1,203 research outputs found

    Linear-Time Algorithms for Maximum-Weight Induced Matchings and Minimum Chain Covers in Convex Bipartite Graphs

    Full text link
    A bipartite graph G=(U,V,E)G=(U,V,E) is convex if the vertices in VV can be linearly ordered such that for each vertex uUu\in U, the neighbors of uu are consecutive in the ordering of VV. An induced matching HH of GG is a matching such that no edge of EE connects endpoints of two different edges of HH. We show that in a convex bipartite graph with nn vertices and mm weighted edges, an induced matching of maximum total weight can be computed in O(n+m)O(n+m) time. An unweighted convex bipartite graph has a representation of size O(n)O(n) that records for each vertex uUu\in U the first and last neighbor in the ordering of VV. Given such a compact representation, we compute an induced matching of maximum cardinality in O(n)O(n) time. In convex bipartite graphs, maximum-cardinality induced matchings are dual to minimum chain covers. A chain cover is a covering of the edge set by chain subgraphs, that is, subgraphs that do not contain induced matchings of more than one edge. Given a compact representation, we compute a representation of a minimum chain cover in O(n)O(n) time. If no compact representation is given, the cover can be computed in O(n+m)O(n+m) time. All of our algorithms achieve optimal running time for the respective problem and model. Previous algorithms considered only the unweighted case, and the best algorithm for computing a maximum-cardinality induced matching or a minimum chain cover in a convex bipartite graph had a running time of O(n2)O(n^2)

    Schnyder woods for higher genus triangulated surfaces, with applications to encoding

    Full text link
    Schnyder woods are a well-known combinatorial structure for plane triangulations, which yields a decomposition into 3 spanning trees. We extend here definitions and algorithms for Schnyder woods to closed orientable surfaces of arbitrary genus. In particular, we describe a method to traverse a triangulation of genus gg and compute a so-called gg-Schnyder wood on the way. As an application, we give a procedure to encode a triangulation of genus gg and nn vertices in 4n+O(glog(n))4n+O(g \log(n)) bits. This matches the worst-case encoding rate of Edgebreaker in positive genus. All the algorithms presented here have execution time O((n+g)g)O((n+g)g), hence are linear when the genus is fixed.Comment: 27 pages, to appear in a special issue of Discrete and Computational Geometr

    Forbidden minor characterizations for low-rank optimal solutions to semidefinite programs over the elliptope

    Get PDF
    We study a new geometric graph parameter \egd(G), defined as the smallest integer r1r\ge 1 for which any partial symmetric matrix which is completable to a correlation matrix and whose entries are specified at the positions of the edges of GG, can be completed to a matrix in the convex hull of correlation matrices of \rank at most rr. This graph parameter is motivated by its relevance to the problem of finding low rank solutions to semidefinite programs over the elliptope, and also by its relevance to the bounded rank Grothendieck constant. Indeed, \egd(G)\le r if and only if the rank-rr Grothendieck constant of GG is equal to 1. We show that the parameter \egd(G) is minor monotone, we identify several classes of forbidden minors for \egd(G)\le r and we give the full characterization for the case r=2r=2. We also show an upper bound for \egd(G) in terms of a new tree-width-like parameter \sla(G), defined as the smallest rr for which GG is a minor of the strong product of a tree and KrK_r. We show that, for any 2-connected graph GK3,3G\ne K_{3,3} on at least 6 nodes, \egd(G)\le 2 if and only if \sla(G)\le 2.Comment: 33 pages, 8 Figures. In its second version, the paper has been modified to accommodate the suggestions of the referees. Furthermore, the title has been changed since we feel that the new title reflects more accurately the content and the main results of the pape
    corecore