°C 

increases 90% relative to baseline values, as indicated in the figure by the nonlinear energy 

consumption trend during extreme cold.  Official and simulated range estimates 

corroborate this finding [132,155].   

In warm weather when AC mode is active, the energy consumption trends in Figure 

5.9 are qualitatively similar to those illustrated in Figure 5.8, though both the absolute 

energy consumption and the percent change over the baseline vary by vehicle type.  It is 

noted that the PHEV has a simulated vehicle mass that is 247 kg greater than the EV, owing 

to its dual powerplant configuration.  The simulation confirmed this to be responsible for 

the largest part of the energy consumption variance, in absolute terms, between the two 

vehicles. In AC mode at 35°C, the PHEV energy consumption is 19% greater than at 22°C, 

compared to a 15% change for the EV. This difference in relative terms is attributable to 

active liquid cooling used in the PHEV, where additional energy is consumed for battery 

thermal management with increasing ambient temperature. Conversely, the EV uses a 

passive air-cooled approach, in which energy is not expended to maintain battery cell 

temperature. Though lower cost and lighter weight, the passive approach may contribute 

to shortened lifespan or durability concerns.    

As discussed in Section 5.2.4, the reporting of energy consumption on a vehicle 

basis in common units enables a direct comparison among the vehicles of this study which 



141 

 

1
4
1
 

have been selected with relatively equivalent size and power specifications. The 

comparative sensitivities of energy consumption to temperature by vehicle type and 

operating mode are illustrated in Figure 5.10. In the figure, relevant driving cycles have 

been weighted and averaged to a combined city/hwy basis for comparison purposes.   

 

Figure 5.10. Energy consumption on a vehicle basis as a function of temperature by 

vehicle type. 

It is of note that the simulated vehicle-basis energy consumption is extremely 
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between the two vehicle technologies. Next, despite superior thermal efficiency and lower 

fuel consumption in L/100km, diesel fuel has greater energy content by volume.  Thus 

when the energy is converted to a common equivalent Wh/km basis, the higher energy 

value fuel is accounted for, and the net benefit, on an energy basis, is reduced to a level 

that is only marginally superior to the ICE-SI. Finally, the combined city-highway FE 

rating mutes some of the efficiency benefit of the diesel which operates very efficiently 

during steady state operation. While every effort has been made to equitably model 

representative vehicle architectures, discretion is advised with regard to interpretation of 

results.         

Figure 5.10 demonstrates that conventional gasoline and diesel fueled vehicles are 

effective at converting waste heat for cabin demands in cold weather, as witnessed by the 

7% increase at -7°C as compared to 22°C. At 35°C these vehicles coincidentally experience 

a 7% increase in energy consumption as well. The ICE-CI outperforms the ICE-SI only 

slightly since the comparison is on an energy basis and the diesel vehicle has a greater mass. 

As noted in Section 5.2.4, cold weather EC for ICE-CI in Figure 5.10 may be slightly 

underestimated due to incomplete consideration of fuel consumed solely to maintain NOx 

at compliant levels. 

In comparison, the HEV demonstrates vehicle basis energy consumption levels that 

are roughly 40% lower at 22°C than its non-hybrid counterparts.  Figure 5.10 illustrates 

how a portion of this advantage is erased at elevated temperatures, owing to the additional 

heat load attributable to the in-cabin, air-cooled battery thermal management system. A 24% 

increase occurs at 35°C as compared to 22°C, and a 20% increase occurs at -7°C as 

compared to 22°C. The HEV is slightly more sensitive to cold weather operation due to 
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reduced levels of waste engine heat (a result of superior efficiency and engine-off control 

logic). A key reason the HEV is more sensitive to both hot and cold temperatures is that it 

operates at lower absolute energy levels, so the auxiliary energy demand for cabin HVAC 

has a greater proportional impact.   

 Energy consumption for EV and PHEV-CD shown in Figure 5.10 are identical to 

Figure 5.9, but it is now obvious how much more efficiently they operate on a vehicle basis 

compared to the other technologies.  For example, their vehicle basis energy consumptions 

are about 70% lower than ICE-SI and about 55% lower than HEV at 22°C.  When operating 

at these even lower absolute energy levels, however, temperature sensitivity is even greater. 

Now, operation at 35°C incurs a 15 to 20% increase whereas operation at -7°C incurs a 50% 

penalty.      

For this analysis, a utility factor of 0.64/0.36 (CD/CS ratio) has been used as 

prescribed in the literature for a PHEV of 40 mile all-electric range [106,132].  This means 

that electric operation from grid-electricity is assumed for 64% of the use, and HEV 

operation with gasoline is assumed for the remaining 36%.  The curves of PHEV in charge 

sustaining mode (CS) and in charge depleting mode (CD) qualitatively mirror the responses 

of the HEV and EV, respectively. Differences are attributable again to the greater vehicle 

weight, battery thermal management, and other minor variations in vehicle specifications. 

5.4.1.3 Drive cycle sensitivity to outdoor temperature 

By using standardized EPA cycles (FTP/UDDS, US06 city, US06 hwy and 

HWFET, Appendix F), an assessment of energy consumption sensitivity to temperature is 

conducted for each drive cycle as illustrated in Figures 5.11 and 5.12. It may be noted that 
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the figures use different scales to better reveal relative drive-cycle sensitivities to 

temperature. The PHEV operating in CS mode (Figure 5.11) demonstrates relatively flat 

energy consumption response to temperature when simulated in the US06 city, US06 hwy 

and HWFET driving cycles. This suggests that vehicle tractive power requirements are 

sufficiently high during these driving conditions that HVAC operation does substantially 

change vehicle efficiency. Conversely, sensitivity is pronounced in the UDDS cycle, where 

an estimated 45% increase in EC occurs between 22°C and 35°C.   

 

Figure 5.11. PHEV drive cycle sensitivity, CS mode. 

 

Figure 5.12. PHEV drive cycle sensitivity, CD mode. 
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A similar penalty is incurred in cold weather operation where waste engine heat is 

insufficient to maintain cabin heating demands. This suggests that less aggressive urban 

driving in hybrid modes, which is otherwise comparatively efficient, may be more 

negatively impacted by extreme temperature operation.       

The PHEV is an instructive example since it can be operated in CD mode as well.  

Figure 5.12 quantifies the extent to which the energy consumption of electric vehicles in 

electric (CD) mode differs from gasoline (CS) mode as a function of driving cycle and 

temperature. It is again apparent that energy demand increases at hot extremes, but now a 

considerable cold weather penalty is incurred and variations with driving cycle are 

moderated.  In the case of UDDS relative to a 22°C baseline, energy consumption can be 

nearly 40% greater at both 4°C and 35°C, and is nearly double at -10°C. The two city 

modes appear more sensitive to temperature, having the greater slope for both heating and 

cooling demands.  The city modes are also more heavily impacted by energy consumed 

overcoming friction and start-up transients. Cooling requirements are correlated to the 

combined demand of cabin AC and battery heat generation, which is dependent upon 

driving cycle.  As a fraction of vehicle tractive power, Figure 5.12 also illustrates the extent 

to which driving cycle and temperature interact to compound system energy demands. 

Battery thermal management and resistance effects during CD operation in urban driving 

cycles demonstrate significant departures from baseline performance when exposed to 

extreme outdoor temperatures.    

Figure 5.12 suggests that city energy consumption for a PHEV in CD mode can 

actually exceed that of certain highway mode energy consumption in extreme climate 

conditions.  In real-world driving, hybrid vehicles typically demonstrate superior efficiency 
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in city driving where loads are relatively low and kinetic energy is frequently restored (as 

compared to highway driving).  These energy savings are substantially reduced or 

eliminated by some combination of excessive cabin and battery thermal demands and 

resistive losses below -7°C and above 35°C.  In CS mode with mild battery use, Figure 

5.11 illustrates that PHEV fuel consumption is lower in highway mode, where the engine 

can operate near its optimal thermal efficiency.  The effect of elevated temperature is 

estimated to be more than twice as great in the UDDS cycle compared to US06 cycle for 

both CS and CD operation, a potentially noteworthy finding. 

5.4.2 Vehicle-basis energy consumption by locality 

5.4.2.1 Vehicle-basis energy consumption for selected U.S. cities 

The correlations between energy consumption and temperature, Eqns. (5.18-5.20), 

are used to estimate the average vehicle-based energy consumption by city for each vehicle 

architecture according to Eq. (5.21). These results are presented in Table 5.3.    

  



147 

 

1
4
7
 

Table 5.3. Estimated vehicle-basis energy consumption by locality and vehicle type. 

  ICE-SI ICE-CI HEV 

PHEV-

CS 

PHEV-

CD PHEV 

EV-

PAC 

  Wh/km Wh/km Wh/km Wh/km Wh/km Wh/km Wh/km 

Reference* 660 647 441 556 212 335 190 

ATL 667 652 466 586 215 349 193 

BAL 668 654 470 589 221 353 200 

BOS 669 656 468 589 225 356 205 

CHI 671 657 473 596 230 362 209 

DAL 670 654 474 597 217 354 194 

DC 669 654 469 591 221 354 199 

DEN 670 656 472 595 225 358 204 

DET 671 657 473 595 230 361 210 

HOU 669 652 470 592 214 350 191 

IND 671 656 473 596 229 361 208 

LA 656 644 441 554 203 329 183 

MIA 669 651 472 593 212 349 187 

MIN 674 659 478 603 239 370 218 

NYC 668 654 466 586 221 353 201 

PHA 669 655 468 590 222 354 201 

PHX 679 659 492 625 222 367 197 

PIT 670 656 469 591 226 358 206 

SD 657 644 442 555 203 329 183 

SEA 664 653 458 577 217 347 197 

SF 660 648 449 565 209 337 189 

STL 671 656 473 595 224 358 203 

TAM 668 651 469 590 212 348 188 

MEAN 668 654 467 589 220 352 198 

STDEV 5.1 4.0 11.4 15.4 8.9 10.3 9.2 

MIN 656 644 441 554 203 329 183 

MAX 679 659 492 625 239 370 218 

Spread 23 15 52 72 36 41 36 

 

In terms of absolute energy consumption on a vehicle basis, the EV and PHEV-CD 

consistently perform best in all cities, followed by HEV and PHEV-CS, and finally ICE-

CI and ICE-SI. However, the greater sensitivity to temperature of the EV, PHEV and even 

HEV suggested in Figure 5.10 is now manifested in Table 5.3 in terms of variances in 
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energy consumption by locality. The spreads between minimum and maximum values for 

EV and HEV may be noted compared to ICE vehicles. In general, sensitivity results in 

larger variances and mean values that are higher than the simulated reference values, which 

is the theoretical output of the model for each vehicle assuming a 5-cycle EPA estimation 

method. The minimum, maximum and median values are depicted by vehicle type in Figure 

5.13 . 

 

Figure 5.13. Vehicle-basis Energy Consumption by vehicle type across major U.S. 

localities. 

Figure 5.13 confirms that the median values are consistent with vehicle labelling 

methodologies, and helps the visualization of the larger spreads among different localities. 
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Variation for ICE-SI and ICE-CI is the lowest as expected, since EPA fuel economy 

methodologies have historically been developed and adapted to characterize vehicles with 

internal combustion engines, which still account for 99% of new vehicle sales.  While the 

variation in vehicle basis energy consumption may not appear significant in absolute terms, 

this variation forms a much larger percentage of the energy use for vehicles operating in 

hybrid and all-electric modes. Exploring this phenomenon for each vehicle type 

individually is therefore warranted.  

5.4.2.2 Vehicle-basis energy consumption locality multiplier (ECLM) 

To quantify the extent to which energy consumption varies as a fraction of the 

absolute energy consumption for a reference case, this study introduces a metric entitled 

Energy Consumption Locality Multiplier (ECLM). This is defined as the ratio of the 

vehicle basis energy consumption for vehicle m in city n (ECm,n) and the simulated 

reference value for vehicle m (ECm,ref).  

refmnmnm ECECECLM ,,,             (5.29) 

The reference values used to estimate ECLMm,n are generated by the baseline 

simulation models of this study; this helps ensure that locality-specific simulations follow 

a consistent methodology and facilitate fair comparisons. ECLM can be thought of as the 

number by which to multiply the rated energy consumption to adjust for locality. An ECLM 

of unity suggests that the 5-cycle methodology accurately characterizes real-world energy 

consumption for the given vehicle and city (assuming driving cycle weightings are 

reflective). ECLM > 1.0 implies energy consumption for the given vehicle and locality will 
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be greater than that predicted by the 5-cycle method. Figure 5.14 presents a comparison of 

ECLM values by vehicle type for the 22 different large U.S. cities. 

 

Figure 5.14. Energy Consumption Locality Multiplier (ECLM) by vehicle type for a 

range of U.S. cities. 

The box-plot comparison of ECLM values confirms that the vehicle-basis energy 

consumption mean values (denoted by + in Figure 5.14) are higher for the hybrid and 

electric vehicles, and that they vary by city to a much greater extent than conventional 

vehicles. ECLMs range from 0.99 to 1.03 for ICE-SI and ICE-CI, 1.00 to 1.12 for HEV 

and PHEV-CS, and 0.96 to1.15 for EV and PHEV-CD.  A table of ECLM by vehicle type 

and city is included in Appendix G. The results indicate that ECLM for the HEV is 1.00 
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for Los Angeles and San Diego, 1.12 for Phoenix, 1.07 for Chicago and Detroit, and 1.08 

for Minneapolis. It is further noted that ECLM for the EV is 0.96 for cities like Los Angeles 

and San Diego, 1.04 for Phoenix, 1.10 for Chicago and Detroit, and 1.15 for Minneapolis. 

Thus, localities with mild weather yield no correction or a downward correction to the 

“reference value” whereas localities with more extreme weather require an upward 

adjustment. The EC vs. outdoor temperature trends of Figure 5.10 are transformed into a 

practical tool by which to compare technologies and localities.  

5.4.3 Upstream and system-equivalent energy consumption and emissions by locality 

5.4.3.1 System-equivalent energy consumption by locality 

Having now obtained vehicle-basis energy consumption, estimates that include 

upstream energy and emissions impacts can now be obtained. The approach described in 

Section 5.3.2 is applied to every vehicle m and city n in the study, despite the disparate 

sources and pathways of the upstream energy.  Locality-dependent and locality-

independent efficiency factors are derived, for which national average and city-specific 

summaries are included in Appendix G. 

While many cities exhibit upstream efficiency characteristics similar to one another 

and the U.S. national average (“US avg”) as expected, specific cities have distinct traits. 

Taken in view of the sensitivity to weather by vehicle type, this reveals the practical 

ramifications of the key interactions between vehicle type and locality.  These results are 

presented in graphical format in Figure 5.15. These results are also included in matrix 

format for each city and vehicle architecture pairing in Appendix G. 

The first major conclusion is that for a system-equivalent basis in common energy 

units as defined, the HEV generally performs with superior energy efficiency. Across the 
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22 cities investigated, the HEV has a mean ECSys-Eq of 516 Wh/km, compared to 738, 722, 

670 and 615 Wh/km for the ICE-SI, ICE-CI, PHEV-combined mode (denoted simply as 

“PHEV”), and EV, respectively.  

 

Figure 5.15. System-Equivalent Energy Consumption by vehicle type across major U.S. 

localities. 

A second conclusion is that the ECSys-Eq averages for EV and PHEV-CD operation 

are much higher than the vehicle basis EC values might have suggested. While this is not 

surprising given typical thermal efficiencies of upstream electricity generation, we now 

have a quantitative basis for making fair comparisons to vehicles of similar class and 

performance.  
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The ECSys-Eq variation among all cities falls in a narrow band (less than about ±35 

Wh/km) for vehicles operating with an internal combustion engine in a liquid fuel or CS 

mode (Appendix G).  Conversely, ECSys-Eq variation among all cities for EV and PHEV-

CD is of the same order of magnitude as the absolute energy consumption values. ECSys-Eq 

for EV ranges from 332 to 750 Wh/km (i.e., mean−290 to mean+128 Wh/km) depending 

on locality, and ECSys-Eq for PHEV-CD ranges from 366 to 823 Wh/km (i.e., mean−323 to 

mean+134 Wh/km).  The box plot of Figure 5.15 shows that the lower and upper quartiles 

for each vehicle type operating in electric mode have widespread variation from their mean 

and median values. The figure is also useful in graphically contrasting locality-dependent 

variations of ECSys-Eq among all simulated vehicle types.  

This analysis reinforces the importance of considering the combined effects of 

energy sensitivity by vehicle type and the variability of weather and energy profiles by 

locality. It could suggest to consumers, OEMs and policymakers, for example, where 

certain technologies yield highest energy benefits from a geographical and regional 

perspective.    

5.4.3.2 System-equivalent emissions by locality 

System-equivalent emissions by locality are a metric of interest closely related to 

system-equivalent energy consumption.  Given that a major motivation for the introduction 

of alternative vehicle architectures is to not only reduce, but replace, liquid fuel with grid-

derived electricity, upstream emissions are an important gauge by which to compare 

quantitative results. Figure 5.16 presents results of Emission Intensities (EIm,n) by vehicle 

and city following the methodology described in Section 5.3.2.  



154 

 

1
5
4
 

As compared to Figure 5.15, Figure 5.16 suggests that the EV has a mean EI that is 

marginally superior to the other vehicle types. PHEV-CD is next, followed by HEV and 

PHEV-combined. 

 

Figure 5.16. System-Equivalent Emissions by vehicle type across major U.S. localities. 

To the extent that the 22 cities provide a fair representation of performance 

nationally, this suggests that vehicles operating solely on electricity can contribute to 

reductions in emissions for the transportation sector. However, it is important to note that 

variations as a proportion of the absolute emissions are even larger than in the case of 

system-equivalent energy consumption. For example, EI can range from 46% of mean (in 

San Diego) to 164% of the mean (in Denver). In this contrast, the results are heavily 
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influenced by interaction of the milder temperatures and cleaner grid in California on the 

one hand with the colder and more carbon-intensive grid in Colorado. These comparisons 

along with a complete listing of the equivalent system level emissions by city and vehicle 

type (or EIm,n) are shown in Table 5.4.  

Table 5.4. System-equivalent emissions by locality and vehicle type. 

CITY ICE-SI ICE-CI HEV 

PHEV-

CS 

PHEV-

CD PHEV 

EV-

PAC 

  gCO2eq/km gCO2eq/km gCO2eq/km gCO2eq/km gCO2eq/km gCO2eq/km gCO2eq/km 

ATL 189 191 132 166 153 158 138 

BAL 190 191 133 167 125 140 113 

BOS 190 192 133 167 86 115 78 

CHI 199 201 140 177 182 180 165 

DAL 198 199 140 177 139 152 124 

DC 190 191 133 168 124 140 112 

DEN 203 205 143 180 224 209 203 

DET 199 201 140 176 197 190 179 

HOU 198 199 139 175 136 150 122 

IND 199 200 140 177 181 179 164 

LA 194 196 130 163 65 100 59 

MIA 190 190 134 168 133 146 118 

MIN 200 201 142 179 193 188 176 

NYC 190 191 132 167 72 106 65 

PHA 190 191 133 167 117 135 106 

PHX 200 200 145 184 137 154 122 

PIT 190 192 133 168 179 175 162 

SD 194 196 130 164 65 101 58 

SEA 196 198 135 170 96 123 87 

SF 195 197 132 167 67 103 61 

STL 199 200 140 176 213 200 193 

TAM 190 190 133 168 134 146 119 

MEAN 195 196 136 171 137 150 124 

STDEV 4.5 4.5 4.5 5.9 49.1 33.0 44.7 

MIN 189 190 130 163 65 100 58 

MAX 203 205 145 184 224 209 203 

Spread 13.5 14.2 15.3 21.2 159.5 108.1 145.0 
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The integration of component simulations with system-level approaches of this 

study for both energy and emissions reveals comparative data and insights that are novel 

and previously lacked quantification.  A high-level graphical comparison of the results of 

the present study to energy consumption estimates given by CAFE and EPA Label 

calculations for the representative vehicles considered herein can be found in Appendix G. 

The findings emerging from this work can be used to improve decision-making and 

facilitate improved alignment between scientific data, consumer behavior and government 

policies.   

5.5 Uncertainty, Assumptions and Limitations of the Study 

This study is largely based upon representative characteristics of actual 2014 

model-year production vehicles. This facilitates comparison with published research and 

accounts for inherent first-order differences among the vehicle architectures (such as 

weight). As such, key aspects of vehicle utility, such as classification size, footprint, and 

rated power are considered similar enough for the purposes of comparison. Three 

exceptions worth noting relate to characteristics unique to the electric vehicle: the reduced 

rated power of the EV (80 kW vs. an average of about 100 kW for other vehicles), the 

single-charge range limitation of the EV (about 1/5th that of competing technologies), and 

the time required to re-charge (about 8-15 hours for EV vs. 5-10 minutes for liquid-fueled 

vehicles). Finally, vehicle capital and operating costs, while significantly different among 

the selected architectures, are not considered in this study. 

The intent of the vehicle simulations is to balance fidelity with computational 

intensity, and thus the simplified control strategies and battery characteristics discussed in 

Sections 5.2.1 and 5.2.2 are deployed. The purpose is to model vehicle architectures with 
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the characteristics and operational traits of representative mass-production vehicles. Thus, 

slight variances between the simulations and laboratory-test results for actual vehicles are 

expected. As an example, the simulated reference energy consumption for the various 

vehicles are within 5% of the EPA-label methodology for HEV and ICE-CI, and within 2% 

for all others. Since locality simulations are compared against the reference simulation 

from this study, the slight departures from actual label ratings of actual vehicles are not 

relevant in the comparisons.    

A constant relative humidity (RH) of 40% was assumed to keep conditions 

consistent with the prescribed environmental conditions for actual dynamometer tests. 

Real-world variations in RH by locality have not been considered in the study because they 

are of second order to temperature and their impact on the comparative results is minor. 

While initial fuel and energy requirements during warm-up have been estimated as 

a functions temperature and vehicle architecture from experimental results, this study does 

not fully consider the additional consumption of fuel that may be necessary in diesel 

engines during cold operation to ensure NOx emission levels are compliant. 

As noted in footnote 36 for PHEV and EV, estimates of battery resistances as a 

function of temperature are based curve fits of experimental results for cells and modules 

from the literature. Cell characteristics specific to the representative vehicles were not 

considered; however, this approach is deemed acceptable for the comparative purposes of 

this study.   

Of the 22 cities considered in the locality study, only Denver has an elevation of 

greater than 1200 feet above sea level. For this reason, altitude effects have been neglected.  
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In terms of driving behavior, the study develops drive-cycle-dependent energy 

consumption from the vehicle simulation. Though this is explored in section 5.4.1.3, the 

remainder of the comparative results are presented on a common drive-cycle basis, built 

on the stipulated weightings of the EPA methodology that result in a combined 

city/highway rating. This approach is adopted due to the familiarity and prevalence of such 

ratings in prior studies, and to facilitate the ECLM comparisons on a consistent basis. The 

effect of the combined city-highway drive cycle assumption is to moderate the extreme 

combination of effects drive cycle with ambient temperature and locality.  

As noted, the system-equivalent energy consumption and emission intensity 

comparisons presented in this study do not include energy losses or emissions associated 

with resource extraction or the transportation of raw resources (crude oil, bulk natural gas, 

raw coal) to the point of refining or generation. Due to the uncertainty associated with 

location, methods and technologies for extracting resources, we excluded this from 

consideration so as not to skew the locality-based comparisons.  This could lead to lower 

estimates for energy use and emissions than would be predicted by a full LCA, and it is 

suggested that future work consider locality-appropriate factors for resource extraction and 

transportation.  

By comparing liquid-fueled vehicles to grid-recharged ones on the basis of common 

energy units, consideration of the social or geopolitical value of energy sources is ignored 

in this study and the basis for energy comparisons is therefore a purely thermodynamic one. 

However, the comparative assessment of emissions uses a standard practice by comparing 

common units of CO2eq, which are broadly understood and widely used, regardless of the 

energy source. 
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5.6 Summary of Key Findings 

 The energy demands of various vehicle technologies are quantified as functions of 

ambient temperature and driving cycle using an iterative modeling approach. The study 

models the interactions for vehicle tractive, thermal, and auxiliary energy demands under 

a range of conditions, and develops correlations for vehicle-based energy consumption as 

a continuous function of temperature. These correlations enable equitable comparisons 

among the vehicle architectures at the level of the vehicle type as well as for defined 

upstream system boundaries.  

The vehicle-basis energy consumption of EV for combined city/highway modes, at 

about 190 Wh/km is superior to HEV and ICE vehicles, which average about 440 and 660 

Wh/km, respectively. However, the energy sensitivity of alternative vehicles is highly 

correlated with the battery module capacity, its thermal management system, and resistive 

losses in extreme temperatures. Thus, while vehicle energy requirements are 10% to 40% 

lower for hybrid and EV when operated under moderate driving cycles and temperatures, 

their energy use is substantially more sensitive to driving cycles and extreme hot or cold 

temperatures.  EV energy consumption can increase by up to 20% for an increase in outdoor 

temperature from 23°C to 35°C relative to a 7% increase in conventional vehicles; this 

increase can be 50% at -7°C for EV, but only 7% for conventional vehicles. In addition, 

city modes appear more sensitive to temperature for both heating and cooling demands. 

Cold weather operation is clearly problematic for EV due to higher resistances and no 

option of converting waste engine heat for cabin heating needs.   

A framework for quantifying the impacts of locality on both a vehicle-basis and a 

system-equivalent basis is introduced based upon the derived dependence of energy 
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consumption by vehicle type upon ambient temperature.  The results indicate that the 

variations in average vehicle-basis energy consumption are higher for the hybrid and 

electric vehicles, and that they vary by city to a much greater extent than in the case of 

conventional vehicles. An Energy Consumption Locality Multiplier (ECLM) is introduced 

as a factor by which to multiply official energy consumption estimates made by EPA 5-

cycle methods, as an indication of the impacts of locality. It is observed that ECLMs range 

from 0.99 to 1.03 for ICE vehicles, from 1.00 to 1.12 for hybrids, and from 0.96 to 1.15 

for vehicles operated in all-electric mode.  

The results are further extended to consider the system-equivalent energy impacts 

and emissions by locality. It is concluded that on a system-equivalent basis, the HEV is the 

most energy-efficient architecture of those considered. Across the 22 cities investigated, 

the HEV has a mean ECSys-Eq of 516 Wh/km, compared to 738, 722, 670 and 615 for the 

ICE-SI, ICE-CI, PHEV-combined mode, and EV, respectively. While the average values 

are of interest, equally telling is the wide range of variation characterizing the equivalent 

system-level energy consumption. Conventional ICE vehicles and HEV exhibit a variation 

among all cities that falls in a narrow band of less than about ±35 Wh/km from the average.  

Conversely, ECSys-Eq variation among all cities for EV and PHEV-CD falls in ranges from 

300 Wh/km below the average to 130 Wh/km above the average depending on locality.   

This same effect is observed for simulated system-equivalent emissions computed 

from the point of the extracted resource.  Whereas the emissions intensities of ICE vehicles 

are highest overall at about 195 gCO2eq/km, the average emissions intensities of HEV are 

similar to PHEV and EV, in the 110-140 gCO2eq/km range. This suggests that, for average 

operation in the selected cities, alternative vehicles can contribute to reduced emissions by 
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approximately 28-44%.  However, variations are significant enough that this benefit can 

range from a 70% improvement to no improvement compared to ICE vehicles, depending 

upon locality.  The integration of physics-based modeling with multi-step component and 

system-level simulations represents a useful approach by which to compare technologies 

and localities. The research provides novel methodologies for informing energy planning, 

technology development, and policy decision-making with regard to emerging vehicle 

markets. 
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CHAPTER 6.  CONCLUSIONS, PERSPECTIVES AND FUTURE WORK 

The primary outcome of this dissertation is an enhanced understanding of cross-cutting 

efforts to reduce energy and emissions in vehicular transportation.  The present assessment 

of strategic vehicle technologies reveals that their comparative technological and economic 

performance are critical and interdependent factors in achieving compliance with future 

regulatory requirements.  The interdisciplinary approach taken in this research has enabled 

a more comprehensive characterization of parallel yet distinct objectives, such as the need 

to reduce oil consumption and emissions, the preference of many domestic consumers 

toward acceleration over fuel economy, the financial viability of emerging technologies, 

the regional sensitivity to vehicle energy consumption, and the outlook for continued 

compliance.  Through findings revealed by disaggregating factors among vehicle types, 

trim levels, attributes, localities, and specific technologies, it is clear that no single, ideal 

solution has emerged. Instead, the research strongly suggests that numerous opportunities 

exist for accelerating progress in strategic domains, while informing and potentially re-

directing poorly aligned combinations of technology, economics and policy in other 

domains. This chapter synthesizes major findings elucidated in the dissertation, amplifies 

perspectives and implications of the present work, and proposes several avenues of future 

research.  The chapter concludes with closing thoughts regarding progress towards a more 

sustainable transportation future. 
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6.1 The Future of Fuel Economy: Synthesis, Implications and Future Work 

The multiple complementary investigations presented in this dissertation are 

intended to more completely articulate and quantify trade-offs incurred toward higher 

levels of fuel economy.  This research establishes critical linkages that touch on social, 

economic and regulatory impacts of advanced technologies.  For example, the analysis 

of Chapter 3 first finds that automotive innovation has been substantive and effective, 

guided in part by technological capability, in part by consumer demand, and in part by 

regulatory requirements.  An historical perspective is useful in considering 

contemporary and potentially even future trends. Second, innovation has been achieved 

very affordably.  Third, valuations of fuel economy and periods of aggressive 

regulation may be correlated.  Fourth, it was hypothesized and demonstrated that 

consumers’ valuation of fuel economy and acceleration are neither equal to one another 

nor constant over time.  In other words, the findings suggest a non-linear correlation 

between consumers’ willingness to pay for given attributes and independent variables 

such as vehicle footprint and time period.    

Using a robust 2014 data set, price elasticities reflecting consumers’ willingness 

to pay were presented for several vehicle classification categories.  The author’s initial 

analyses of similar data for 2013 suggest that additional insight can be attained by 

considering the time-dependency of the relevant price elasticities as summarized in 

Table 6.1.  An additional table which presents price elasticities by vehicle classification 

for the 2013 model years is included in Appendix B. 
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Table 6.1. Comparison of price elasticities for major vehicle attributes by vehicle 

classification, 2014 and 2013. 

Model Year 2014 2013 

Vehicle Category All Cars All Cars 
Footprint (FP) Min 26.8  26.8  

Footprint (FP) Max 56.4  56.4  

FP, Wtd. Mean 45.8  45.7  

Data Set  Table 3.2 2013 

MSRP, Wtd. Mean $27,841  $27,007  

Sales Vol., Units 7,868,192  8,055,136  

Sales Revenue, $B 219.1 217.5 

Response Variable ln(MSRP) ln(MSRP) 

Hedonic Model Eqn (3.9) Eqn (3.9) 

Estimator  WLS WLS 

Observations 814 759 

R2  0.781 0.775 

Attribute Coeff. Param. Est. Param. Est. 

   (Std. Error) (Std. Error) 

Intercept 0 1.626*** 2.584*** 

   (0.478) (0.466) 

ln(FC) 1 -0.306*** -0.393*** 

   (0.044) (0.047) 

ln(ACCEL) 2 -0.526*** -0.577*** 

   (0.048) (0.053) 

ln(CWT) 3 1.403*** 1.312*** 

   (0.058) (0.055) 

RWD 4 0.227*** 0.219*** 

   (0.022) (0.023) 

AWD 5 0.198*** 0.249*** 

   (0.026) (0.026) 

TRIMBASE 6 -0.072*** -0.098*** 

   (0.015) (0.014) 

TRIMPREM 7 0.113*** 0.094*** 

    (0.015) (0.015) 

Note: ***denotes significance to the 1% level 

Table 6.1 shows a modest reduction of about 20% in consumers’ willingness to 

pay for reductions in fuel consumption (1) between 2013 and 2014. It should be noted 
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that this phenomenon may be reflecting exogenous factors not included in the modeling, 

such as the price of fuel, household income, or dealer incentives. Notwithstanding such 

factors, modeling that captures temporal responses of attribute valuation as functions 

of vehicle classification proves to be powerful as a tool for projecting future costs and 

consumer preferences in response to continued regulatory constraints. Furthermore, 

future models could readily be adapted to account for key exogenous factors. 

A sense of the comparative valuation between two given attributes can be attained 

from a ratio of their price elasticities with respect to total vehicle price. A new indicator 

is introduced by the author and referred to as the “fuel consumption to acceleration 

performance elasticity ratio” or simply “FAER.” This indicator is defined as the 

absolute value of the ratio of the price elasticities of fuel consumption with respect to 

vehicle price and acceleration time with respect to vehicle price as follows: 

2

1




FAER                       (6.1) 

In Eq. (6.1),  represents the price elasticity of fuel consumption with respect to total 

vehicle price, and  represents the price elasticity of acceleration time with respect to 

total vehicle price. Recall that these elasticities were the coefficients of the hedonic 

price regression model from Chapter 3, Eq. (3.5).  Having already established 

methodologies for hedonic pricing characterization and generalized attribute 

weightings, the FAER indicators can be expressed as functions of time, vehicle 

classification and footprint. In this way, novel trajectories for revealed market trends 

are quantified and may be utilized for analyzing contemporary behavior, and 

potentially the projection of future trends.  Figure 6.1 illustrates a plot of the 
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dimensionless ratio FAER as a function of vehicle classification for the 2014 model 

year data set.  

 

Figure 6.1. Fuel Consumption to Acceleration Performance Elasticity Ratio (FAER) 

as a function of vehicle classification and sales volume, 2014. 

  In Figure 6.1, the bubble size indicates the comparative sales volume. Note that 

the large mid-size vehicle segments which collectively account for approximately 53% 

of the passenger car market have FAER indices that are lower than the average value 

of all 2014 passenger cars which is computed to be about 0.58.  These findings may 

have significant implications in view of progressive CAFE standards that call for 

largely uniform and linear increases in fuel economy by vehicle class over time as 

shown in Figure 6.2.  If consumers in high volume market segments continue to more 

highly value acceleration than fuel economy, certain footprint-based targets may 

become increasingly difficult to achieve. 
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Figure 6.2. Model year 2011-2016 passenger car fuel economy targets [15]. 

While automakers may have some latitude to cross-subsidize losses in one 

classification with profits in another, such product slate strategies are unlikely to be 

sustainable over the ensuing decade.  In terms of possible future study, two scenarios 

are envisioned that could leverage these insights toward improved projections of future 

market responses. First, trends could be extrapolated with the assumption that their 

response during recent years will continue along some analytically-derived trajectory 

with respect to price and FAER.  In a second scenario, a compliance constraint could 

be imposed, whereby price and FAER are permitted to deviate from current trajectories 

in order to satisfy regulatory requirements.  These scenario analyses would be valuable 

as they would quantify the implications of future compliance tradeoffs for all 
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stakeholders.  Additional controls and external factors such as the price of fuel, actual 

vehicle selling prices, and other macro-economic data could be included as appropriate.   

 The hedonic modeling of Chapter 3 is viewed together with the benefit-cost 

modeling of Chapter 4 to provide an improved understanding of consumers’ implicit 

valuation of fuel economy.  Table 6.2 summarizes key results of the analysis in these 

two chapters as organized again by vehicle classification.  For this comparison, prices 

associated with a 4.3% fuel economy increase are modeled because that level represents 

the average annual increase called for by CAFE regulations on passenger cars in the 

2014-2018 time frame.   

Table 6.2. Prices associated with a 4.3% increase in fuel economy by various 

estimation methods. 

    Estimation Method and [Source] 

      

Hedonic 

Modeling 

Benefit-

Cost, 

Implicit 

Benefit-

Cost, 

Breakeven 

NHTSA EPA 

Vehicle Market Footprint [Chapter 3] [Chapter 4] [Chapter 4] [15] [15] 

Classification Share Range           

  (%) (sq ft) 2014$ 2014$ 2014$ 2014$ 2014$ 

  2014 Min Max WTP WTP IRPE IRPE IRPE 

Sub-

Compact 9 26.8 42.0 584         

Compact 30 42.1 44.7 271         

Midsize, 

Lower 23 44.8 46.9 414         

Midsize, 

Upper 29 47.0 49.0 42         

Compact + 

Midsize 82 42.1 49.0   370 190-266     

All passenger 

cars 100 26.8 56.4 349     201 205 
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The hedonic modeling column of Table 6.2 quantifies the observation above that 

2014 consumers in the upper footprint bin of the midsize class had very little 

willingness to pay for fuel economy, whereas sub-compact buyers had a great deal.  

The “benefit-cost, implicit” column of Table 6.2 suggest that consumers who opted to 

purchase fuel economy were willing to pay slightly more for it as compared to the 

average WTP among all passenger cars predicted by the hedonic modeling.  This is in 

part because the benefit-cost study specifically evaluated fuel saving technologies 

among the top 20 best-selling vehicles, whereas the hedonic pricing study reflected all 

technologies across the entire passenger car market. The break-even column suggests 

that consumers’ benefits and costs would be equal within a price range of about $190 

to $266 under baseline assumptions, which includes initial gasoline prices at $2.50 and 

$3.50 per U.S. gallon respectively (please see Chapter 3 for all the baseline 

assumptions).  One eventual implication of this for OEMs is that new technologies may 

not be commercially viable if consumers’ benefits are lacking, or if consumers’ real or 

implied willingness to pay does not offset the costs of delivering new technologies.   

Also shown for reference in Table 6.2 are NHTSA and EPA estimates of the 

average increase in vehicle prices associated with an annual 4.3% increase.  These 

prices reflect the incremental vehicle cost estimates from government agency analyses 

marked up by a standard retail price equivalent multiplier value of 1.5 to account for 

automaker and supply chain profits [156].  It is of note that prices estimated by the 

federal agencies are toward the low end of the break-even estimates, suggesting that 

consumers would largely benefit from investing in fuel economy technologies at these 

levels.  Not reflected in Table 6.2 are the true manufacturing costs or OEM retail prices 
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associated with the given level of fuel economy increase, which could be much higher 

than government estimates judging from market-based incremental retail price 

equivalents and reasonable RPE multipliers.  While selected groupings of current 

passenger car consumers may be more willing to pay for fuel economy today than 

technology price estimates by regulators, results are highly sensitive to fuel prices, 

miles driven and interest rates.  As a result, further study is required to assess future 

technology costs and their implications on economic practicability.   

While this investigation has concentrated on passenger cars, fuel saving 

technologies in light duty trucks are an active area of research that have significant 

implications on the energy consumption and emission of future fleets.  In 2014, trucks 

accounted for about 50% of new light duty vehicle sales in the U.S. market and a 

disproportionately larger share of transportation fuel consumption [122].  The 

methodologies presented in this dissertation can be readily applied to similar light duty 

truck investigations in the future.  The light duty truck segment is less homogeneous 

than passenger cars, with a much wider slate of utility attributes and uses, presenting 

challenges to research efforts.   

As compared to passenger cars, the correlation between consumer utility and 

fuel economy appears to be much weaker, and light truck consumers often replace an 

interest in acceleration with demands for torque, towing, and off-road use. Such 

demands typically require greater fuel consumption whether or not they are needed on 

an everyday basis. Figure 6.3 shows sales-weighted data comparing vehicle 

technologies and their associated impact on fuel economy for light duty pickup trucks.  
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It has a uniquely different characteristic than the passenger car profiles evaluated in 

Chapter 4. 

 

Figure 6.3. Cost of pickup truck technologies that impact fuel economy, sales-

weighted. 

On the other hand, profit margins in this vehicle segment have traditionally been 

superior to cars, suggesting that substantial opportunities for economic optimization in 

view of fuel economy regulations are possible.  Finally, from a fleetwide policy 

perspective, it is obvious that the largest absolute levels of fuel and emissions 

reductions are likely to result from improvements to vehicles with the lowest fuel 

economies.  Due to the increasing number of fuel saving technologies being deployed 

in passenger cars, and the conventional wisdom that early efficiency gains are often the 

most impactful and lowest cost, leveraging the forgoing research toward light truck 

analysis would be timely and have considerable merit.              
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6.2 Energy Consumption, Emissions and Locality: Synthesis, Implications and 

Future Work 

Chapter 5 quantified the energy sensitivity of advanced vehicle architectures to 

operational driving demands, ambient temperature as well as other locality-dependent 

factors.  A key contribution is the iterative simulation algorithm that predicts vehicle 

energy consumption as a continuous function of outdoor temperature. Using driving 

schedule weightings based upon established regulatory conventions, this contribution 

facilitates comparison of vehicle energy consumption from the thermodynamic system 

boundary of the fully-fueled or fully-charged vehicle.  The simulation matrix 

accommodated five unique vehicle architectures, up to ten driving cycles capable of 

multiple consecutive replications, and a continuous range of temperatures.  The multi-

step simulations involving propulsion and thermal energy subroutines were performed 

at very low cost with efficient use of computational capacity and time.  The 

methodology readily accommodates temporal simulation of vehicle performance under 

seasonal weather conditions for selected cities.   

The introduction of the energy consumption locality multiplier (ECLM) is 

another important contribution that can be viewed as the number by which to multiply 

the rated energy consumption to adjust for locality.  While HEV, PHEV and EV have 

substantially lower energy consumption from the thermodynamic basis of the vehicle 

itself, this research identifies the magnitude of variations attributable to combined 

thermally-induced battery and resistive loads.  By accounting for additional locality-

dependent factors such as electricity generation profiles, transmission and distribution 

losses, and petroleum refining characteristics, simulations of system equivalent energy 

consumption and emissions are presented.   
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The study reveals that at 35°C, EV energy consumption can increase by up to 

20% relative to a 7% increase for conventional vehicles; at -7°C, the increase can be as 

high as 50%. Annualized integration of this temperature-dependence reveals that 

vehicle-based energy consumption can vary 2-3% by locality for internal combustion 

vehicles, 12-13% for hybrids, and up to 18% for EV. Extension of energy use to include 

upstream factors reveals that system-equivalent variations reach 7% by locality for 

internal combustion vehicles, 11-12% for hybrids and 45-70% for electric vehicles. 

Depending on the weather and utility profiles of the city, the variation in system-

equivalent CO2 emissions for EV ranges from a 70% improvement to no improvement 

as compared to conventional vehicles.  

A major implication of this study is that on a thermodynamic basis, hybrids 

perform extremely well in a wide range of operating conditions. The comparative 

analysis conveys that battery size and capacity are critical factors in trading-off primary 

benefits of hybrids, PHEVs and EVs such as kinetic energy recapture and engine shut-

off capabilities against certain drawbacks including increased thermal management 

demands, resistive losses, limited range and potentially reduced acceleration.  Another 

important implication of the research is that in spite of generally superior performance, 

all vehicle technologies are certainly not optimized for use in all localities.  The extent 

of their suitability by type and locality is quantified. 

 Three areas of future work can be organized under technological, economic and 

policy studies.  Research to extend the scope of the present work could readily 

investigate PHEVs with differing all-electric range or duty cycles, as well as EVs that 

use active cooling and ICE vehicles with downsized and turbocharged engines.  
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Because the models have been developed parametrically, variations in vehicle mass 

and power and their impacts could readily be explored.  An investigation of the various 

control schemes used to optimize energy consumption in various vehicle-locality-drive 

cycle combinations would also be of great value. There is a growing literature to 

address optimized control strategies, and multi-variable optimization should extend 

beyond energy consumption to include a consideration of overall costs for ownership 

and operation as well as the implications of time-of-day charging on energy efficiency, 

emissions and costs. Thus, many of the potential pathways to additional work require 

a system-level approach, and perhaps include experimental analysis to corroborate and 

tune estimates of simulated performance.   

In terms of follow-on economic analysis, the author has developed useful first 

order discounted cash flow rate of return models to estimate comparative costs of 

ownership and operation associated with advanced vehicles.  An example is shown in 

Table 6.3 derived from the author’s independent work disclosed in [30]. 

By combining the system-equivalent energy and emissions methodology of 

Chapter 5 with economic models, a more complete assessment of total system operating 

costs could be readily prepared.  Such a study would introduce locality-dependent 

economic factors including the price of energy commodities and federal, state and local 

incentives and subsidies.  In this way, uncertainty would be reduced via sensitivity 

analysis and via locally appropriate assumptions.  The impact of subsidies can be 

significant, as shown in Table 6.3, where the Federal $7500 subsidy [82] is sufficient 

to reduce the total cost of ownership and operation of the Nissan Leaf such that it 

becomes the most financially attractive option in the simple illustrative comparison 
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with other vehicle technologies. Absent such subsidies, which are federally capped by 

OEM unit sales, the estimated ownership and operation costs for the Nissan Leaf are 

approximately 30% higher.    

Table 6.3. Comparative estimated costs of ownership and operation for 

representative vehicle technologies, 2013 model year.37 

Vehicle 

Type 

Example 

Make/Model 

Federal 

$7500 

2013 

MSRP 

Operating 

Cost Per 

Mile 

Operating 

Cost Per 

Mile 

EPA Label 

Fuel 

   Subsidy?   Scenario 138 Scenario 239 Economy 

    (2013$) $/mile $/mile mpg / mpge 

Gasoline Ford Focus No $16,200  $0.365  $0.462  31 

Diesel VW Jetta TDI No $22,990  $0.462  $0.538  34 

Hybrid Toyota Prius No $24,200  $0.427  $0.487  50 

EV Nissan Leaf No $28,800  $0.445  $0.455  115 

EV Nissan Leaf Yes $21,300  $0.339  $0.349  115 

PHEV40 Chevy Volt No $39,145  $0.624  $0.661  67 

PHEV40 Chevy Volt Yes $31,645  $0.518  $0.551  67 

 

This field of research stands to benefit greatly from more coordinated economic 

and policy assessment. As an example, in addition to the large Federal subsidy available 

for PHEV and EV with sufficiently large batteries (>12 kWh), many direct and indirect 

state incentives are also available.   

                                                 
37

 Assessment assumes a seven year life (84,000 miles) and residual value at end of life equal to twenty 

percent of initial capitalized cost (in nominal terms). Operating cost calculations include ownership 

and energy operating costs only. Assumed are a nominal discount (interest) rate of eight percent; 

inflation rate of two percent; annual real price increase for gasoline, diesel, and natural gas of three 

percent; annual real price increase for electricity of one-half percent. MSRP represents manufacturer’s 

suggested retail price in US market in then-current 2013 dollars. Additional information available in 

[30]. Federal subsidy of $7500 applies to PHEV and EV of >12kWh [82]. 

38
 Scenario 1 sets initial (year 1) fuel/energy prices as follows: gasoline at $3.50/gal; diesel at $3.85/gal; 

electricity at $0.12/kWh 

39
 Scenario 2 sets initial (year 1) fuel/energy prices as follows: gasoline at $6/gal; diesel at $6/gal; 

electricity at $0.15/kWh. 

40
 PHEV assumes operation in EV/Gasoline modes at 64/36 share. 
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Table 6.4 shows several representative states and the respective estimated 

emissions for the vehicle architectures discussed in Chapter 5.  It also includes columns 

for total consumer subsidies for PHEV and EV which combine the Federal $7500 

subsidy with direct state subsidies that were available in 2014.  

Table 6.4. Notional state-level comparison of estimated vehicle emissions and 

relevant subsidies. 

STATE ICE-SI ICE-CI HEV PHEV Total EV Total 

  Emissions Emissions Emissions Emissions Subsidy Emissions Subsidy 

          

for 

PHEV   for EV 

  gCO2eq/km gCO2eq/km gCO2eq/km gCO2eq/km 2014$ gCO2eq/km 2014$ 

CALIFORNIA 194 196 131 101 $9,000  59 $10,000  

COLORADO 203 205 143 209 $12,500  203 $13,000  

GEORGIA 189 191 132 158 $7,500  138 $12,500  

ILLINOIS 199 201 140 180 $11,400  165 $10,500  

MISSOURI 199 200 140 200 $7,500  193 $7,500  

PENNSYLVANIA 190 191 133 155 $9,500  134 $9,500  

TEXAS 198 199 139 151 $7,500  123 $7,500  

WASHINGTON 196 198 135 123 $9,500  87 $7,500  

 

Notes: Information on Federal subsidy available in [82] and State subsidies in [157]. 

Estimated emissions rates by vehicle and state drawn from the analysis in Chapter 5. 

 

An initial observation of the data in Table 6.4 is that states’ efforts to incentivize 

the purchase of PHEV and EV may not categorically be well-aligned with the potential 

energy and emissions impacts predicted by this study.  While many states, like 

California and Washington have comparatively clean grids that can best leverage the 

benefits of PHEV and EV, other states such as Colorado or Illinois appear to have 

aggressive fiscal supports in spite of potentially neutral or adverse emissions impacts.   
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A simple financial analysis is performed for a few representative states to 

determine the implicit cost of carbon based upon the avoided emissions and the 

combined federal and state subsidy. The results are shown in Table 6.5. 

Table 6.5. Implicit Cost of Carbon for PHEV and EV Subsidies in Selected States. 

STATE PHEV Total Implicit EV Total Implicit 

  Avoided Subsidy Cost of Avoided Subsidy Cost of 

  Emissions for PHEV Carbon Emissions for EV Carbon 

  vs. ICE-SI     vs. ICE-SI     

  gCO2eq/km 2014$ $/MT gCO2eq/km 2014$ $/MT 

CALIFORNIA 93 $9,000  $573  135 $10,000  $439  

COLORADO -6 $12,500  UNDEF -1 $13,000  UNDEF 

GEORGIA 32 $7,500  $1,434  52 $12,500  $1,452  

ILLINOIS 19 $11,400  $3,556  34 $10,500  $1,830  

MISSOURI -1 $7,500  UNDEF 6 $7,500  $7,407  

PENNSYLVANIA 35 $9,500  $1,608  56 $9,500  $1,005  

TEXAS 47 $7,500  $946  75 $7,500  $593  

WASHINGTON 73 $9,500  $771  109 $7,500  $408  

Notes: For this analysis, it is assumed that the real interest rate is 7%, the inflation rate 

is 2%, vehicle life is 18 years, VMT are 13,851 in years 1-2, 12,042 in years 3-5, 10,741 

in yrs 6-9, and 7,401 for each successive year as per [136].  

 

Table 6.5 demonstrates the utility of this techno-economic approach in 

quantifying estimated carbon costs associated with relative emission improvements and 

subsidies of advanced vehicles. This analysis makes it clear that even the low-end 

estimates begin at about $400/ton, a level that is an order of magnitude greater than 

U.S. government estimates for the Social Cost of Carbon (SCC) [158]. The $400/ton 

range is also up to several times greater than estimates for carbon prices implied by 

stationary electrical power technologies. Table 6.5 also shows that certain states have 

implicit carbon prices well in excess of $1000/ton, and that some have undefined values 

given that the avoided emissions of PHEVs and EVs are effectively zero as compared 
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to an ICE-SI vehicle baseline. While there are other motivations for incentivizing 

advanced vehicles beyond emissions reductions such as energy diversification, this 

type of analysis serves a critical purpose in assessing the alignment of technology and 

economics with policy mechanisms.  This admittedly broad field of research can benefit 

greatly by emphasizing the need to coordinate a wide array of scientific studies and 

findings with economic and policy research, so as to have a greater impact and avoid 

any negative consequences of government policies. 

6.3 Closing Thoughts 

The findings in this dissertation confirm that technological improvements are 

responding to stringent fuel economy regulations, a more informed consumer base, and 

social concerns regarding constraints and environmental impacts associated with 

energy used for transportation. Clearly innovation in vehicle efficiency has and will 

continue to play a vital role in the reduction of sector energy and emissions. Today’s 

passenger cars deliver increasing value at stable and affordable prices in each 

successive year. The set of characteristics that contribute to utility, such as 

performance, safety, fuel economy, and aesthetic value, has not changed substantially 

in domestic markets, but consumers’ relative weighting and implicit valuation of them 

certainly have.  

The findings presented in this dissertation are nuanced, since technological 

deployment is a driving force behind energy reductions, but sustained fleet-wide gains 

will be complicated, time consuming, and costly. EPA assessments of the policies 

suggest that such costs are controllable and outweighed by benefits [15,27,156]. 

Increased Corporate Average Fuel Economy (CAFE) standards are indeed facilitating 
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research, development and deployment of higher efficiency internal combustion 

engines, reductions in vehicle weight and friction, and unprecedented levels of 

advanced hybrid and electric powertrains.  

Research-spawned, market-driven, and policy-guided innovation is not bound 

by a single approach, powertrain, or energy resource. Despite obvious inherent 

limitations, internal combustion engines and petroleum-derived fuels have unique 

capabilities that remain dominant in today’s global fleet. Advancements in engine 

efficiency are being leveraged synergistically with hybrids to enable emerging 

technologies [16]. The commercial success of HEVs has leveraged dramatic reductions 

in energy consumption and emissions while offering the consumer little or no 

compromise in performance. In the span of a single decade, HEVs have demonstrated 

fuel economy increases of 50% over similarly sized conventional vehicles. ICE 

technology will advance and complement future hybrid technologies [16]. EVs will 

continue to face challenges associated with range, infrastructure, and costs, and will 

need to scientifically demonstrate increasing levels of overall efficiency and value to 

compete with conventional vehicles on a stand-alone basis. Energy and emissions 

accounting for new vehicle classifications must improve to ensure that the intended 

benefits are truly bankable.   

Despite the tremendous progress on the technological front, economic 

considerations imply that oil price volatility presents substantial challenges to all 

stakeholders. The findings of the dissertation demonstrate how consumer benefit cost 

ratios can flip from favorable to unfavorable merely on the basis of fuel price 

uncertainty.  At the same time, consumers’ willingness to pay for fuel economy is 
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highly correlated to the regulatory context.  It has also been demonstrated that future 

costs will hinge largely on market factors which ultimately will determine the value of 

a given technology and the future worth of associated energy savings.  

An overarching theme worth re-emphasizing is that no single research 

discipline is likely to fully address the broad challenges of energy in transportation. As 

such, this dissertation presents coordinated approaches and perspectives, from rigorous 

technological and economic analyses, to the critical implications of policy. It is the 

author’s hope that this dissertation, its methodologies, findings, and their implications 

will contribute not only to continued research, but also to constructive dialogue and 

meaningful action, especially as a means to more fully equip decision-makers in the 

near term. Efforts to objectively and comprehensively assess the balance of cross-

cutting trade-offs toward better and better system outcomes are particularly needed.  It 

remains clear that fossil-fuel based transportation will not be sustainable in the long 

run, and that a diversity of options over time will be imperative.  Efforts to conserve 

must become second nature, as efforts to consume less are encouraged and regulated, 

while longer term solutions are invented and executed.  

And thus, we arrive at both the conclusion and the commencement of this work. 

Work that most certainly includes continued investigation and research; but also an 

equal share of scientifically-informed, conscientious, and intentional action. As my 

father says, it’s time to walk and chew gum. As my mother says, look both ways. As 

my wife says, don’t be late, but be sure to enjoy the ride. As my daughter says, a kid’s 

work is never done. And the journey beckons still. 
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Appendix A Definitions and Approaches for Estimating Fuel Economy, Fuel 

Consumption, Energy Consumption and Emissions 

In the United States, fuel economy is a familiar vehicle characteristic and is 

expressed in miles per U.S. gallon (mpg) of gasoline or diesel fuel.  The Environmental 

Protection Agency (EPA) utilizes three different definitions for fuel economy depending 

on the context and use. These include: EPA laboratory test fuel economy, EPA adjusted 

fuel economy, and the National Highway Traffic Safety Administration (NHTSA) 

Corporate Average Fuel Economy (CAFE) [13-15]. These represent the estimate 

determined by standardized dynamometer evaluation, the adjusted value to correct for real-

world driving, and the value used to calculate regulatory compliance by automaker, 

respectively.   

In many other regions of the world, including continental Europe, a fuel 

consumption value, or fuel consumed to travel a given distance, is more commonly 

reported, often in units of liters per 100 kilometers (L/100km).  The conversion is 

straightforward and is given by: 

𝐹𝐸 =
235.21

𝐹𝐶
 (A.1) 

 

In Eq. (A.1), FE represents fuel economy in miles per U.S. gallon and FC represents 

fuel consumption in units of Liters per 100 km (L/100km). While the conversion is 

straightforward, the inverse scales are different ways of relating to efficiency or 

consumption respectively, and can give rise to confusion.  

Fuel or energy consumption per distance travelled for hybrid electric vehicles 

(HEVs) and plug-in hybrid electric vehicles (PHEVs) operating in gasoline-only or “charge 
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sustaining” (CS) mode can be directly compared with conventional internal combustion 

engine propelled vehicles.  However, PHEV or electric vehicle (EV) operation in “all-

electric” or “charge depleting” (CD) mode introduces substantial unknowns related to the 

native energy source employed for electric charging.  As noted in Section 1.5, the concept 

of equivalent fuel economy has been introduced in order to provide a baseline reference 

from the standpoint of the vehicle boundary itself. Expressions for converting between 

energy consumption per unit distance travelled and equivalent fuel economy are given as: 

𝐸𝐶𝑘𝑊ℎ/𝑘𝑚 =
20.9

𝑀𝑃𝐺𝑒
 (A.2) 

 

𝐸𝐶𝑘𝑊ℎ/𝑚𝑖 =
33.7

𝑀𝑃𝐺𝑒
 (A.3) 

 

In Eq. (A.2), ECkWh/km represents energy consumption in units of kWh/km and 

MPGe represents equivalent fuel economy in units of miles per U.S. gallon equivalent. The 

numerator represents the calorific value of gasoline per unit volume. In Eq. (A.3), ECkWh/mi 

has units of kWh/mi, but all other terms are the same as Eq. (A.2). To make these 

conversions for vehicles with diesel engines, the numerators would be multiplied by about 

1.11 to account for the greater volumetric energy density of diesel fuel. 

It should be noted that MPGe can be a source of potential confusion [16-17] because 

it excludes consideration of energy sources upstream of the vehicle itself.  From a 

thermodynamic perspective, it is essential to evaluate energy efficiency using consistent 

system boundaries, methodologies and bases regardless of the upstream energy resource. 

The Department of Energy (DOE) studied U.S. average fossil-fuel electricity generation 

efficiency in 2000, determining it to be approximately ≈ 0.328 [79] and suggesting a 
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method for calculating a petroleum-equivalency factor (PEF) that would provide an 

incentive to vehicles that employ electricity.  The PEF is equal to 1/0.15, or about 6.7, as 

is intended to incentivize OEMs to produce and sell electric vehicles, and provide 

opportunities for significantly boosting CAFE compliance.  The factor, however, does not 

accurately reflect the energy intensities of EV vs. ICE vehicles, nor does the mpge rating.      

 For this reason, lifecycle energy and emissions analyses are invaluable to 

researchers and development engineers. However, many of today’s consumers and even 

some policymakers are less familiar with these approaches suggesting that cross-cutting 

studies should remain scientifically rigorous yet capable of being readily understood by 

broader audiences. As such, the present work approaches the measurement and comparison 

of vehicular energy efficiency in a robust yet pragmatic manner.   

As with energy efficiency, the measurement of vehicle emissions has traditionally 

been very straightforward due to the dominance of petroleum fuels in passenger cars. 

Tailpipe emissions estimates per unit volume are given in [18-21] for the complete 

combustion of gasoline, diesel and ethanol. Emissions accounting must also use consistent 

system boundaries, methodologies and bases regardless of the upstream energy resource. 

As noted in Chapter 1, source emissions have signatures tied to the relevant energy 

conversion technologies and can be approximated from sub-region data for domestic utility 

networks as described in the EPA eGrid 2010 assessment [22].  Though vehicle operation 

generally results in a variety of gaseous and particulate emissions, this study will primarily 

focus upon equivalent CO2 emissions (CO2eq).  As with energy efficiency, vehicle-related 

emissions are also be shown to have distinctive regional implications.  
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With the increasing demand for and innovation in advanced vehicle architectures, it 

is imperative to understand that a vehicle’s energy use is highly sensitive to a number of 

variable and potentially compounding factors including powertrain technology, auxiliary 

power for heating, cooling and electronics, ambient temperature, locality, and driving cycle. 

In addition to robust energy and emission accounting methodologies, the research employs 

standardized drive cycles to assess vehicle operation and response.  Numerous standardized 

driving cycles have been established to mimic scenarios representative of the real-world, 

such as stop-and-go, city, highway, aggressive, and comprehensive modes of driving.  

Their use therefore improves replicability and makes direct comparisons possible. In this 

dissertation, standardized EPA driving cycles and their relative weightings have been 

employed to facilitate such comparisons.   

Finally, as noted in Section 5.5, the energy consumption comparisons among unlike 

sources of energy in Chapter 5 are performed purely on a thermodynamic basis. In other 

words, the geopolitical and energy security impacts of using petroleum vis-à-vis other 

energy sources have been neglected. In reality, second order considerations do exist, 

particularly as it relates to energy operating costs. However, given the emphasis of Chapter 

5 on vehicle-level and system equivalent energy consumption, this assumption is deemed 

appropriate for comparison purposes. The comparative assessment of emissions uses a 

standard practice by comparing common units of CO2eq, which are broadly understood and 

widely used, regardless of the energy source.       
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Appendix B Regression Results of Hedonic Price Modeling for 2013 Data 

Table B.1. Regression results of the 7-parameter model on 2013 MY data using Eq. (3.9). 

Vehicle Category All Cars 
Sub-

Compact 
Compact 

Midsize, 

Lower 

Half 

Midsize, 

Upper 

Half 

Full Size 

Model Year  2013 2013 2013 2013 2013 2013 

Footprint (FP) Min 26.8  26.8  42.1  44.8  47.0  49.1  

Footprint (FP) Max 56.4  42.0  44.7  46.9  49.0  56.4  

FP, Wtd. Mean 45.7  39.2  43.6  45.9  47.8  51.5  

Data Set  2013 2013 2013 2013 2013 2013 

MSRP, Wtd. Mean $27,007  $19,995  $22,047  $27,806  $28,360  $44,442  

Sales Vol., Units 8,055,136  658,169  2,423,371  1,935,687  2,355,216  682,693  

Sales Revenue, $B 217.5 13.2 53.4 53.8 66.8 30.3 

Response Variable ln(MSRP) ln(MSRP) ln(MSRP) ln(MSRP) ln(MSRP) ln(MSRP) 

Hedonic Model Eq. (3.9) Eq. (3.9) Eq. (3.9) Eq. (3.9) Eq. (3.9) Eq. (3.9) 

Estimator  WLS WLS WLS WLS WLS WLS 

Observations 759 121 160 159 156 163 

R2  0.775 0.791 0.737 0.795 0.748 0.648 

Attribute Coeff. Param. Est. Param. Est. Param. Est. Param. Est. Param. Est. Param. Est. 

   (Std. Error) (Std. Error) (Std. Error) (Std. Error) (Std. Error) (Std. Error) 

Intercept 0 2.584*** 3.990** 0.993 0.742 -2.560** 

-

10.555*** 

   (0.466) (1.749) (0.979) (1.069) (1.186) (2.424) 

ln(FC) 1 -0.393*** -0.657*** -0.339*** -0.406*** -0.302 -2.276*** 

   (0.047) (0.133) (0.060) (0.125) (0.075) (0.300) 

ln(ACCEL) 2 -0.577*** -0.807*** -0.369*** -0.647*** -0.504*** -2.052*** 

   (0.053) (0.136) (0.081) (0.127) (0.082) (0.229) 

ln(CWT) 3 1.312*** 1.266*** 1.466*** 1.586*** 1.965*** 4.014*** 

   (0.055) (0.222) (0.119) (0.148) (0.161) (0.351) 

RWD 4 0.219*** 0.588*** 0.356*** 0.254*** 0.175*** 0.048 

   (0.023) (0.076) (0.064) (0.050) (0.055) (0.061) 

AWD 5 0.249*** 0.195 0.024 0.237*** 0.193*** 0.244*** 

   (0.026) (0.154) (0.047) (0.053) (0.047) (0.068) 

TRIMBASE 6 -0.098*** -0.120*** -0.091*** -0.105*** -0.062*** -0.004 

   (0.014) (0.032) (0.020) (0.030) (0.023) (0.052) 

TRIMPREM 7 0.094*** 0.129*** 0.111*** 0.089*** 0.066*** 0.027 

    (0.015) (0.041) (0.028) (0.028) (0.025) (0.052) 

  



 

 

 

200 

2
0
0
 

Appendix C EPA Fuel Economy Computation  

Appendix C presents formulae for computing official city, highway and combined fuel 

economy label estimates per the U.S. Environmental Protection Agency official rule [14].  

 

  CityRunningFCStartFCCityFE  1905.0  (C.1) 
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  HwyRunningFCStartFCHighwayFE  1905.0  (C.3) 

  

 

 AC

HWFETHwyUS

Hwy FC
FEFE

RunningFC *05.0
21.079.0

07.1
75_75__06













  (C.4) 

 

 

In Eqns. (C.1-C.4) above, FE=Fuel Economy and FC=Fuel Consumption. Subscripts 

represent either driving cycles and/or non-standard ambient temperature modes where the 

number following an underscore indicates the test temperature in °F.  The default 

temperature is 75°F (23.8°C) even if not indicated explicitly. In estimating combined fuel 

economy, the share of city/highway driving is assumed to be 43/57 for label protocols as 

per [14]. This differs from the 55/45 allocation used in the calculations of CAFE 

compliance, which are derived merely from two-cycle lab dynamometer test results [13-

15]. 
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Appendix D Share Allocations of Vehicle Miles Traveled 

Appendix D presents data used to determine share allocations for hourly and daily vehicle 

miles traveled (VMT) for annualized averages of energy consumption. 

Share allocations for hourly VMT. Figure D.1 is derived from the 2009 Summary of Travel 

Trends (NHTSA, Santos et al. [136]) and is used to determine the share allocations for 

hourly VMT during a typical day. The report presents a distribution of vehicle trips by start 

time of trip. For the purposes of this study, it is assumed that start times by hour as a fraction 

of total start times in a day roughly equate to the fraction of the day’s driving occurring in 

a given hour. The average daily distance driven is not considered or needed for our estimate 

of average energy consumption. We simply use the hourly fraction of use as a function of 

the total day’s use (in this case the sum of hourly shares for a full day is unity).  

 

 

Figure D.1. DOT data used to determine q, the hourly fraction of a given day’s VMT. 

 

 

 

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Sh
ar

e 
o

f 
D

ai
ly

 U
sa

ge

Hour of Day



 

 

 

202 

2
0
2
 

Share allocations for daily VMT. Figure D.2 is derived from the U.S. Environmental 

Protection Agency, Final Technical Support Document- Fuel Economy Labeling of Motor 

Vehicle Revisions to Improve Calculation of Fuel Economy Estimates [14]. It shows the 

share of VMT by month for a typical year and is used to determine the share of VMT by 

day during a typical year. For the purposes of this study, it is assumed that the share of 

driving that occurs on a given day is the given monthly share divided by the number of 

days in the given month. The result is the daily fraction of use as a function of the total 

year’s use (again, the sum of the daily shares for a full year is unity).   

 

 

Figure D.2. Information used to determine p, the daily fraction of the year’s VMT, 

assuming consistent driving within each month. Source data from [14]. 
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Appendix E Typical Meteorological Year Weather Data 

Appendix E provides illustrative examples of Typical Meteorological Year (TMY) data 

used to determine ambient temperature inputs by locality. 

Typical Meteorological Year (TMY) temperature data for selected cities. This plot 

illustrates temperature data from the National Renewable Energy Laboratory National 

Solar Radiation Data Base: 1991-2005 Update: TMY3 [148] for selected cities included in 

the study. Temperature at each locality and hour of the typical year is extracted for use in 

energy consumption calculations.  

 

 

Figure E.1. Example of annual TMY3 temperature data for selected U.S. cities from 

NREL weather database. Source data [148]. 
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Typical Meteorological Year (TMY) temperature data showing diurnal variations. This 

plot illustrates temperature data from the National Renewable Energy Laboratory National 

Solar Radiation Data Base: 1991-2005 Update: TMY3 [148] for the city of Indianapolis 

during a given two day period. The plot highlights the importance of considering both 

travel behavior and weather variation by hour and day.  Again, temperature at each locality 

and hour of the typical year is extracted for use in energy consumption calculations.  

 

 

 

Figure E.2. Example of hourly TMY3 data for IND from NREL weather database. Source 

data [148]. 
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Appendix F Standardized Driving Cycles 

Appendix F illustrates target velocity vs. time profiles for a select few EPA driving cycles 

employed in vehicle energy consumption simulations [144]. Plots scales differ. 

 

Figure F.1. Urban Dynamometer Driving Schedule (UDDS). 

 

Figure F.2. Highway Fuel Economy Driving Schedule (HWFET). 

 

Figure F.3. Supplemental Federal Test Protocol, Aggressive Driving Mode (US06). 
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Appendix G Vehicle Energy Consumption and Emissions Supporting Data 

Appendix G provides additional detail by city and vehicle type for the investigation 

presented in Chapter 5. 

Results of ECLM by locality and vehicle type. 

 

Table G.1. Estimated Energy Consumption Locality Multiplier (ECLM) by city and 

vehicle type. 

  ICE-SI ICE-CI HEV PHEV-CS PHEV-CD PHEV EV-PAC 

  ECLM ECLM ECLM ECLM ECLM ECLM ECLM 

ATL 1.010 1.008 1.056 1.053 1.016 1.041 1.018 

BAL 1.012 1.011 1.065 1.059 1.043 1.055 1.052 

BOS 1.013 1.013 1.061 1.060 1.062 1.063 1.077 

CHI 1.017 1.015 1.072 1.072 1.084 1.079 1.101 

DAL 1.015 1.011 1.074 1.074 1.025 1.056 1.023 

DC 1.013 1.012 1.063 1.062 1.040 1.056 1.047 

DEN 1.015 1.014 1.070 1.070 1.063 1.070 1.075 

DET 1.017 1.016 1.072 1.071 1.085 1.079 1.103 

HOU 1.013 1.008 1.066 1.064 1.008 1.044 1.003 

IND 1.017 1.015 1.072 1.072 1.080 1.077 1.095 

LA 0.994 0.996 0.999 0.996 0.958 0.983 0.964 

MIA 1.014 1.007 1.071 1.066 0.998 1.040 0.986 

MIN 1.020 1.019 1.084 1.085 1.126 1.104 1.148 

NYC 1.011 1.011 1.057 1.055 1.044 1.053 1.055 

PHA 1.013 1.012 1.062 1.060 1.047 1.057 1.057 

PHX 1.028 1.018 1.116 1.125 1.045 1.095 1.036 

PIT 1.014 1.014 1.064 1.063 1.067 1.067 1.083 

SD 0.995 0.996 1.002 0.998 0.957 0.983 0.961 

SEA 1.006 1.009 1.039 1.038 1.025 1.035 1.039 

SF 1.000 1.002 1.017 1.016 0.987 1.007 0.996 

STL 1.016 1.013 1.071 1.071 1.058 1.068 1.068 

TAM 1.012 1.006 1.064 1.061 0.998 1.038 0.990 

MEAN 1.012 1.010 1.060 1.059 1.037 1.052 1.044 

STDEV 0.008 0.006 0.026 0.028 0.042 0.031 0.049 

MIN 0.994 0.996 0.999 0.996 0.957 0.983 0.961 

MAX 1.028 1.019 1.116 1.125 1.126 1.104 1.148 

Spread 0.034 0.023 0.117 0.129 0.169 0.121 0.187 
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Estimated U.S. electricity generation profile by source and share, 2013. This table presents 

estimates for the efficiency and share of electricity sources in the U.S. electricity generation 

matrix for 2013.   

 

Table G.2. U.S. electricity generation profile by source, thermal efficiency, and share ca. 

2013. Source data from: [152,153,159]. 

  Coal Petrol. NG Nucl. Hydro Wind Bio Geo Solar Other 

           

Thermal 0.326 0.318 0.429 0.327 0.900 0.380 0.350 0.120 0.120 0.350 

           

Share of 

US mix 0.389 0.007 0.280 0.194 0.065 0.041 0.015 0.004 0.002 0.065 

 

Note:  Thermal represents the thermal efficiency on a first law energy basis with respect 

to the conversion of the energy resource (i.e., Energyin/Energyout). Petrol=Petroleum; 

NG=Natural Gas; Nucl.=Nuclear, Bio=Biomass, Geo=Geothermal. 
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Estimated system efficiencies and emissions by city. 

 

Table G.3. Estimated system efficiencies and emissions associated with energy sources in 

U.S. localities. 

CITY Local System Efficiencies for: Emissions associated with: 

  Liquid fuel Grid-supplied electricity Gasoline Diesel Electricity 

  Refining Transport Generation Transmission 

Wall-

Charging gCO2eq/kWh gCO2eq/kWh gCO2eq/kWh 

[Source] [151,19] [21] [152-153] [22] [150] [154,132] [154,132] [22] 

ATL 0.936 0.992 0.377 0.944 0.87 264 272 619 

BAL 0.936 0.992 0.373 0.944 0.87 264 272 491 

BOS 0.936 0.992 0.412 0.944 0.87 264 272 331 

CHI 0.897 0.992 0.342 0.944 0.87 264 272 687 

DAL 0.899 0.992 0.380 0.929 0.87 264 272 556 

DC 0.936 0.992 0.373 0.944 0.87 264 272 491 

DEN 0.878 0.992 0.364 0.932 0.87 264 272 867 

DET 0.897 0.992 0.340 0.944 0.87 264 272 745 

HOU 0.899 0.992 0.380 0.929 0.87 264 272 556 

IND 0.897 0.992 0.341 0.944 0.87 264 272 687 

LA 0.901 0.992 0.445 0.932 0.87 264 272 279 

MIA 0.936 0.992 0.413 0.944 0.87 264 272 549 

MIN 0.897 0.992 0.354 0.944 0.87 264 272 702 

NYC 0.936 0.992 0.395 0.944 0.87 264 272 284 

PHA 0.936 0.992 0.395 0.944 0.87 264 272 458 

PHX 0.901 0.992 0.380 0.932 0.87 264 272 538 

PIT 0.936 0.992 0.395 0.944 0.87 264 272 687 

SD 0.901 0.992 0.445 0.932 0.87 264 272 279 

SEA 0.901 0.992 0.733 0.932 0.87 264 272 385 

SF 0.901 0.992 0.445 0.932 0.87 264 272 279 

STL 0.897 0.992 0.341 0.944 0.87 264 272 828 

TAM 0.936 0.992 0.413 0.944 0.87 264 272 549 

US avg 0.902 0.992 0.394 0.938 0.87 264 272 563 

 

The source data used to derive these estimates are drawn from the designated references 

indicated in the table.  
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Estimated system-equivalent energy consumption 

Table G.4. Estimated system-equivalent energy consumption by locality and vehicle type. 

CITY ICE-SI ICE-CI HEV 

PHEV-

CS 

PHEV-

CD PHEV EV-PAC 

  Wh/km Wh/km Wh/km Wh/km Wh/km Wh/km Wh/km 

ATL 718 702 501 631 695 672 625 

BAL 720 705 506 634 721 690 652 

BOS 720 706 504 635 666 654 605 

CHI 754 738 531 670 819 765 745 

DAL 752 733 531 670 707 693 632 

DC 720 705 505 636 719 689 649 

DEN 770 753 542 683 765 735 693 

DET 754 738 531 669 823 767 749 

HOU 750 731 527 664 695 684 620 

IND 754 738 531 670 818 765 743 

LA 734 721 493 619 563 583 508 

MIA 721 701 509 638 624 629 553 

MIN 757 741 537 678 820 769 750 

NYC 719 705 502 632 683 664 619 

PHA 720 705 504 635 685 667 620 

PHX 759 737 551 700 720 713 639 

PIT 721 706 505 637 698 676 635 

SD 735 721 495 621 562 583 506 

SEA 743 730 513 646 366 467 332 

SF 738 725 502 632 580 599 525 

STL 754 737 531 669 801 754 725 

TAM 720 701 506 635 624 628 555 

MEAN 738 722 516 650 689 675 622 

STDEV 17.2 16.6 16.9 22.5 108.6 74.5 100.0 

MIN 718 701 493 619 366 467 332 

MAX 770 753 551 700 823 769 750 

Spread 51.4 52.3 57.8 80.2 457.0 302.5 417.5 
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Synthesized Energy Consumption Plot. This chart presents estimates for the energy 

consumption (EC) as given by the following methods: approximate equivalent energy 

consumption derived from CAFE compliance fuel economy values for representative 

vehicle m, ECCAFE(m); equivalent energy consumption derived from EPA fuel economy 

label calculations for vehicle m, ECLabel(m); vehicle-basis results from the present study 

for vehicle m and city n, ECVeh(m,n); system-equivalent results from the present study for 

vehicle m and city n, ECSysEq(m,n). For the latter two scenarios, data points for all 22 cities 

are shown but not individually identified.  

 

 

Figure G.1. Energy Consumption Estimates by Vehicle Type by Various Methods. 
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Appendix H Nomenclature 

Table H.1. Nomenclature for Chapter 3. 

Symbol Definition 

ACCEL 0 to 60 mph Acceleration Time, in seconds 

ANOVA Analysis of Variance 

AWD All Wheel Drive 

CAFEE Corporate Average Fuel Economy 

CPI Consumer Price Index 

CWT Vehicle Curb Weight 

FE Fuel Economy 

FC Fuel Consumption 

FP Footprint of vehicle, sq ft 

i Given vehicle (or given year) 

IWT Vehicle Inertia Weight 

j Given attribute 

kg Kilogram 

km Kilometer 

L Liter(s) 

m Total number of attribute variables 

m-n Number of dummy variables 

MPG Miles Per Gallon 

MSRP Manufacturer's Suggested Retail Price 

n Number of continuous variables 

Nominal Price Price in nominal terms 

OLS Ordinary Least Squares 

Pi Purchase price, vehicle i 

PWR Rated engine power 

R2 Regression coefficient of determination 

Real Price_1 Price, inflation adjusted by CPI: all items 

Real Price_2 Price, inflation adjusted by CPI: new vehicles 

RWD Rear Wheel Drive 

SSError Error Sum of squares 

SSj Sum of squares, attribute j 

SSModel Model Sum of squares 

SSTotal Total Sum of squares 

SS(F) Type I Sum of squares for FC 

SS(F|A) Sum of squares, attribute FC given ACCEL 

SS(F|C) Sum of squares, attribute FC given CWT 

SS(F|C,A) Type III Sum of squares for FC 

SS(F|A,C) Type III Sum of squares for FC 
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Table H.1. Nomenclature for Chapter 3 (cont.). 

Symbol Definition 

TRIMBASE Base Trim Level 

TRIMPREM Premium Trim Level 

Utility Objective function for vehicle utility 

Ui Utility of vehicle i 

VOL Volume of vehicle passenger compartment, cu ft 

WLS Weighted Least Squares 

Xij Attribute j for vehicle i, continuous variable 

Yij Attribute j for vehicle i, dummy variable 

 

Table H.2. Nomenclature for Chapter 3. 

Greek Symbol Definition 

0 Intercept of the regression 

1 Price elasticity of FC wrt vehicle price 

2 Price elasticity of ACCEL wrt vehicle price 

3 Price elasticity of CWT wrt vehicle price 

j Price elasticity of attribute j wrt vehicle price 

i Residual error 

A  Average share of model response explained by ACCEL 

C  Average share of model response explained by CWT 

F  Average share of model response explained by FC 
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Table H.3. Nomenclature for Chapter 4. 

Symbol Definition 

B/C Ratio of Benefit:Cost 

BCA Benefit Cost Analysis 

CAFEE Corporate Average Fuel Economy 

CNG Compressed Natural Gas 

CVT Continuously Variable Transmission 

Diesel Vehicle with a diesel engine 

mpg Absolute change in fuel economy 

% Percent change in fuel economy 

ECO Economy package, light-weighting or reduced aero drag 

EV Electric Vehicle 

FE Fuel Economy 

HEV Hybrid Electric Vehicle 

i Nominal discount rate 

ICE Internal Combustion Engine 

IRPE Incremental Retail Price Equivalent 

MPG Miles Per Gallon 

MPGAV Fuel Economy of average vehicle baseline 

MPGe Equivalent fuel economy, in MPG equivalent 

MPGMS Fuel Economy of model specific baseline 

MPGX Fuel Economy of improved model, X 

MSRP Manufacturer's Suggested Retail Price 

NPV Net Present Value 

PEF Petroleum Equivalency Factor 

PHEV Plug-in Hybrid Electric Vehicle 

OEM Original Equipment Manufacturer 

R2 Regression coefficient of determination 

TRANS Advanced Transmission 

TRBDS Turbocharged Downsized Engine 

VMT Vehicle Miles Traveled 

VVT Variable Valve Timing 
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Table H.4. Nomenclature for Chapter 5. 

Symbol Definition 

AF Frontal area 

aveh Vehicle acceleration 

C1 BEC capacitance 

CD Coefficient of drag 

Crr0,Crr1 Rolling resistance coefficients 

CD Charge-Depleting 

CI Compression-Ignition 

cpao,cpac Air specific heat: outdr, cabin 

CS Charge-Sustaining 

Ebatt,loss Battery energy loss  

ECEq,CS Sys Equivalent Energy Consumption, CS 

ECEq,CD Sys Equivalent Energy Consumption, CD 

ECi Energy Consumption, cycle i 

ECi,start EC during start-up, cycle i 

ECm,n Average EC for veh m, city n 

ECm,ref Reference EC for veh m 

ECLM Energy Consumption Locality Multiplier 

EIgasoline Emission Intensity of gasoline 

EIdiesel Emission Intensity of diesel 

EIm Emission Intensity, vehicle m 

EIEGn Emission Intensity, Electricity Generation, city n 

EV Electric Vehicle 

Faccel Force due to acceleration 

Faero Aerodynamic drag force 

Fhill Hill climb force 

Frr Rolling resistance force 

Ftr  Tractive force 

FE Fuel Economy 

FCi Fuel Consumption, cycle i 

FCi,start FC during start-up, cycle i 

FTP Federal Test Protocol 

g Acceleration of gravity, 9.8 m/s2 

(hA)b Battery heat transfer coefficient*area 

HEV Hybrid Electric Vehicle 

HVAC Htg, Ventil'g, Air-Condition'g 

HWFET Highway FE Driving Sched. 

Icell Cell current 

Icell,ch Cell current, charging mode 

Icell,dch Cell current, discharg'g mode 

IR1 Current thru R1 
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Table H.4. Nomenclature for Chapter 5 (cont.). 
 

Symbol Definition 

ICE Internal Combustion Engine 

j,k Given driving cycles 

LHV Lower Heating Value 

m Vehicle type identifier 

mac, mab Air mass flow rate: cabin, batt 

mveh Vehicle mass 

n City identifier 

Ni Non-dyno correction, cycle i 

Nt Total number of cells 

p Day of year 

q Hour of day 

Paux Auxiliary/HVAC power 

Paux,batt Battery HVAC power 

Paux,cabin Cabin HVAC power  

Pcell,loss Cell power loss 

Pem Electric motor power 

Peng,max Maximum engine power 

Ptotal Total vehicle power 

Ptr Tractive power 

QAC,cabin Cabin AC load 

Qb Battery heat rate, inst. 

Qb,cycle Battery heat generation, cycle 

Qhtg,cabin Cabin heating load 

QLoad Cabin AC or heat load 

R0 , R1 BEC resistances  

SOC Battery state of charge 

SOCinit Initial state of charge 

SI Spark-Ignition 

SysEq System Equivalent 

t Time 

Tao,Tac Air temperature: outdoor, cabin 

Tb Battery module temperature 

Tbao Battery air outlet temperature 

UDDS Urban Dyno Driving Schedule 

UF Utilization Factor 

US06 Supplemental FTP 

VC1 Voltage across C1 

Vcell Cell voltage 

Veh Vehicle 

VOC Cell Open Circuit Voltage 

vveh Vehicle speed  
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Table H.5. Nomenclature for Chapter 5.  

Greek Symbol Definition 

b,rt Roundtrip battery efficiency 

ch On-board charging efficiency 

chg External charging efficiency 

dch On-board discharging efficiency 

liqref,n Petroleum refining efficiency, city n  

liqtr Petroleum transportation efficiency  

gen,n Electricity generation efficiency, city n  

trans,n Electricity transmission efficiency, city n 

grade Hill grade angle 

ao, ac  Air density: outdoor, cabin 

j , k  Drive cycle weighting factors 

p  Drive fraction of day p 

q Drive fraction of hour q 

 

 

Table H.6. Nomenclature for Chapter 5 
 

Abbreviation U.S. City 

ATL Atlanta, GA 

BAL Baltimore, MD 

BOS Boston, MA 

CHI Chicago, IL 

DAL Dallas, TX 

DC Washington, DC 

DEN Denver, CO 

DET Detroit, MI 

HOU Houston, TX 

IND Indianapolis, IN 

LA Los Angeles, CA 

MIA Miami, FL 

MIN Minneapolis, MN 

NYC New York City, NY 

PHA Philadelphia, PA 

PHX Phoenix, AZ 

PIT Pittsburgh, PA 

SD San Diego, CA 

SEA Seattle, WA 

SF San Francisco, CA 

STL St. Louis, MO 

TAM Tampa, FL 
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